Jackknifes and naive linear bounds

We can obtain both upper and lower bounds for the number of undiscovered variants by linear combinations of the $\phi(d)$. To do this, we note that the equations for the number of missed variants

$$V(N) - V(n) = \int_0^1 ((1 - f)^n - (1 - f)^N) \Phi(f) df$$

and for the number of variants at a given allele frequency

$$\phi_n(j) = \int_0^1 \binom{n}{j} f^j (1 - f)^{n-j} \Phi(f) df$$

have a very similar form. The only difference is a ‘weight factor’ before Φ. If the weight function $w_{n,N}(f) = (1 - f)^n - (1 - f)^N$ can be approximated by functions of the form $b(f, \bar{\alpha}) = \sum_{i=1}^d \alpha_i f^i (1 - f)^{d-i}$ then we can approximate $V(N) - V(n)$ in terms of the observed $\phi_n(i)$. In fact, this is exactly what the jackknife estimates do–A jackknife estimator would correspond to a function

$$J(f) = \sum_{i=1}^d \beta_i \phi(i),$$

S. Gravel
with the $\vec{\beta}$ chosen such that $V(N) - V(n) = \int_0^1 w_{n,N}(f) \tilde{\Phi}(f)$, for a particular d-parameter family of models $\tilde{\Phi}(f)$, thought a priori to be a reasonable proxy for $\Phi(f)$. This interpretation of the jackknife provides intuition about the behavior of jackknife estimators when the underlying model is not within $\tilde{\Phi}(f)$; comparison of the jackknife weight $J(f)$ and the correct weight $w(f)$ (Figure S4) provides an idea of the general accuracy of the jackknife estimate, and an idea of the frequencies that are more (or less) sensitive to errors.

However, we can also use the similarity between the expressions to obtain strict bounds on $V(N) - V(n)$, by choosing functions $b(f, \vec{\alpha}) = \sum_{i=1}^d \alpha_i f^i (1 - f)^{n-i}$ that are strict bounds to $w_{n,N}(f)$. The best such bounds will be attained when the approximating function $b(f, \vec{\alpha})$ touches but does not cross $w_{n,N}(f)$. We can show that the best upper bound with $d = 2$ is $V(N) - V(n) < (N/n - 1) \phi(1)$.

There is a one-dimensional family of lower bounds which are optimal for at least one function $\Phi(f)$, parameterized by the contact point $0 \leq f_0 \leq 1$ where

$$
\begin{align*}
 b_2(f_0, \vec{\alpha}_{f_0}) &= w_{n,N}(f_0) \\
 b'_2(f_0, \vec{\alpha}_{f_0}) &= w'_{n,N}(f_0).
\end{align*}
$$

(1)

To see that these $\vec{\alpha}_{f_0}$ exist and define lower bounds, consider the first, second, and third derivatives of the function $w_{n,N}(f) - b(f, \vec{\alpha})$.

For each f_0, we can solve for $\vec{\alpha}_{f_0}$, and thus obtain a lower bound to $V(N) - V(n)$. Given a sample, one can calculate all bounds and use the tightest. Figure 1 and Table 3 show results using this approach with simulated data. It is easy to derive bounds with higher d, but the process of establishing the optimal bound is more challenging. Extrapolations based on upper bounds with $d = 3$ are shown on Table 3.

As in the case of jackknife estimates, higher order for the bounds means reduced bias, but also reduced stability in the presence of errors.

Known proportion of invariant sites

In the ecology problem, the proportion of individuals or species that have not been observed is unknown; it is the object of the inference. In the genetic context, the total number of sequenced sites L may be known; the object of the inference is to determine the proportion of these sites that would be variable in a larger sample. This does not fundamentally change the inference process:

Jackknife bounds

In the jackknife case, we are provided with one additional function $(1 - f)^N$ to try to obtain a linear bound to the weight functions $w_{n,N}(f)$. In the infinite-extrapolation case
\(N = \infty \), we now have an upper bound to the number \(U \) of undiscovered variants: \(U \leq \phi(0) \). This is an inequality because variants with frequency 0 are counted in \(\phi(0) \) but not in \(U = \int_0^1 (1 - f)^n \Phi(f) \).

Finite extrapolation bounds can be improved using the knowledge of \(\phi(0) \), by following the procedure described in the ‘Naive linear bound’ section for the optimization of the \(\bar{\alpha}_i \). However, we do not study these in detail here.

Linear programming bounds

In the linear programming framework, the observed \(\phi(0) \) is easily incorporated as an additional equality constraint stipulating that \(\sum_i \Phi(i) = \sum_j \phi(j) \). Intuitively, we expect that the additional constraint will help narrow the confidence interval.

However, when the total sample size is equal to the extrapolation size (i.e., \(M = N \)), this provides limited information because the additional constraint involves a new variable, \(\Phi(0) \), that is not involved in the objective function \(V(N) \). Thus, \(\Phi(0) \) can be adjusted to satisfy the constraint without affecting \(V(N) \). Starting from a vector \(\Phi^*(i) \) realizing the upper bound \(V_N^*(N) \) for the problem with \(\phi(0) \) unknown, such an adjustment is possible unless \(\sum_{i=1}^N \Phi^*(i) > \sum_{d=0}^n \phi(d) \), in which case \(\Phi(0) \) would be negative, violating the constraint \(\Phi(0) \geq 0 \). In such a case, convexity ensures that the optimal solution must satisfy \(\Phi(0) = 0 \), and \(V^*_N(N) = \sum_{d=0}^n \phi(d) \). Thus, in general, we simply have the somewhat disappointing result \(V^*_N(N) \leq \sum_{d=0}^n \phi(d) \), the lower bound is unchanged by the additional information.

