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SUPPLEMENTARY FIGURES

FIG. S1 A comparison between our analytical results and numerical site frequency spectra obtained using the struc-
tured coalescent for a sample of 1000 individuals. Population sizes, mutation rates and selection coefficients are the
same as in Figure 2. Thicker, translucent lines represent the results of forward time simulations, and were obtained
by downsampling the whole-population site frequency spectra in Fig. 2. Theoretical predictions are shown in dashed
lines and were obtained by numerically downsampling the theoretical prediction for the whole-population site fre-
quency spectrum in Eq. (I25) (Appendix I). Full lines represent site frequency spectra of samples of 1000 individuals
measured from backwards-in-time structured coalescent simulations, and averaged over 105 runs per parameter set.
Apart from the slight discrepancy between the theoretical predictions and the simulated data and very high and
very low frequencies, there is almost perfect agreement between the predictions of the structured coalescent and our
analytical results. This discrepancy arises because our theoretical prediction that p(f) ≈ 2NUn

f
when f < 1

Nσ
or

f > 1− 1
Nσ

slightly overestimates the site frequency spectrum near the transitions at f ≈ 1
Nσ

and f ≈ 1− 1
Nσ

(see
also Figure 2).
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1− 1

Nse−Ud/s

1

Nse−Ud/s
Nse−λ

FIG. S2 The site frequency spectrum as a function of Nse−λ (λ = const = 4 for all curves). The regime of effective
neutrality narrows as Nse−λ decreases, and disappears when Nse−λ ≤ 2. Note that because λ is the same for all
parameter sets, the expectation for the site frequency spectrum of a neutral population with a reduced “effective
population size” is the same for all parameters and is given by the black dashed line. For Nse−λ ≥ 2, the site
frequency spectrum agrees with this prediction for f between 1

Nse−λ
and 1 − 1

Nse−λ
(marked by vertical dashed

colored lines). Note that our theoretical predictions show good agreement with simulations even for Nse−λ ≈ 2,
which is the value of Nse−λ at which the region of effective neutrality just disappears. However, for Nse−λ < 2, the
site frequency spectrum has a form that is not described by our model (grey lines). Simulated site frequency spectra
were obtained as described in the caption of Figure 1.

Nse−λ

FIG. S3 For Nse−λ ≤ 2, the site frequency spectrum interpolates between a neutral model, which is obtained in
the limit that the variation in fitness Nσ → 0 and approaches the Bolthausen-Sznitman coalescent (BSC, red line)
when Nσ → ∞. Note that for Nse−λ ≈ 2, our theoretical predictions agree well with the observed form of the site
frequency spectrum. Note however the discrepancy between the form of the BSC and the site frequency spectrum
at low frequencies. This suggests that the correspondence between the BSC and the evolutionary model of weak
selection is only approximate (see Discussion).
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Appendix A: The propagation of fluctuations in the size of the founding class

In this Appendix, we consider in more detail how fluctuations in the size of the lineage in the founding class
propagate to affect the total allele frequency. For this purpose, it will be convenient to consider a neutral
mutation that arose in the k = 0 class sufficiently long ago that it is in mutation-selection balance. Let the
total frequency of the lineage be f . As in the main text, we denote the frequency of the part of the lineage
that is in class i by fi. In mutation-selection balance, the fi will satisfy

fi = e−λ
λi

i!
f. (A1)

Consider what happens if the frequency f0 of the founding genotype changes suddenly to some value
f0 + δf0. Based on the deterministic solution, after a time t, this will lead to a change in the frequency of
the part of the lineage in class i, δfi(t) , of

δfi(t) = δf0
[λ(1− e−st)]i

i!
. (A2)

In other words, the relative change in the frequency of the lineage in the i-class is

δfi(t)

fi
=
δf0

f0

[
1− e−st

]i
. (A3)

This approaches δf0

f0
at long times as the allele re-establishes mutation-selection balance. However, we can

see from Eq. (A3) that this change is not felt at the same time in all classes. In the 1-class, the frequency
changes gradually, at rate s (Eq. (A3)), and results in a proportional change roughly τ1 = 1

s generations

later. In general, in the i-class, this change is felt after a total delay of roughly τi = log(i)
s generations. Thus,

the change propagates from class i to class i+ 1 over the course of

τi+1 − τi ≈
1

(i+ 1)s
(A4)

generations.

Ultimately, τλ = log(λ)
s = td generations later, this change will have been felt in a substantial fraction

of the fitness distribution. Fitness classes near the mean of the distribution (which is λ classes below the
0-class) are those that exhibit the largest absolute change in frequency, since they contain the largest number
of individuals when the lineage is in mutation-selection balance. Thus, changes in these classes account for a
large proportion of the change in the total allele frequency, which explains the origin of the delay timescale,
td, that we have introduced in the main text.

Appendix B: The large deviations from average behavior caused by genetic drift

In this Appendix, we consider the importance of drift in each individual fitness class on the overall allele
frequency. In the first subsection, we revisit a standard argument to explain why fluctuations due to genetic
drift in the frequency of the founding genotype can never be neglected, framing it in terms that will be
useful when considering the importance of drift in classes below the founding class. In the next subsection,
we build on this argument to explain why the effects of drift become negligible in all classes i in which the
frequency, fi, of the component of the lineage in that class satisfies fi � 1

Nsi , but cannot be neglected in all
classes in which the frequency does not exceed that threshold.

1. The importance of genetic drift in the founding class

The essential reason why drift can never be neglected in the early phase of a trajectory is that deviations
from the low frequency average behavior caused by drift are not small perturbations, but are extremely
broadly distributed. Consider for instance a mutation that arises in class k. As we explain in the main text,



32

the founding genotype feels an effective selection coefficient equal to −ks. The deterministic trajectory of
the founding genotype is therefore

〈fk(t)〉 = fk(0)e−kst. (B1)

In other words, the ‘deterministic trajectory’ of a neutral founding genotype (k = 0) is a flat line, whereas
the deterministic trajectory of a deleterious founding genotype (k > 0) decays exponentially at rate ks.

However, we know that drift leads to large deviations from the deterministic behavior in Eq. (B1). In
fact, we have mentioned that when fk � 1

Nsk , drift can lead to an x-fold increase above this expectation
with probability 1

x (Fisher, 2007). Thus, the deviations from the deterministic expectation due to drift are
distributed according to an extremely broad power law. As a result, large deviations from Eq. (B1) are very
likely. For lineages arising in the 0-class, these deviations can take the frequency of a lineage all the way to
fixation. However, deleterious founding genotypes with k > 0 are exponentially unlikely to exceed the drift
barrier at 1

Nsk . Thus, the distribution of deviations from the mean, deterministic behavior of these founding
genotypes also follows the same power law at low frequencies (fk � 1

Nsk ), but is capped by selection at
frequencies exceeding 1

Nsk . As a result, the effects of drift on trajectories of deleterious mutations become
perturbative at sufficiently large frequencies and can therefore be neglected when fk � 1

Nsk .
Because fluctuations in fk always propagate to classes of lower fitness, drift in the founding class has an

important impact on the overall allele frequency whenever it has an important impact on fk. This means
that the overall frequency trajectory of alleles founded in the 0-class will always be affected by drift in
fk, which will cause large, power law distributed deviations from the deterministic expectation of the total
allele frequency trajectory. Similarly, the overall frequency trajectory of alleles founded in a class with k > 0
deleterious mutations will be impacted by drift in the founding class when the overall allele frequency satisfies
f � 1

Nsk · g̃k (which correspond to founding class frequencies fk � 1
Nsk ), but prevented by selection from

exceeding frequencies larger than 1
Nsk · g̃k (see also Appendix E).

2. The importance of genetic drift in classes below the founding class

Given these arguments, one may wonder whether the effects of drift are also important in classes below
the founding class, in which individuals carry i > k deleterious mutations. Deviations from deterministic
behavior in these classes (i.e. in fi) are also propagated to classes of lower fitness. Such deviations in
fi(t), if large, will also have a large impact on the overall frequency trajectory of the allele, f(t). However,
since classes below the founding class receive substantial mutational input from higher classes, it is not
immediately clear whether the effects of drift on fi(t) will ‘average out’ as a result of these mutations, or
whether drift can still lead to large deviations from the deterministic expectation for fi(t). In Appendix E
we show by formally analyzing the distribution of allele frequency trajectories that drift in class i is negligible
when fi � 1

2Nsi , and in this Appendix we give a heuristic argument explaining why this threshold arises.
This heuristic argument does not reproduce O(1) factors that are obtained using formal methods (i.e. the
factor of 1

2 in 1
2Nsi ), but it offers additional intuition on the existence of this threshold and its dependence

on the parameters N , s, and i.
The threshold ∼ 1

Nsi is reminiscent of the drift barrier relevant for single deleterious loci of fitness is.
However its relevance in classes below the founding class is not immediately obvious. Although the individuals
in class i also feel an effective selection pressure equal to −is, new mutational events from class i−1 counter
these effects of selection. Thus, it is not obvious that the combination of the opposing effects of mutation
into the class and selection within the class will be stronger than the effects of drift whenever fi � 1

Nsi (as
opposed to some other threshold that also depends on Udfi−1).

