Maternal Torso-like coordinates tissue folding during *Drosophila* gastrulation

Travis K. Johnson\(^1\,^2\!*\), Karyn A. Moore\(^1\), James C. Whisstock\(^2\,^3\!*\) and Coral G. Warr\(^1\,^2\!*\)

\(^1\)School of Biological Sciences, \(^2\)Australian Research Council Centre of Excellence in Advanced Molecular Imaging, \(^3\)Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.

† Coral Warr and James Whisstock contributed equally to the work and are joint senior authors.

Running title: Torso-like in morphogenesis

Keywords: morphogenesis, gastrulation, Torso-like, MACPF, *Drosophila*

* Correspondence can be addressed to:
Travis Johnson, +613 9905 5620, travis.johnson@monash.edu
James Whisstock, +613 9902 9312, james.whisstock@monash.edu
Coral Warr, +613 9905 5504, coral.warr@monash.edu
Abstract

The rapid and orderly folding of epithelial tissue during developmental processes such as gastrulation requires the precise coordination of changes in cell shape. Here, we report that the perforin-like protein Torso-like (Tsl), the key extracellular determinant for *Drosophila* embryonic terminal patterning, also functions to control epithelial morphogenesis. We find that *tsl* null mutants display a ventral cuticular hole phenotype that is independent of the loss of terminal structures, and arises as a consequence of mesoderm invagination defects. We show that the holes are caused by uncoordinated constriction of ventral cell apices, resulting in the formation of an incomplete ventral furrow. Consistent with these data, we find that loss of *tsl* is sensitive to gene dosage of *RhoGEF2*, a critical mediator of Rho1-dependent ventral cell shape changes during furrow formation, suggesting that Tsl may act in this pathway. In addition, loss of *tsl* strongly suppressed the effects of ectopic expression of Fog, a secreted protein that promotes apical constriction. Taken together, our data suggests that Tsl controls Rho1-mediated apical constriction via Fog. We therefore propose that Tsl regulates extracellular Fog activity in order to synchronise cell shape changes and coordinate ventral morphogenesis in *Drosophila*. Identifying the Tsl-mediated event that is common to both terminal patterning and morphogenesis will be valuable for our understanding of the extracellular control of developmental signalling by perforin-like proteins.
Article Summary

Epithelial tissue folding during embryonic development is fundamental for its acquisition of form. While the cellular shape changes that underlie these tissue movements are well characterised, the mechanism(s) and molecules that coordinate them remain poorly understood. Here we report that the *Drosophila* perforin-like protein, Torso-like (Tsl), long known for its extracellular role in embryonic terminal patterning, also coordinates tissue folding during gastrulation. Remarkably, we find that the same population of Tsl molecules controls patterning and tissue folding, despite each utilising distinct molecular pathways. We propose that Tsl mediates a key developmental signalling event common to patterning and gastrulation.
Introduction

Morphogenesis is the fundamental biological process by which organisms acquire their form, and involves a complex orchestration of cell fate decisions and gross movements of cell populations. The cell movements that occur during morphogenesis are governed by concerted tissue-wide changes to cellular shape (Ip and Gridley 2002; Sawyer et al. 2010). One of the best studied examples of morphogenesis is the early stages of gastrulation in the *Drosophila* embryo, whereby cells in defined regions of the embryo are rapidly internalised (Leptin and Grunewald 1990; Knust and Muller 1998). The two major morphogenetic movements that occur during *Drosophila* gastrulation are the invaginations of the ventral furrow and the posterior midgut (Leptin and Grunewald 1990; Sweeton et al. 1991; Leptin et al. 1992). These events occur three hours post-fertilisation, immediately following the completion of cellularisation, and serve to bring mesodermal and endodermal precursors to the interior of the embryo (Wieschaus and Nüsslein-Volhard 1986; Leptin 1995).

Underpinning these tissue invaginations is the ability of cells to constrict at their apical edges and adopt a wedge-like shape (for review see Lecuit and Lenne 2007). Intracellularly this occurs via the remodelling of the actomyosin cytoskeleton, while cytoskeleton-linked connections between neighbouring cells known as adherens junctions (AJs) provide tensile strength to allow the tissue to fold as a sheet (Martin et al. 2010). A remarkable aspect of *Drosophila* ventral morphogenesis is the rapid speed at which it occurs (Kam et al. 1991; Oda and Tsukita 2001). It is therefore critical that the apical constriction of individual ventral cells is precisely timed and synchronised across the entire ventral domain to permit a productive furrow that can complete invagination.
The key developmental signal that is required to initiate apical constriction is encoded by Folded Gastrulation (Fog; Costa et al. 1994). Fog is a secreted protein that becomes expressed in subsets of cells fated for actomyosin-based shape changes, for example in the ventral mesoderm prior to ventral furrow formation (Costa et al. 1994). Fog is thought to signal to a local field of cells via the G-protein coupled receptor, Mesoderm-invagination signal transducer (Mist; Manning et al. 2013). Upon binding of Fog, localised activation of Mist induces apical constriction in cells of the presumptive mesoderm via G-protein signalling and activation of the highly conserved GTPase Rho1 by its guanine nucleotide exchange factor RhoGEF2 (Barrett et al. 1997; Morize et al. 1998; Nikolaidou and Barrett 2004; Dawes-Hoang et al. 2005; Manning et al. 2013). Rho1 activates Rho kinase which phosphorylates the regulatory light chain of non-muscle myosin II to induce contraction of the apical actomyosin network in the cells that receive the Fog signal (Dawes-Hoang et al. 2005).