This argument does not hold if the population size \(M \) is larger than the extrapolation size \(N \) because, in that case, \(\Phi_M(0) = 0 \) does not imply \(V(N) = \sum_{d=0}^n \phi(d) \). Indeed, we find an improvement of the upper bound that becomes more pronounced as the number of invariant site in the sample of size \(M \) is decreased.

Jackknife equivalence

We wish to show that the jackknife expansions A:

\[
V(N) - V(n) = \sum_{i=1}^p a_i (H(N) - H(n))^i
\]

, and B:

\[
V(N) - V(n) = \sum_{i=1}^p b_i H^i(N) - H^i(n)
\]

S. Gravel 3
lead to the same predictions. Both expansions can be written in the third expansion form C:

\[V(N) - V(n) = \sum_{i=0}^{p} c_i(N) H(n)^i, \]

for different parameterizations of \(c_i(N) \). Importantly, these parameterizations do not involve \(n \). In the parameter estimation, we use in the three cases the constraints

\[V(n) - V(n - j) = \sum_{i=0}^{p} c_i (H^i(n - 1) - H^i(n)), \]

for \(j = \{1...p\} \). These provide \(p \) equations for \(p \) unknowns \(\{c_i\}_{i \geq 1} \). We can solve for these independently of \(N \). We could equally well expand the \(c_i \) in terms of, say, the \(a_i \), solve a linear equation for the \(a_i \), and substitute these back to produce exactly the same expansion. Thus, the expansions A, B, and C are equivalent for \(i > 0 \). In expansion C, the dependence on \(N \) enters only after we impose that \(V(N) - V(n) \) must be zero when \(N = n \). This imposes

\[c_0 = -\sum_{i=1}^{p} i c_i H(N)^i. \]

This simple form of the estimator, made explicit in expansion B, was obscured by the poor parameterization choice of expansion A: whereas the \(\{b_i\}_{i \geq 1} \) depend only on \(n \), the \(\{a_i\}_{i \geq 1} \) are messy functions of \(N \) and \(n \).
Figure S1: Distribution of predictions for $N = 100$ based on multiple subsamples of 20 diploid individuals from 1000 Genomes populations, expressed as a proportion of the correct value. We display the jackknife prediction, and upper and lower 95% bootstrap confidence intervals based on the Jackknife estimator and Linear Programming. Recently admixed populations (ASW,CLM,MXL,PUR), and populations with cryptic relatedness (ASW,CHS,MXL,LWK) show more variation across sub-samples, reflecting sample heterogeneity.
Figure S2: Linear Programming upper and lower bounds, extrapolating from 50 chromosomes sampled from a population of 100 chromosomes containing 1 Million SNPs following the frequency distribution from Equation (4). The sample was generated assuming Poisson noise in each bin. Upper and lower bounds are calculated for 20 different Poisson resamplings of the sample, and 95% confidence intervals were obtained (vertical lines). The tips of the upwards and downwards pointing triangles represent the 95% confidence intervals of the lower and higher bounds, respectively. LPs with $p \geq 9$ were not feasible. The ‘observed’ line represents variants observed in the sub-sample.
Figure S3: Jackknife simulations using the BO assumptions (Red) and the harmonic assumptions (Blue) for three different functional forms of the site-frequency spectrum, extrapolating from a population of 100 to 5000 chromosomes, based on a total count of 1,000,000 SNPs. The middle panel corresponds to the Standard Neutral Model.
Figure S4: Comparison of the true weight \(w(x) = (1 - x)^n - (1 - x)^N \) used in the infinite-genome expression (2) for the number of missed variants (thick solid line) to the jackknife approximate weights (with jackknife order indicated by the number of dashes). From top to bottom, we consider extrapolations from 100 to 200, 100 to 400, and 100 to 1000 chromosome. For twofold extrapolation, the third-order weight is a good approximation to the exact weight and the jackknife will be accurate independent of the underlying allele frequency distribution \(\Phi(f) \), whereas for 10-fold extrapolation, the accuracy of the results will depend much more on the cancellation of errors, in the integral of Eq. (2), making results sensitive to model assumptions.
Figure S5: (Left) Predicted and observed discovery rates as a function of sample composition when the sample has both European and West African ancestry, based on a simulated evolutionary model from (TENNESSEN et al. 2012, GRAVEL et al. 2011). LP and jackknife predictions for discovery rates were generated using a sample of 100 European and 100 African haplotypes, for varying proportions of European and West African ancestries. These were compared to simulated values according to the model. (Right) Predictions based on 100 haplotypes drawn from 1000 Genomes YRI and CEU samples, as a function of sample composition.
Figure S6: Three possible SFS’ in a sample of size 100 that are consistent with a single simulated observed SFS of size 40. The black curve is the correct (simulated) SFS in the large sample, and the red (blue) curves were identified by linear programming to provide the maximal (minimal) total number of variants consistent with the data. Despite the large qualitative differences in the shape of the SFS’, the total number of variants differs by less than 1%.
Figure S7: The effects of the amount of data on the extrapolation accuracy. We generated Poisson sampling for 10^3 to 10^8 polymorphic SNPs in samples of size 100, 200, 400, and 1000. For each, we generated 40 samples of size 50 by hypergeometric sampling. We obtained upper and lower LP bounds for each simulated set by merging bins until an LP solution is found (see text). Triangle tips represent the upper limit of the 95% CI on the upper bound, and the lower limit of the 95% CI on the lower bound. Vertical lines connect these with the short horizontal lines representing the other end of the respective confidence interval.