To gain insight into this, we consider in more detail the effects of individual mutational events into class i.
Each of these mutational events can be thought of as founding a new ‘sub-lineage’ in class i. The frequency
trajectory of each sub-lineage is the same as that of a single locus with fitness −is and the overall trajectory
fi(t) is equal to the sum of the trajectories of these sub-lineages. When a sub-lineage is small, drift will lead
to large deviations from its average (deterministic) frequency trajectory, which is also given by Eq. (B1).
However, as in the founding class, at frequencies larger than 1

Nsi , these deviations are capped by the effects
of selection. Thus, the drift barrier 1

Nsi represents the frequency above which fluctuations cannot lead to
large deviations of individual sub-lineages from the average behavior.
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To understand when drift has an important impact on the overall i-class trajectory, fi(t), we can consider
how these deviations in the trajectories of the sub-lineages add. At sufficiently small frequencies fi � 1

Nsi ,
the overall trajectory fi will be equal to the sum of random trajectories that have an extremely broad
distribution. In this case, the sum will be dominated by the trajectory of the largest sub-lineage, which will
be very different than the average trajectory. Thus, even when the total number of mutational events into
class i is large, the effects of genetic drift in class i may not be negligible if each of these mutational events
results in a relatively small trajectory. In other words, fluctuations due to drift in the frequency trajectories
do not ‘average out’, but are rather dominated by the largest deviation from the mean. Conversely, when
the total number of sub-lineages is large enough that many of them reach the frequency 1

Nsi (which is
guaranteed to happen if the total number of mutational events into the i-class is much larger than 1

si ), the
overall frequency of the lineage will be much larger than 1

Nsi . In this case, the largest event is no longer
be very different than the average event; the effects of genetic drift are therefore negligible compared to
the effects of selection. The transition between these two behaviors happens when fi ∼ 1

Nsi , which roughly
corresponds to exactly one sub-lineage exceeding 1

Nsi . We discuss these effects using a more formal approach
in Appendix G. Note that by extending this argument to classes i+ 1 and lower, we can verify that once the
frequency trajectory in class i exceeds 1

Nsi and becomes predominantly shaped by mutation and selection, the
frequency of the allele in all lower fitness classes is also guaranteed to exceed the corresponding frequency
thresholds, which is why we can also neglect the effects of drift in all classes below a class in which the
frequency exceeds 1

Nsi .

Appendix C: The generating function for the total size of the labelled lineage

In this Appendix, we consider the generating function for the total frequency of the lineage,

Hf (z, t) =
〈
e−zf(t)

〉
, (C1)

and derive a partial differential equation describing how it changes in time. As described in the main text,
when the size of the lineage is small (f(t) � 1), its dynamics are described by the coupled system of
Langevin equations for the components fi(t) of the total frequency f that denote the frequency of the part
of the lineage that carry i deleterious mutations,

dfi(t)

dt
= −isifi + Udfi+1 +

√
fi
N
ηi(t). (C2)

In Eq. (C2), the ηi are independent uncorrelated Gaussian noise terms. The total allele frequency is equal
to the sum of these components, f(t) =

∑
i fi(t).

Note that the total allele frequency f(t) is not a Markov random variable, since its evolution depends on
the details of the distribution of the individuals within the lineage among the fitness classes. However, the
frequencies of the components fi(t) are jointly Markov, with their joint distribution described by the joint
generating function

H({zi}, t) =

〈
exp

(
−
∑
i

zi fi(t)

)〉
. (C3)

The generating function for f(t) can be obtained from the joint generating function by setting zi = z for
all i. We can obtain a partial differential equation for the joint generating function by Taylor expanding

H({zi}, t+dt) and substituting in the differentials dfi(t) = −isfidt+Udfi−1dt+
√

fi
N

√
dt ηi(t) from Eq. (C2),

which yields

∂H

∂t
=
∑
i

−
(
iszi +

z2
i

2N
− Udzi+1

)
∂H

∂zi
. (C4)

We can solve this PDE for the joint generating function by using the method of characteristics. The
characteristic curves zi(t− t′) are defined by

dzi
dt′

= is zi − Udzi+1 +
z2
i

2N
, (C5)
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and satisfy the boundary condition zi(t) = z. The linear terms in the characteristic equation arise from
selection and mutation out of the i class, and the nonlinear term arises from drift. Along these curves,
the generating function is constant, and so H({zi}, t) = H({zi(0)}, 0) = e−

∑
i fi(0)zi(0), where the initial

condition fi(0) = 1
N δik corresponds to a single individual present in class k at t = 0. Thus, to obtain a

solution for the joint generating function we need to integrate along the characteristics in Eq. (C5) backwards
in time from t′ = 0 to t′ = t. In the next few Appendices, we obtain these solutions in the limits of weak
(Ud � s) and strong mutation (Ud � s).

Appendix D: Trajectories in the presence of weak mutation (Ud � s)

When deleterious mutations arise more slowly than selection removes them (Uds ≡ λ � 1), deleterious
descendants of a lineage are much less numerous than the founding genotype. To see this, we can expand
the characteristics zi(t − t′) in powers of the small parameter λ. At leading order, the characteristics are
uncoupled and can be straightforwardly integrated to obtain

z0
i (0) =

ze−ist

1 + z
2Nsi (1− e−ist)

. (D1)

By substituting this zeroth order solution into Eq. (C5), we find that corrections due to deleterious descen-
dants are O(λ), and are therefore small uniformly in z. Thus, the generating function for the total f of the
labelled lineage t generations after arising in class k is

Hf (z, t) = exp

[
−

1
N ze

−kst

1 + z
2Nsk (1− e−kst)

]
+O(λ), (D2)

which agrees with classic results by Kendall (1948) for the generating function of independently segregating
loci of fitness −ks.

Eq. (D2) can be inverted to obtain the probability distribution, p(f, t), by an inverse Laplace transform,

p(f, t) =

∫ i∞

−i∞

dz

2πi
efzHf (z, t). (D3)

This distribution is well known, and can be obtained by standard methods. Noting that Hf (t, z) =

exp
[
− z 1

N e
−kst

1+ z
2Nsk (1−e−kst)

]
has a single essential singularity at z = − 2Nsk

(1−e−kst) , we can perform the integral

above either exactly by contour integration (by closing the contour using a large semicircle in the left half-
plane and a straightforward application of the residue theorem, which gives a solution in terms of Bessel
functions), or approximately by the method of steepest descents (taking care to deform the contour to pass
through the saddle point on the right of the essential singularity). By carrying out this inverse Laplace
transform, we obtain that the extinction probability by time t is

p(f = 0, t) = exp

[
− 2sk

1− e−skt e
−skt

]
, (D4)

which becomes of order one when t & 1
sk , in agreement with our intuition that a lineage of fitness ks can

only survive for order 1
ks generations. For non-extinct lineages, the probability distribution of the frequency

is

p(f, f > 0, t) ≈

√√√√ 2Nks
1−e−kst

√
e−kst

N

4π
f−3/4 exp

− 2Nks

1− e−kst f

1−
√
e−kst

Nf

2
 . (D5)

The site frequency spectrum can be obtained from this distribution of frequencies by integrating Eq. (D5)
in time, or by an alternative method that we present in Appendix F.
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Appendix E: Trajectories in the presence of strong mutation (Ud � s)

When deleterious mutations arise faster than selection can remove them, mutation will play an important
role in shaping the trajectory. The relative strength of mutation and selection compared to drift will depend
on the frequency of the lineage. Drift will remain the dominant force at frequencies f � 1

NUd
. However, at

larger frequencies, the mutation and selection terms will become important, and we will see that the effects
of drift in classes of low enough fitness become negligible.

1. Small lineages (f � 1
NUd

)

The dominant term in the characteristic equation in this regime (which corresponds to z � NUd in the
generating function) is the drift term

dzi
dt′
≈ z2

i

2N
, (E1)

which has the solution

zi(0) ≈ z

1 + zt
2N

. (E2)

We can verify that mutation and selection are negligible compared to drift on timescales of order t ∼ 1
Ud

as long as i . 2λ. Note that this condition (i . λ) is satisfied for essentially all of the individuals in the

population since
∑2λ
i=0 hi ≈ 1−

√
2π
λ e

(−2λ+1) log(2+1/λ)+λ ≈ 1. By summing the zi(0) terms, we find that on

these timescales the generating function for the frequency of the mutation is

Hf (z, t) ≈ exp

[
−

z
N

1 + zt
2N

]
, (E3)

which is just the generating function for the frequency of a neutral lineage (cf. Eq. (D2)). On longer
timescales (t� 1

NUd
), this approximation breaks down, and mutation and selection cannot be neglected for

lineages arising in fitness classes far above the mean of the fitness distribution (with k � λ −
√
λ). This

is because the probability that a portion of the lineage in a class with fewer than λ −
√
λ mutations has

drifted to a high enough frequency to feel the effects of mutation and selection becomes substantial on longer
timescales, which can also be seen from the probability distribution of non-extinct lineages (Eq. (D5)). We
consider the generating function of these unusually fit mutations at these higher frequencies in the next
subsection. In contrast, mutations that arise on more typical backgrounds with k > λ−

√
λ mutations can

drift to higher frequencies, of order
√
λ

NUd
, before feeling the effects of selection, but cannot substantially

exceed a total frequency
√
λ

NUd
. We analyze their trajectories in the following subsection.

2. Large lineages (f � 1
NUd

) arising on unusually fit backgrounds (k � λ−
√
λ)

In lineages that reach higher frequencies, a large number of deleterious descendants arise every generation.
This leads to strong couplings between the sizes of the components of the lineage in different fitness classes,
and diminishes the importance of genetic drift in classes of lower fitness, which receive large numbers of
deleterious descendants from classes of higher fitness. We find that in classes of low enough fitness, the
effects of genetic drift are negligible and the dominant balance is between the linear mutation and selection
terms.

The solution to the linear (deterministic) problem has been obtained by Etheridge et al. (2007), but we
reproduce the derivation briefly for completeness. In the absence of drift, the characteristics evolve according
to

dzi
dt′

= iszi − Udzi+1 ≡
∑
i

Lijzj , (E4)
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which defines the linear operator Lij . L has right eigenvectors φ(j) with eigenvalues −js given by

φ
(j)
i =

{
(−λ)j−i

(j−i)! , 0 ≤ i ≤ j
0, otherwise ,

(E5)

and corresponding left eigenvectors

ψ
(j)
i =

{
λi−j

(i−j)! , i > j

0, otherwise.
(E6)

We can verify that the left and right eigenvectors are orthonormal (ψ(i) · φ(j) =
∑
l ψ

(i)
l φ

(j)
l = δij). By

eigenvalue decomposing zi(t) and integrating backwards in time from t′ = 0 to t′ = t, we obtain zi(t− t′) =∑
j e
−jst′bjφ

(j)
i , where the amplitudes bj are set by the boundary condition at t′ = 0, bj = ψ(j) · z(t) =

ψ(j) · z =
∑∞
i=j

λi−j

(i−j)!zj . Finally, a summation yields

zi(t− t′) = e−ist
′
∞∑
j=0

(λ(1− e−st′))j
j!

zi+j . (E7)

Setting the boundary condition at t = 0 to fi(0) = 1
N δki and evaluating zk(0), we reproduce the result

by Etheridge et al. (2007): in the absence of genetic drift, the descendants of the labelled lineage follow a

Poisson distribution that starts in class k and has mean λ(1− e−st) and amplitude 1
N e
−ksteλ(1−e−st).

To evaluate the effect of genetic drift on the total size of the lineage at some later time point we set zi = z.
A sufficient (but not necessary) condition for genetic drift in class i being negligible in determining the total

size of the lineage at some later time point t is that the nonlinear term zi(t−t′)2

2Ns � izi(t− t′) uniformly in t′.
In the vicinity of some frequency f(t) ∼ f , corresponding to z(t) = z ∼ 1

f , we find that the nonlinear term

is is negligible uniformly in t′ as long as

e−ist
′
eλ(1−e−st′ ) � 2Nsi f for all t′, 0 < t′ < t. (E8)

Note that the condition in Eq. (E8) is obtained by plugging in the relationship between zi(t − t′) and

z(t) = z ∼ 1
f (from Eq. (E7)) into the condition that zi(t−t′)2

2Ns � izi(t − t′). Since the left hand side

in Eq. (E8) is bounded by e−ist
′
eλ(1−e−st′ ) ≤ eλ

(
i
λe

)i
= g̃i, the inequality is guaranteed to be satisfied

uniformly in t as long as

f � 1

2Nsi
g̃i. (E9)

Defining kc(f) to be the smallest integer for which f � 1
2Ns(kc+1) g̃kc+1, we can verify that genetic drift is

negligible in all classes with i > kc(f) but not in class kc(f).
Note that self-consistency of the deterministic solution for kc < λ implies that when f � 1

2Ns(kc+1) g̃kc+1,

the frequency of the part of the allele in class i satisfies fi � 1
2Nsi for all i > kc, but not for i ≤ kc. Also note

that this inequality can only be satisfied for some kc < λ if the founding class is sufficiently far above the
fitness distribution (λ− k �

√
λ, where g̃k � 1). We return to lineages founded in classes with k > λ−

√
λ

mutations in the next subsection.
Thus, since genetic drift has a negligible effect in classes containing more than kc deleterious mutations,

the characteristics zi(t
′) are given by the deterministic solution above, which we have already integrated.

The frequency of the part of the lineage in classes with i > kc is therefore a deterministic function of the
frequency trajectory in class kc, fkc(t). We can solve for this deterministic function straightforwardly by
explicitly including fkc(t) as a variable mutational source term for classes of lower fitness. This yields an
expression for the generating function of the entire lineage

Hf (z, t) =
〈
e−z

∑kc
i=k fi(t)−zUd

∫ t
−∞ dτ fkc (τ)gkc+1(t−τ)

〉
, (E10)
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when

z � 2Ns(kc + 1)

g̃kc+1
, (E11)

where we have used the notation from the main text, gi(t) = e−ist+λ(1−e−st).

The relationship between the ‘feeding class’ trajectory fkc(t) and the allele frequency trajectory f(t)

Equivalently, this result can be rewritten in terms of the relationship between the allele frequency trajectory
f(t) and the trajectory of the portions of the alleles in classes with k ≤ kc

f(t) =

kc∑
i=k

fi(t) + Ud

∫ t

−∞
dτ fkc(τ)gkc+1(t− τ), (E12)

which is valid as long as f � 1
2Ns(kc+1) g̃kc+1. Because the expression on the right hand side of Eq. (E12)

is dominated by the last term, the full allele frequency trajectory reduces to a single stochastic term fkc .
Therefore, we can calculate the distribution of p(f, t) near any given frequency f by: (1) determining the
‘feeding class’ kc(f) which corresponds to the class of lowest fitness in which genetic drift is not negligible,
and (2) calculating the distribution of this time integral of the trajectory in that class, fkc(t), subject to the
boundary condition that fk(0) = 1

N .
In principle, this is still challenging if kc > k, because the trajectory in class kc still depends on the

trajectories in higher-fitness classes, all of which are stochastic. In addition, calculating the distribution
of the convolution of fkc(t) and gkc+1(t) is still difficult, even when kc = k. Fortunately, a simplification
arises from the highly peaked nature of gkc+1(t − τ). Because the exponent in gkc+1(t − τ) is peaked
in time, the integral in Eq. (E12) is, up to exponentially small terms, dominated by the region in which
gkc+1(t − τ)fkc(τ) is largest. Since the variation in the magnitude of gkc+1(t − τ) is much larger than the
variation in the magnitude of fkc(τ), the integral will be dominated by the window during which gkc+1(t−τ)
is at its peak, as long as fkc(τ) 6= 0 in that window. In that case, we can make a Laplace-like approximation
in Eq. (E12), in which we expand gkc+1(t− τ) around its peak, and neglect contributions that are far away

from this peak, since these are exponentially small. Near τ = t− t(kc+1)
d = t− log( λ

kc+1 )
s ,

gkc+1(t− τ) ≈ g̃kc+1e
−(kc+1)s2

(
t−τ−t(kc+1)

d

)2

, (E13)

which yields

f(t) ≈ Udg̃kc+1

∫ t

−∞
dτ fk(τ)e

−(kc+1)s2
(
t−τ−t(kc+1)

d

)2

≈ Udg̃kc+1

∫ t−t(kc+1)
d + ∆t(kc+1)

2

t−t(kc+1)
d −∆t(kc+1)

2

fkc+1(τ)dτ ≡ Udg̃kc+1W∆t(kc+1)(t− t(kc+1)
d ).

(E14)

As a result of this simplification, the allele frequency does not depend on the full frequency trajectory in
the feeding class fkc+1(t), but only on its time integral (‘weight’) in a window of width ∆t(kc+1) = 1√

kc+1s

around t− t(kc+1)
d , which we denote by W∆t(kc+1)(t− t(kc+1)

d ). Note that Eq. (E14) implies a simple condition
in terms of the allele frequency trajectory in this feeding class kc that specifies when drift is negligible in
downstream classes. We have shown above that as long as the total allele frequency f � 1

2Ns(kc+1) g̃kc+1,

drift is negligible in classes with more than kc deleterious mutations per individual. From Eq. (E14), we can
see that this condition can be restated in terms of the weight in the feeding class as

W∆t(kc+1)(t− t(kc+1)
d )� 1

2NUds(kc + 1)
. (E15)

Thus, kc can also be thought of as corresponding to the class of highest fitness in which the weight exceeds
1

2NUds(kc+1) .
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The approximation we have used in Eq. (E14) breaks down at very early times (t � t
(k)
d ), and very late

times, during which fkc(τ) = 0 in the relevant window. These correspond to the spreading and extinction
phases of the trajectory. We show in Appendix I that the former has a negligible impact on the site frequency
spectrum. The latter phase however has an important effect at very high frequencies of the mutant, i.e. when
the wild type is rare and in its own extinction phase. During this extinction phase,

gkc+1(t− τ) ≈ eλ−(kc+1)s(t−τ) (E16)

uniformly in t and the frequency trajectory is well approximated as

f(t) ≈ Udeλ−(kc+1)st
∫ t
−∞ dτ fkc (τ)e(kc+1)sτ

. (E17)

Applying the Laplace approximation once again, we conclude that the integral in Eq. (E17) is dominated by
the window of width 1

(kc+1)s prior to extinction in the kc-class and therefore only weakly depends on time.

Thus, during this extinction phase, the allele frequency decays exponentially at rate (kc + 1)s, and can be
written as

f(t) = fpeake
−(kc+1)s(t−tpeak), (E18)

for some choice of tpeak, where fpeak reflects the maximal frequency the trajectory reached before the onset
of the extinction phase.

Thus, we can see that in the extinction phase of the trajectory, the effective fitness of the lineage changes
with the frequency according to

seff(f) = − (kc(f) + 1) s. (E19)

To obtain an explicit expression for how the feeding class kc(f) and therefore seff(f) depend on the frequency

f , we can solve the condition that 1
2Ns(kc+1) g̃kc+1]� f � 1

2Nskc
g̃kc for kc by setting f = C(f)

2Ns(kc+1) g̃kc+1 for

some C(f) that satisfies 1� C(f)� λ. We find that, to leading order,

kc(f) + 1 ≈ logλ

(
1

Nse−λf

)
when kc(f)� 1. (E20)

By plugging this back into the expression for seff(f), we find that in the extinction phase of the trajectory
the effective selection coefficient changes with the frequency of the lineage according to

seff(f) = − logλ

(
1

Nse−λf

)
s, if f � 1

Nse−λ
. (E21)

In summary, we have shown in this Appendix that the allele frequency trajectory in the peak phase of
the allele only depends on the time integral of the frequency in class kc over a window of specified width
∆t(kc+1), and that outside this peak phase, the trajectory has an even simpler time-dependent form that we
described above.

As we will see in Appendix F, the generating function for this relevant weight in class kc is straightforward
to calculate when kc is the founding class (i.e. for kc = k). This case is relevant for trajectories that arise
in class k and exceed frequencies fk � 1

N
√
Uds(k+1)

, which means that the feeding class weight will exceed

1
2NUds(k+1) for a certain period of time.

However, not all trajectories that arise in class k will reach such large frequencies. We have seen in
an earlier section that trajectories that do not ever exceed frequencies much larger than 1

NUd
will have a

trajectory that is dominated by drift throughout its lifetime. However, even those that do exceed fk � 1
NUd

,
and therefore leave behind a large number of deleterious descendants will often not reach the much larger
frequency fk � 1

N
√
Uds(k+1)

. In this case, we will have to treat multiple fitness classes stochastically and

the weight relevant for the peak of the trajectory will be that in class kc > k. For kc > k(≥ 0), a further
simplification results from the fact that the width of the window ∆t(kc+1)(t) is longer than the lifetime
of the mutation in class kc (see Appendix F and Appendix G for details). We use this simplification to
calculate the resulting weight distribution in Appendix G. Finally, in Appendix I we use these results to
obtain expressions for the average site frequency spectrum both in the case of strong and weak mutation.
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3. Lineages arising on typical backgrounds (k − λ > −
√
λ)

Lineages founded in classes with k > λ−
√
λ mutations will not enter the semi-deterministic regime described

above. This is because selection in each individual class i in which they can be present prevents fi from
exceeding 1

Nsi <
1

Nsk ≈ 1
NUd

, where the latter ( 1
NUd

) is the necessary threshold for a large enough number
of deleterious descendants to be generated that their dynamics become dominated by selection in some class
below the i-class. This threshold equal to 1

NUd
emerges from our analysis of the coupled branching process

in the previous subsection and is further clarified and discussed in Appendix G.
In contrast to lineages arising far above the mean of the fitness distribution, the frequency trajectories of

lineages that arise near the mean of the fitness distribution are dominated by drift, and eventually capped
by negative selection at large enough frequencies. Selection becomes an important force about 1√

Uds
= 1

σ

generations after the lineage was founded. At this time, the accumulated deleterious load since arising
becomes large enough to impact the trajectory of the mutation. This deleterious load will impact the
trajectory substantially when the frequency of the lineage f(t) becomes comparable to the ‘drift barrier’ set
by its current relative fitness x(t), 1

Nx(t) . The expected fitness of a lineage founded near the mean of the

distribution (with |x(0)| . σ) is 〈x(t)〉 = x(0) − Ud (1− e−st). Provided that the lineage has not drifted to
extinction by t, its expected frequency at t is f(t) ∼ t

N . Thus, when f(t) ≈ 1
Nx(t) , the effect of selection

will dominate over drift. This occurs when t ∼ 1√
Uds

= 1
σ . Thus, lineages that arise near the mean of the

fitness distribution have a trajectory that has neutral statistics for the majority of its lifetime, but does not
exceed 1

Nσ . Finally, lineages arising in classes far below the mean of the fitness distribution (k − λ�
√
λ),

will also be dominated by drift, but limited to even lower frequencies. However, these lineages are also
comparatively rare and only have a small relative impact on the lowest frequency part of the site frequency
spectrum (f � 1

Nσ ).

Appendix F: The distribution of allele frequencies and of the weight in the founding class

In this Appendix, we calculate the distribution of frequencies fk(t) and weights W∆t(t) =
∫ t+ ∆t

2

t−∆t
2

fk(t′)dt′ for

the stochastic process defined by

dfk
dt

= −ksfk +

√
fk
N
η(t), (F1)

with fk(0) = 1
N and fk(t) = 0 for t < 0. This process describes the trajectory of the component of the

lineage that remains in the founding class (the ‘founding genotype’). To calculate these distributions, we
begin by defining the joint generating function for the frequency fk(t) and the total time-integrated weight
up to time t,

W (t) =

∫ t

0

fk(t′)dt′. (F2)

The joint generating function for these two quantities is defined as

G(z, ζ, t) = 〈e−zfk(t)−ζW (t)〉, (F3)

and satisfies the PDE

∂G(z, ζ, t)

∂t
= −

(
−ζ + ksz +

z2

2N

)
∂G(z, ζ, t)

∂z
. (F4)

Once again, we solve this PDE using the method of characteristics. The characteristics z(t−t′) are defined
by

dz

dt′
= −ζ + ksz +

z2

2N
,

dζ

dt′
= 0, (F5)
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and are subject to the boundary condition z(t) = z, ζ(t) = ζ. The generating function is constant along the
characteristics (dGdt′ = 0), and therefore satisfies

G(z, ζ, t) = G(z(0), ζ(0), 0). (F6)

After integrating the ODEs in Eq. (F5), we find that the characteristics follow

z(t− t′) = a+ + (a+ − a−)
(z − a+) exp

[
−(a+−a−)t′

2N

]
z − a− − (z − a+) exp

[
−(a+−a−)t′

2N

] , (F7)

with a± = Nsk
(
−1±

√
1 + 2ζ

N(sk)2

)
.

We can verify that the correct marginal generating function for the frequency of the lineage emerges from
this result by setting ζ = 0 and imposing the boundary condition G(z, 0, t) = G(z(0), 0, 0) = e−

1
N z(0), which

corresponds to the initial frequency at t = 0 being 1
N .

To obtain the marginal generating function for the weight in the window between t− ∆t
2 and t + ∆t

2 , we

set z = 0, t = ∆t, and choose a boundary condition that reflects the distribution of frequencies fk
(
t− ∆t

2

)
generations after the lineage was founded (see Eq. (D2)),

GW (z = 0, ζ, t = ∆t) = exp

− 1
N z(0)e−ks(t−

∆t
2 )

1 + z(0)
2Nsk

(
1− e−ks(t−∆t

2 )
)
 , (F8)

where

z(0) =
2ζ

sk
[√

1 + 2ζ
N(sk)2 coth

(
ks∆t

2

√
1 + 2ζ

N(ks)2

)
+ 1
] . (F9)

The generating function in Eq. (F8) captures the full time-dependent behavior of the weight in the founding
class in a window of width ∆t, and can be inverted by standard methods. However, it is in practice
unnecessary to invert Eq. (F8) to calculate the site frequency spectrum. For our purposes here, we will be
mostly concerned with two special cases: the total weight in the founding class from founding to extinction,
W =

∫∞
0
f(t′)dt′, and the time-integral of the distributions of frequencies p(f(t)) and weights p(W∆t(t)) in

a window of specified width ∆t. The former case has been calculated previously by Weissman et al. (2009).
We quote and discuss this result for completeness in the section below. We then analyze the latter case in
the following section.

1. The distribution of the total lifetime weight in the founding class, W =
∫∞

0
f(t′)dt′

The first special case that will be relevant to our analysis of trajectories and allele frequency spectra is the
total integrated weight in the founding class from founding (t = 0) to extinction. By setting ∆t = t

2 in
Eq. (F8) and Eq. (F9), we find that the generating function for the total weight from founding to some later
time t is

GW (ζ, t) = exp

− 2ζ

Nsk
[√

1 + 2ζ
N(sk)2 coth

(
kst
2

√
1 + 2ζ

N(ks)2

)
+ 1
]
 . (F10)

Note that Eq. (F10) becomes independent of time when t & 2
ks (uniformly in ζ), which agrees with our

heuristic intuition that the lifetime of a mutation in class k is not longer than ∼ 2
ks generations. Since we

have shown in Appendix E.2 that the allele frequency trajectory f(t) depends on the weight in a window of
width ∆t ≥ ∆t(k+1) = 1√

k+1s
(where the ≥ sign follows because kc ≥ k) that is longer than ∼ 1

ks for k > 1

(with k = 1 being the marginal case), the distribution of W∆t(k+1)(t) will be either equal to the total lifetime
weight of the allele (for t . ∆t(k+1)) or negligible for t & ∆t(k+1).
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By taking the limit t → ∞ in Eq. (F10), we obtain that the distribution of the lifetime weight in the
founding class is

GW (ζ) = exp

[
− 2ζ√

(Nsk)2 + 2ζN

]
. (F11)

The inverse Laplace transform of Eq. (F11) can be evaluated by standard methods, which yields the distri-
bution of the lifetime weight in the founding class

p(W ) =

√
1

2Nπ

1

W 3/2
e
−N(ks)2W

2 − 1
2NW . (F12)

2. The time integrals of p(f, t) and p(W∆t, t)

To calculate the average site frequency spectrum, we need to calculate the time-integral of the distributions
of frequencies and weights over time. In principle, this can be done by inverting Eq. (F8) and then integrating
the distribution of W∆t(t) over time. However, since this is a somewhat laborious calculation, we will use
a convenient mathematical shortcut in which we first solve for the distribution of weights in a different
stochastic process, and then relate this back to the original process in Eq. (F1).

Specifically, we consider the stationary limit of the stochastic process defined by the Langevin equation

df

dt
= θ − ksf +

√
f

N
η(t). (F13)

This describes the time-evolution of the frequency of a lineage with fitness −ks in which individuals are
continuously generated by mutation at some rate Nθ (and have frequency 1

N at the time when they are
generated). This process is relevant because the distribution of frequencies and weights in the stationary
process are related to the time-integrals of the distributions of f(t) and W∆t(t). More precisely, in the limit
that θ → 0 (keeping N constant), the distributions of f (and its time integrals) in the stationary process are
the same as the time-integrated distributions of the non-stationary process, provided that we also divide by
the total rate at which new individuals are generated, Nθ, to ensure proper normalization. That is,∫ ∞

−∞
p(fk(t))dt = lim

θ→0

1

Nθ
· p(f, f > 0, θ). (F14)

We denote the joint generating function for the frequency, f , and weight in this process, W (t, θ) =∫ t
0
W (t′, θ)dt′, by

Gθ(z, ζ, t) = 〈e−zf(t,θ)−ζW (t,θ)〉. (F15)

Gθ(z, ζ, t) satisfies the PDE

∂Gθ(z, ζ, t)

∂t
= −

(
−ζ + ksz +

z2

2N

)
∂Gθ(z, ζ, t)

∂z
− θzGθ(z, ζ, t). (F16)

Note that the generating functions for the two processes are related, and that by setting θ = 0 in Eq. (F16),
we obtain the generating function for the non-stationary process (see Eq. (F4)). In particular, the character-
istics for Eq. (F16) are the same as the characteristics for Eq. (F4), and they follow the form we calculated
previously and quoted in Eq. (F7). Along these characteristics, the generating function satisfies

dGθ
dt′

= θ z(t− t′)Gθ, (F17)

or equivalently, after integrating,

Gθ(z, ζ, t) = Gθ(z(0), ζ(0), 0) exp

[
−θ
∫ t

0

z(t− t′)dt′
]
. (F18)
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However, the boundary conditions for the two processes are different. The non-stationary process is subject
to the boundary condition that there is a single individual present in the lineage at t = 0, G(z(0), ζ(0), 0) =

e−
1
N z(0), whereas the stationary process is subject to the boundary condition that the process is stationary

at the initial time point, t′ = t. The stationary property of the frequency distribution is guaranteed by the

boundary condition Gθ(z(0), ζ(0), 0) =
(

1 + z(0)
2Nsk

)−2Nsθ

. This can be obtained either by inspection, or by

substituting an arbitrary boundary condition and finding the limiting form for the generating function for
the frequency as t → ∞, and noting that z(0) becomes independent of z as t → ∞, so the initial condition
has no impact on the frequency distribution.

Plugging in the expression for z(t− t′) from Eq. (F7) into Eq. (F18), and performing the integral over t′,
we arrive at the solution to the joint generating function for f(θ) and W (θ),

Gθ(z, ζ, t) = Gθ(z(0), ζ(0), 0) exp [−θa+t]

(
1 + (z − a+)

1− exp[− (a+−a−)t
2N ]

a+ − a−

)−2Nθ

. (F19)

To obtain the marginal generating function for f(θ), we set ζ = 0, giving a+ = 0, a− = −2Nsk, and

Gθ,f (z) =
(

1 +
z

2Nsk

)−2Nθ

. (F20)

Conversely, to get the generating function for W (t, θ) we set z = 0, which after some rearranging yields

z(0) =
2ζ

sk
[√

1 + 2ζ
N(sk)2 coth

(
kst
2

√
1 + 2ζ

N(ks)2

)
+ 1
] (F21)

and

Gθ,W (ζ) = eNskθt

 1 + ζ
N(sk)2√

1 + 2ζ
N(sk)2

sinh

(
kst

2

√
1 +

2ζ

N(ks)2

)
+ cosh

(
kst

2

√
1 +

2ζ

N(ks)2

)−2Nθ

. (F22)

We invert Eq. (F20) and Eq. (F22) below.

Inversion of the generating functions in Eq. (F20) and Eq. (F22)

Since only the non-extinct portion of the process contributes to the site-frequency spectrum, when inverting
the generating functions for the weight and frequency, we will use the following relationship between the
probability distribution p(g) and the moment generating function Gg(z) of a random variable g:

p(g) =

∫ i∞

−i∞

dz

2πi
ezgGg(z) = lim

x→∞

[
eixgGg(ix)− e−ixgGg(−ix)

2πig

]
+

∫ i∞

−i∞

dz

2πi

ezg

g

[
−∂Gg
∂z

]
. (F23)

From the definition of the moment generating function and the sine limit definition of the Dirac δ function
(limx→∞ sin(xg)/(πg) = δ(g)), it follows that the boundary terms amount to the probability mass at g = 0
and that the distribution of the nonzero portion of the process is

p(g, g > 0) =

∫ i∞

−i∞

dz

2πi

ezg

g

[
−∂Gg
∂z

]
. (F24)

After plugging this expression and the generating function for the frequency Eq. (F20) into Eq. (F14) and
taking the θ → 0 limit, we find that the time-integrated distribution of frequencies in the founding class is∫ ∞

−∞
p(fk(t))dt =

2

fk
e−2Nskfk . (F25)
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The time-integrated distribution of weights in the feeding class can be obtained in an entirely analogous
fashion. In this case, it will be convenient to treat the cases k = 0 and k > 0 separately. When k = 0, a
lengthy but straightforward substitution of Eq. (F22) into Eq. (F24) gives

lim
θ→0

p(W,W > 0, θ)

Nθ
=

1

W

∫ i∞

−i∞

dζ

2πi
eζW

1

ζ
+

t

√
2Nζ tanh

(√
ζ

2N t

)
 . (F26)

The simplest way to carry out this integral is by contour integration. To do this, we close the contour using
a large semi-circle in the left half-plane. The contribution from this circle vanishes as the radius of the
semicircle approaches infinity, and so the integral considered above is equal to the sum of the residues within

the left half-plane. The integrand has simple poles at
√

ζ
2N = nπi

t for n ≥ 0 with residues 2e−n
2π2 2NW

t2 ,

which yields

lim
θ→0

p(W,W > 0, θ)

Nθ
=

1

W

[
2 + 2

∞∑
n=1

e−
n2π22NW

t2

]
=

1

W

[
1 + ϑ3

(
0, exp

(
−2π2NW

t2

))]
, (F27)

where ϑ3 is the elliptic theta function. Asymptotic expansions for small and large arguments give

lim
θ→0

p(W,W > 0, θ)

Nθ
=

{
1√

2Nπ
t

W 3/2 , W � t2

2Nπ2 ,
2
W , W � t2

2Nπ2 .
(F28)

The case k > 0 is slightly more straightforward to evaluate, since the length of the intervals we are
interested in is longer than the typical timescale of selection t = ∆t(k+1) = 1√

k+1s
& 1

ks . As a result, the

arguments in the hyperbolic functions in Eq. (F22) satisfy kst
1

√
1 + 2ζ

N(ks)2 & 1 (for k > 1, with k = 1 being

the marginal case), which yields a simple form for the distribution of nonzero weights

lim
θ→0

p(W,W > 0, θ)

Nθ
=

1

W

∫ i∞

−i∞

dζ

2πi
e−ζW lim

θ→0

[
− 1

Nθ

∂G(ζ, t)

∂ζ

]
≈ 1

W

∫ i∞

−i∞

dζ

2πi
e−ζW

t

Nsk
· 1√

1 + 2ζ
N(sk)2

.
(F29)

Note that the expression in Eq. (F29) reduces to a standard Gaussian integral. By carrying out this integral,
we obtain for the time integral of the distribution of weights in the founding class∫ ∞

−∞
p (W (t′)) dt′ = lim

θ→0

p(W,W > 0, θ)

Nθ
≈ e−N(sk)2W/2 t√

2NπW 3/2
. (F30)

Appendix G: The distribution of weights in classes below the founding class

We have seen in Appendix E that when the allele frequency trajectory in the founding class fk(t) is small
enough, the effects of genetic drift cannot be ignored in multiple fitness classes. In this section, we consider
how the trajectories (and their weights) in these stochastic classes are coupled, and derive the distribution
of lifetime weights in class k + ∆, in which individuals carry ∆ more mutations compared to individuals in
the founding class.

1. The relationship between the trajectory in the founding class k, and the weight in class k + 1

We begin by considering the total lifetime weight in the class right below the founding class (i = k + 1),
which we will denote Wk+1. Wk+1 clearly depends on the weight in the founding class, Wk, since the total
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number of mutational events from the k-class into the k + 1-class is equal to NUdWk. As we describe in
Appendix B.2, each one of these mutational events founds a ‘sub-lineage’ and the stochastic trajectory of
each sub-lineage is described by Eq. (F1). The total weight of the lineage in class k+ 1 is simply the sum of
the weights of each of these sub-lineages. The generating function of the lifetime weight in the k + 1 class,
Wk+1, is related to the lifetime weight in the founding class Wk according to

GWk+1
(ζ) =

〈
exp

−ζ NUdWk∑
j=0

W
(j)
k+1

〉 , (G1)

where W
(j)
k+1 denotes the weight of the sub-lineage founded by the jth mutational event. Since the W

(j)
k+1 are

independent and identically distributed, the generating function of their sum is equal to the product of their
generating functions and

GWk+1
(ζ) =

〈
GNUdWk

W
(1)
k+1(ζ)

〉
, (G2)

where the final average is taken over the distribution of the weight, Wk, in the k-class. The generating

functions of Wk and W
(1)
k+1 are both given by Eq. (F11).

Using the same methods that we used to invert Eq. (F11), we obtain that the distribution of the total
weights in class k + 1, conditioned on the weight in class k being equal to Wk, is

p (Wk+1|Wk) =
NUdWk√

2πN

1

W
3/2
k+1

e
−N[s(k+1)]2Wk+1

2 − (NUdWk)2

2NWk+1 . (G3)

We can see from this equation that the neutral decay of the distribution of weights in class k + 1, which

results from drift and is proportional to 1
W 3/2 , is exponentially cut off for Wk+1 � (NUdWk)2

2N and for

Wk+1 � 2
N [s(k+1)]2 . The latter, high-weight cutoff is familiar from before, and results from selection within

the k + 1 class. The low-weight cutoff results from the pressure of incoming mutational events.
A simple heuristic can explain the dependence of the low-weight cutoff on the weight in the founding class,

Wk. The weight Wk+1 is at least as large as the weight of the largest sub-lineage. Because each of the
NUdWk mutational events generates a sub-lineage that survives for T generations with probability 1

T , and

leaves a weight of order T 2

N , at least one of these sub-lineages will survive for T generations with probability

equal to 1 − (1 − 1
T )NUdWk ≈ 1 − e−NUdWkT . This probability is of order 1 for T ∼ NUdWk, which means

that with probability order 1 at least one of the sub-lineages will have weight T 2

N ∼
(NUdWk)2

N . Note that
this also means that when Wk >

1
NU2

d
(consistent with the lineage exceeding frequency 1

NUd
in the founding

class), the weight in the next class is guaranteed to be larger than the weight in the founding class. This
means that lineages that exceed the frequency 1

NUd
in the founding class are almost guaranteed to generate

an even larger number of individuals in the next class, which generates an even larger number of individuals
in the following class, and so on.

We have implicitly assumed that the trajectory of each of the sub-lineages is dominated by drift. This
will be true as long as T < 1

(k+1)s (i.e. as long as Wk <
1

N
√
Uds(k+1)

). In contrast, when Wk � 1

N
√
Uds(k+1)

,

a large number the lineages will exceed the frequency 1
Ns(k+1) in the next class, and the trajectory in that

class will become dominated by selection. We have shown in Appendix E that once this happens, drift in
class k + 1 and all classes below it will become negligible. Note that this heuristic argument also explains
the self-consistency condition that emerged in Appendix E (see Eq. (E15)), and explains why genetic drift
becomes negligible in the (kc + 1)-class whenever the weight in the kc-class is larger than 1

N
√
Uds(kc+1)

.

In the section below, we will use the insights above to evaluate the weight distribution in class k + ∆,
conditioned on the lineage arising in class k and selection being negligible in all classes beneath it, Wi �

1
N(si)2 for i ≤ k + ∆. Because the lifetime of the longest-lived sub-lineage in each of these classes is at most
1
is in this limit, and because the sub-lineages are seeded into the i-class over a time that is, by assumption,

shorter than 1√
Udis

, the total lifetime of the lineage in all of these classes is strictly shorter than ∆t(i), which
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is why we do not need to be concerned with the full, time-dependent properties of the distribution of weights
in this class. Instead, the calculation of the distribution of lifetime weights will suffice for calculating the
site frequency spectrum.

2. The distribution of the weight in class k + ∆

Having obtained the distribution of the weight in class k + 1, conditioned on the weight in class k being
equal to Wk (see Eq. (G3)), we can calculate the marginal distribution of weights Wk+1 by averaging over
Wk. In the limit that 1

NU2
d
� Wk � 1

N
√
Uds(k+1)

and Wk+1 � 1
N(sk)2 that we are interested in here, this

distribution is

p(Wk+1) =

∫ ∞
0

dWk p(Wk)p (Wk+1|Wk) =
21/4Γ

(
5
4

)
π

N−1/4U
1/2
d W

−5/4
k+1 . (G4)

Note that the distribution in the (k + 1)-class decays less rapidly than in the k-class. In particular, the
probability that the weight in the (k+1)-class exceeds 1

NUds(k+2) (and leads to the deterministic propagation

of individuals in classes with k + 2 or more deleterious mutations) is

P

(
Wk+1 ≥

1

NUds(k + 2)

)
=

21/4Γ
(

1
4

)
π

Ud

(
k + 2

λ

)1/4

, (G5)

which is larger than the probability that the weight in the k-class exceeds the corresponding value by a
large factor ∼ λ1/4, consistent with our intuition that the weight in the class below the founding class is
guaranteed to exceed the weight in the founding class if NU2

dWk > 1.
In general, we can calculate the distribution of the weight in class k + ∆ by iterating this procedure.

Specifically, the distribution of the weight in class Wk+2 conditioned on the weight in class k+ 1 being equal
to Wk+1 also follows Eq. (G3) (but with k changed to k + 1). By repeating the above procedure ∆ times,
we find that the distribution of lifetime weights in class k + ∆ is

p (Wk+∆) =
1√

2πN

1

W 1+2−(∆+1)

k+∆

·
∆∏
j=1

Γ
(

1
2

(
1− 2−j

))
2
√
π

(
NU2

d

2

)2−(j+1)

= Ud

∏∆
j=1 Γ

(
1
2

(
1− 2−j

))
(2
√
π)

∆+1

(
NU2

dWk+∆

2

)−2−(∆+1)

1

Wk+∆
.

(G6)

Appendix H: The site frequency spectrum in the presence of weak mutation (Ud � s)

In the following two Appendices, we use the results obtained in previous sections to calculate the site
frequency spectrum of the labelled lineage in the limits that f � 1 and 1 − f � 1, by evaluating and
inverting the generating function Hf (z, t) for the total frequency of the labelled lineage.

We have seen in Appendix D that trajectories of mutations in the presence of weak background selection
(Ud � s) are to leading order in the small parameter λ same as those of isolated loci with fitness −ks. In
Appendix F we have shown that the time-integrated distribution of allele frequencies of a single, isolated
locus of fitness −ks is

p(f, f > 0) =
2

f
e−2Nskf , (H1)

which agrees with classical results by Ewens (1963) and Sawyer and Hartl (1992). Thus, the contribution to
the site frequency spectrum of neutral mutations arising in class k is

p(f, k) = NUnhkp(f, f > 0) =
2NUnhk

f
e−2Nskf +O(λ). (H2)
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Summing the contributions of all the classes, we find that the full neutral site frequency spectrum is

p(f) =
∑
k

p(f, k) =
2NUn
f

+O(λ). (H3)

The site-frequency spectrum of deleterious mutations follows from the same argument, since the trajectory
of a deleterious mutation arising on the background of an individual with k deleterious mutations is the same
as the frequency trajectory of a neutral mutation arising in an individual with k + 1 deleterious mutations.
Thus, the site frequency spectrum of deleterious mutations is

pdel(f) =
∑
k

NUdhk ·
2

f
e−2Ns(k+1)f =

2NUd
f

e−2Nsf +O(λ), (H4)

which once again agrees to leading order with the site frequency spectrum that we would have obtained
assuming that all selected sites at the locus were isolated.

Appendix I: The site frequency spectrum in the presence of strong mutation (Ud � s)

In this Appendix, we calculate the site frequency spectrum of the labelled lineage in the limits that f � 1
and 1 − f � 1 and that λ � 1, by evaluating and inverting the generating function Hf (z, t) for the total
frequency of the labelled lineage.

In the presence of strong mutation, we have seen that trajectories of mutations are dominated by drift
at the lowest frequencies, where the generating function reduces to the generating function of a neutral
mutation, and is simply equal to the k = 0 limit of the single locus generating function in Eq. (D2). We have
already calculated the site frequency spectrum that results from these trajectories in the previous section.
Plugging in these results, we find that

p(f) =
∑
k

NUnhk ·
2

f
≈ 2NUn

f
for f � 1

Nσ
. (I1)

The site frequency spectrum at these frequencies is dominated by the contributions of lineages arising in
average backgrounds, with |k−λ| .

√
λ = σ

s . By the same argument, the frequency spectrum of deleterious
mutations at the same frequencies is also

pdel(f) =
∑
k

NUdhk ·
2

f
≈ 2NUd

f
for f � 1

Nσ
. (I2)

At larger frequencies, the site frequency spectrum becomes dominated by lineages arising in unusually fit
backgrounds, with k − λ� −

√
λ. Their trajectories are instead described by Eq. (E10). We have seen that

the integral in the exponent of Eq. (E10) has a different dependence on t for t� t
(k)
d , t ∼ t(k)

d and t� t
(k)
d ,

which we have labelled the ‘spreading’, ‘peak’ and ‘extinction’ phases of the trajectory. In evaluating the
site frequency spectrum p(f), it will be convenient to calculate the contributions from each of these phases
separately. We denote these contributions as pspread(f), ppeak(f) and pext(f), and the full site frequency
spectrum is obtained by summing,

p(f) = pspread(f) + ppeak(f) + pext(f). (I3)

We evaluate ppeak(f) and pext(f) in the next two subsections of this Appendix. Then we show in the last
subsection of this Appendix that the contribution from pspread(f) is sub-dominant to that of pext(f).

1. Contribution from the peaks of trajectories

In Appendix E.2, we have shown that in the peak phase of the trajectory, the total allele frequency is

f(t) ≈ Udg̃kc+1W∆t(kc+1)

(
t− t(kc+1)

d

)
, (I4)
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where kc is the class with the smallest number of mutations for which f � 1
2Ns(kc+1) g̃kc+1, or equivalently,

the class with the smallest number of mutations in which the weight exceeds 1
NUds(kc+1) .

We have seen above in Appendix G that to achieve such a large weight in class kc, a mutation could
have arisen in class k = kc and traced an unusually large trajectory, or arisen in class kc − 1, and traced a
smaller trajectory in that class, which led to the creation of a large number of deleterious descendants in
class kc, at least one of which had weight exceeding 1

NUds(kc+1) . Alternatively, it could have also arisen in

class kc − 2 and traced an even smaller trajectory in that class, that led to a larger weight in class kc − 1,
and a sufficiently large weight in class kc for genetic drift to be negligible in classes i > kc + 1. In other
words, in the range of frequencies

1

2Ns(kc + 1)
g̃kc+1 � f � 1

2Nskc
g̃kc , (I5)

we see the peaks of trajectories originating in classes k < kc, as long their weight in class kc is large enough
that genetic drift in classes of lower fitness can be ignored. All of these peaks contribute to the site frequency
spectrum and by integrating Eq. (I4) in time, we find that

ppeak(f) =

kc(f)∑
k=0

NUnhk · p [f = Udg̃kc+1W∆t(kc+1) |arose in k]

=

kc(f)∑
k=0

NUnhk ·
1

Udg̃kc+1
· p
[
W∆t(kc+1) =

f

Udg̃kc+1

∣∣∣arose in k

]
,

(I6)

where the last term represents the time-integrated distribution of weights in a window of width ∆t(kc+1) in
class kc of a lineage that arose in class k. This distribution is given by Eq. (F28) for kc = 0. Otherwise, when
kc > 1, the time-integrated distribution in Eq. (I6) is equal to the product of the window width, ∆t(kc+1),
and the distribution of lifetime weights in the founding class, given in Eq. (G6).

Since we have previously calculated all of these quantities, we can now turn to evaluating the sum in
Eq. (I6). When f � 1

2Ns g̃1, then kc = 0, and the sum in Eq. (I6) has only one term (k = 0). By substituting
in the expression for the time-integrated distribution of weights in Eq. (F28), we find that

ppeak(f) =


2NUne

−λ

f , if f � 1
Nse−λ

NUn
f3/2

[
2e−λ

πeNs

]1/2
, 1

NUde−λ
� f � 1

Nse−λ

. (I7)

At lower frequencies, ( 1
N
√
Uds
� f � 1

2Ns g̃1), lineages originating in multiple different fitness classes will

be able to contribute to the site frequency spectrum. At these frequencies,

ppeak(f) =

kc(f)∑
k=0

NUnhk
∆t(kc+1)

Udg̃kc+1
p

(
Wk+∆ =

f

Udg̃kc+1

∣∣∣k + ∆ = kc

)
. (I8)

Plugging in the expression for p(Wk+∆) from Eq. (G6), we find

ppeak(f) =
NUnλ√
πf

1√
kc(f) + 1

kc∑
k=0

hk

∏kc−k
j=1 Γ

(
1
2 (1− 2−j)

)
(2
√
π)kc−k+1

(
NUdf

g̃kc+1

)−2−(kc−k+1)

. (I9)

Because λ � 1, this sum is dominated by the k = kc term, since hk decays much more rapidly with
decreasing k than any of the other terms increase. To evaluate the f -dependence of this term for f � 1

2Ns g̃1

and kc(f)� 1, we repeat the same procedure as in Appendix E.2 to obtain an explicit form for kc(f). Briefly,

to solve the self-consistency condition for kc(f), 1
2Ns(kc+1) g̃kc+1 � f � 1

2Nskc
g̃kc , we set f = C(f)

2Ns(kc+1) g̃kc+1

for some C(f) that satisfies 1� C(f)� λ, and find that to leading order

kc(f) + 1 ≈ logλ

(
1

Nse−λf

)
when kc(f)� 1. (I10)



48

Plugging in, we obtain that the leading order term in the distribution of peak sizes is

ppeak(f) ≈ NUnC(f)1/2

2
√

2π
√
λNsf2

1√
logλ

(
1

Nse−λf

) , for logλ

(
1

Nse−λf

)
� 1.

(I11)

The term C(f) depends on f weaker than logarithmically, and on frequency scales on which ppeak(f) changes
substantially it will be approximately constant, C(f) ≈ C.

Because the crossover between the f−3/2 scaling of ppeak(f), which occurs at high frequencies 1
2Nsg̃1

�

f � 1
Nse−λ

(where kc(f) + 1 = 1), and the f−2 log
(

1
Nse−λf

)−1/2

behavior, which is valid at substantially

lower frequencies (where kc(f) � 1), is in principle broad, this constant factor C is difficult to determine:
asymptotic matching does not typically work well in the presence of such broad transitions, and crude ‘patch-
ing’ methods do not, in general, offer satisfactory results (Hinch, 1991). Thus, Eq. (I11) is undetermined
up to the constant factor C1/2, which is between 1 and

√
λ. For our purposes here, this level of precision is

sufficient — O(1) precision in the form of the spectrum was, after all, expected in the Laplace-like approxi-
mation that we used in Appendix E.2 to calculate the stochastic integral over the trajectory of the feeding
class. Thus, by absorbing 2

√
2π term into this constant factor, and relabeling C1/2 as C, we find that the

peak contribution to the site frequency spectrum is

ppeak(f) ≈ NUn√
λNsf2

C√
logλ

(
1

Nse−λf

) , for logλ

(
1

Nse−λf

)
� 1,

(I12)

with C in the range 1� C �
√
λ.

2. Contribution from the extinction stage of trajectories

Once the trajectory is beyond its peak, the total allele frequency decays as

f(t) = fpeake
−(kc(f)+1)s(t−tpeak), (I13)

where fpeak denotes the maximal frequency that the trajectory reaches and Eq. I13 is valid for t−tpeak � t
(k)
d .

Note that this stage only exists for frequencies f � 1
Nse−λ

. At higher frequencies, f � 1
Nse−λ

, the total allele
frequency simply mirrors smoothed fluctuations in the founding class. Eq. (I13) can be straightforwardly
integrated in time to obtain the contribution of this trajectory to the site frequency spectrum

p(f |fpeak) =

{
1

(kc(f)+1)sf , if fpeak � f,

0, otherwise.
(I14)

Averaging Eq. (I14) over all possible trajectories, we find that

pext(f) = NUn
1

f

1

(kc(f) + 1)s
Prob(fpeak > Df), (I15)

where D > 1 is a constant that we have introduced to correctly account for the fact that the peak phase
occurs at frequencies that are at least O(1) higher than the frequencies in the extinction stage.

For peak frequencies fpeak � 1
Nse−λ

, we have already calculated the overall time-integrated distribution
of peak sizes of lineages arising in classes of all fitness, and we can use this result to calculate the total
probability that a trajectory passes through f in its extinction stage,

Prob(fpeak > Df) =

∫∞
Df

ppeak(f ′)df ′

NUn∆t(kc+1)
=

C√
λNfD

. (I16)
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This means that the contribution to the site frequency spectrum from the extinction phase of trajectories is
equal to

pext(f) =
NUn

D
√
λNsf2

C

logλ

(
1

Nse−λf

) < NUn√
λNsf2

C

logλ

(
1

Nse−λf

) . (I17)

Therefore, pext(f) is strictly smaller than ppeak(f) by a factor
(

logλ

(
1

Nse−λf

))1/2

, which is large when

f � 1
Nse−λ

. Thus, this phase of the trajectory has a small effect on the low-frequency end of the spectrum.

However, in the high frequency end of the spectrum, when 1 − f � 1
Nse−λ

, the only contribution comes
from this ‘extinction’ phase of the wild-type, which starts once the mutant approaches the frequency f �
1 − 1

Ns in the 0-class. These events happen at rate equal to NUne
−λ · 1

Ne−λ
= Un, and each contributes

∼ 1
s(kc(1−f)+1)(1−f) to the site frequency spectrum. Multiplying these two terms, we find that the site

frequency spectrum is proportional to

pdec(f) =
Un
s

1

(1− f) logλ

(
1

Ns(1−f)e−λ

) , if
1

Nσ
� 1− f � 1

Nsfe−λ
. (I18)

3. Contribution from the spreading stage of trajectories

At frequencies f � 1
Nse−λ

, the site frequency spectrum also receives contributions from the spreading
stage of trajectories, in which the allele frequency rapidly increases as the allele spreads through the fitness
distribution. In this stage, the rate at which the frequency increases is strictly larger than what it would
be if we ignored any contributions from the founding class after the mutation exceeds frequency 1

NUd
, (i.e.

assuming f(t) = 1
NUd

e−kst+λ(1−e−st)),

df(t)

dt
≥ fs(λe−st − k). (I19)

Far below the peak of the trajectory, where λe−st � k, the contribution from this stage of a single trajectory
to the frequency spectrum that passes through f is thus simply bounded by

psingle(f) =

〈
1

|dfdt |

〉
≤ 1

fsλe−st
≈ 1

sf log
(

1
Nse−λf

) =
1

sf log(λ) logλ

(
1

Nse−λf

) � 1

sf(kc(f) + 1)
. (I20)

Since the number of trajectories that pass through frequency f in the spreading phase is the same number
that pass through f in the extinction phase, the contribution from the spreading phase to the site frequency
is strictly smaller than that of the extinction phase throughout the region where both contributions exist,
f � 1

Nse−λ
.
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4. Constructing a single curve from piecewise asymptotic functions

In the previous sections of this Appendix, we have shown that the site frequency spectrum is given by

p(f) ≈



2NUn
f , for f � 1

Nσ ,

NUn

Nsf2

√
λ logλ

(
eλ

Nsf

) , for 1
Nσ � f � eλ

Ns ,

2NUne
−λ

f , for eλ

Ns � f � 1− eλ

Ns ,

NUn

Ns(1−f) logλ

(
eλ

Ns(1−f)

) , for 1
Nσ � 1− f � eλ

Ns ,

2NUn
f , for 1− f � 1

Nσ .

(I21)

As we have explained, line 2 of Eq. (I21) is valid up to a constant factor C1(λ) that is bounded by 1 �
C1(λ)�

√
λ. These piecewise functions represent the leading order behaviors far away from the transitions

between the different regimes, which occur at f = 1
Nσ , 1

Nse−λ
, 1− 1

Nse−λ
and 1− 1

Nσ . For practical purposes,
it is often convenient to construct a single theoretical curve that joins these curves at these transition points,
while maintaining the correct form far away from the transition points. This procedure is not intended extend
the validity of the results outside of the regimes where asymptotic forms are available and is certainly not
guaranteed to produce the correct functional forms at the transitions. However, it often yields satisfactory
results, especially when the transitions are narrow in practice, and when the two asymptotic forms are
expected to lie on opposite sides of the behavior at the transition (i.e. one is expected to overestimate, and
the other to underestimate). In the present case, the latter condition is true at the transitions at 1

Nse−λ
and

1− 1
Nse−λ

.
Here, we have used a sigmoid function,

g(f) =
1

1 + e−Nse−λf
(I22)

to join the functional forms at the transitions, which has the convenient property

g(f) ≈
{

1, for f � 1
Nse−λ

0, for f � 1
Nse−λ

. (I23)

In addition to this, because the forms valid when 1
Nσ � f � 1

Nse−λ
and 1

Nσ � 1 − f � 1
Nse−λ

have

logarithmic divergences near the transitions (i.e. for f, 1 − f = 1
Nse−λ

), we also add small additive factors
to these logarithms to avoid nonsensical results. Specifically, to compare our theoretical predictions with
simulations, we plot

pjoined(f) = 2NUn

[
C1 g(f)

Nsf2

√
λ ·
(

log
(

1
Nse−λf

)
+ C2

) +
[1− g(f)][1− g(1− f)]e−λ

f

+
C3 g(1− f)

Ns(1− f)
(

log
(

eλ

Ns(1−f)

)
+ C4

)], for
1

Nσ
� f � 1− 1

Nσ
.

(I24)

C1, C2, C3 and C4 were chosen to ensure visual smoothness of the curve. Note that the constant C3 is only
necessary to ensure visual smoothness of the curve at limited λ (adding C4 to the denominator to control
the logarithmic divergence causes the curve to be shifted downward, and C2 helps to correct for this). We
tabulate the values used in this paper below:
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λ C1 C2 C3 C4

≥ 3 1.5 0.5 1.4 1
≤ 2 1.0 0.5 1.4 1

TABLE S1 Values of small constants defined in Eq. (I24) that were used in this paper.

In principle, we could also use a similar procedure to join the asymptotic forms at the transitions at 1
Nσ

and 1 − 1
Nσ . However, since both asymptotic forms overestimate the site frequency spectrum near these

transitions, this works no better than simply setting

p(f) =


2NUn
f , for f ≤ 1

Nσ

pjoined(f), for 1
Nσ < f < 1− 1

Nσ
2NUn
f for 1− 1

Nσ ≤ f.
(I25)

This is the choice we have made when calculating theoretical predictions for site frequency spectra of smaller
samples, which were necessary for comparisons with the structured coalescent.

Appendix J: Distributions of effect sizes

When the effects of deleterious mutations are not all identical, but instead have a distribution with finite
width, ρ(s), the deterministic dynamics that arise through the combined action of mutation and selection
will be modified. In this Appendix, we consider these deterministic dynamics. For concreteness, we assume
that the fitness effects of new mutations come from a gamma distribution with mean s̄ and shape parameter
α,

ρ(s) =
αα

Γ(α)s̄α
e−sα/s̄, (J1)

and that these deleterious mutations occur at an overall rate Ud.
Under the assumption that all mutations have strong enough effects on fitness that the fitness of the

population at the locus does not experience Muller’s ratchet on timescales of coalescence, the mean fitness
of an allele at the locus will be equal to −Ud, with the most-fit individuals being those with no deleterious
mutations and an absolute fitness equal to 0. Consider now the deterministic dynamics of a lineage founded
in an individual at absolute fitness −x. The fitness of the lineage founded by this lineage will change as it
accumulates new deleterious mutations according to

x(t) = −x+ Ud

∫ ∞
0

dsρ(s)e−st. (J2)

Evaluating this integral, we find

x(t) = −x+ Ud

(
1 +

s̄t

α

)−α
. (J3)

When α is sufficiently large, corresponding to a sufficiently narrow fitness distribution, the resulting
trajectory is well approximated by assuming that all fitness effects are the same and equal to the average
fitness s̄ (or, more precisely, the harmonic mean of ρ(s), α−1

α s̄ ≈ s̄). To calculate how large α needs to be
for this approximation to be valid, we can calculate the deterministic expectation for the average number of
individuals in the lineage at time t after founding. This quantity is equal to

g(x, t) = exp

[∫ t

0

x(t′)dt′
]

= exp

[
−xt+

Udα

s̄(α− 1)

(
1− (1 + s̄t/α)

−(α−1)
)]
. (J4)

We see that this differs from the single-s expression only in the last term, proportional to (1 + s̄t/α)−(α−1).
At sufficiently short times, t . α/s̄, this is well-approximated by e−s̄t(α−1)/α. On sufficiently long timescales,
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this will not be the case. However, because the overall magnitude of this term becomes negligible at times
long after the peak of g(x, t), t � td, we only need it to remain well-approximated by an exponential on
timescales t . td, which requires that α� log(Ud/s̄)� 1. When this is the case, g(x, t) is, up to perturbative
corrections, given by

g(x, t) ≈ exp

[
−xt+

Udα

(α− 1)s̄

(
1− e− αs̄

α−1 t
)]
, (J5)

and the effects of selection are well-described by a single-s model on all timescales.