As well as promoting apical constriction, the Fog/Mist pathway has been implicated as a central regulator of its coordination between cells. In addition to delayed initiation of morphogenesis, fog mutants display uncoordinated ventral cell apical constriction, a highly disorganised ventral furrow, and often fail to complete invagination (Costa et al. 1994; Oda and Tsukita 2001). However, unlike its role in initiating constriction, the mechanism by which the Fog pathway coordinates constriction between cells remains to be elucidated.

Here, we report that the maternal patterning protein Torso-like (Tsl), long known as the localised determinant of embryonic terminal patterning (Stevens et al. 1990; Savant-Bhonsale and Montell 1993; Martin et al. 1994), is also essential for the promotion and coordination of mesoderm invagination. Our data implicate Tsl as a
new extracellular member of the Fog/Mist pathway required for ventral morphogenesis in *Drosophila*, and suggest that, while terminal patterning and ventral morphogenesis are distinct in many ways, these processes may share a common regulatory mechanism.

Materials and Methods

Drosophila stocks and maintenance

The following stocks were used: *w¹¹¹⁸* (BL5905), *tsl¹⁵* (Johnson et al. 2013), *torXR¹* (Sprenger et al. 1989), *HA-Tsl* (Jimenez et al. 2002), *tsl², tsl³, tsl⁴, tsl⁵* (Savant-Bhonsale and Montell 1993), *slbo-Gal4* (Rorth et al. 1998), *Ecad-GFP* (Oda and Tsukita 2001), *fog⁵⁴* (BL2100), *RhoGEF2⁴⁴* (BL9382; Barrett et al. 1997), *Gal4::VP16-nos.UTR* (BL7253). All flies were maintained on standard media at 25°C.

Cloning and transgenesis

To generate the UAS-*Tsl-GFP* construct, the open reading frame of *tsl* followed by a short linker encoding the peptide SAGSAS, three tandem myc epitopes and the open reading frame for eGFP was synthesised (Genscript) and subcloned in pUASTattB via BglIII and XhoI sites. For UASP-*fog*, the full-length *fog* cDNA transcript was excised from an existing clone (SD02223; Rubin et al. 2000) and inserted into pUASP (Rorth 1998) via EcoRI/XhoI. Transgenic lines were made (BestGene) via ΦC31integrase-mediated transformation (Bischof et al. 2007) using the ZH-51CE attP-landing site for UAS-*Tsl-GFP*, and standard P-element transformation methods (Rubin and
Spradling 1982) for genomic integration of UASP-fog into the w^{118} background.

Cuticle preparations

Adults were allowed to lay on media containing apple juice supplemented with yeast paste for 24 h before being removed. Embryos developed for a further 24 h before dechorionation in 50% (vol/vol) bleach and mounting on slides in a 1:1 (vol/vol) mixture of Hoyer’s solution:lactic acid. Slides were incubated for several hours or overnight at 65°C and imaged using dark-field optics (Leica). Cuticles from at least three separate overnight lays were scored and the means of each phenotypic category calculated. Significant differences between genotypes were determined by two-tailed unpaired t-tests.

Immunohistochemistry

For immunostaining, adults of the genotypes indicated were allowed to lay for five hours or overnight to isolate gastrulae and late staged embryos, respectively. Embryos were collected, dechorionated and either heat-fixed (for anti-β-cat) by pouring boiling salt solution (70mM NaCl, 0.03% Triton X-100) over the embryos and cooling immediately on ice, or by chemical fixation (100mM PIPES pH 6.9, 2mM EGTA, 1mM MgSO$_4$, 4% formaldehyde) with an equal volume of n-heptane for 25 minutes rocking. Embryos were devitellinised with n-heptane and methanol and rehydrated with phosphate buffered saline (PBS) with 0.1% Triton X-100 (PTx) before being blocked for 1 hour in PTx containing 5% normal goat serum (Sigma-Aldrich). Primary antibodies (anti-Nrt, 1:50; anti-β-cat, 1:20; anti-Twi, 1:1000) were diluted in
fresh block solution and incubated overnight shaking at 4°C. Secondary antibodies (anti-mouse and rabbit Alexa488 and 588 conjugated, 1:500, Molecular Probes) were applied after several washes in PTx for 1 hour, washed further, stained with DAPI (Sigma-Aldrich) and mounted in vectashield (Vectorlabs). Embryos were left whole, or hand-sliced using a 21-gauge needle and imaged using a spinning disk confocal microscope (Olympus CV1000).

RNA in situ hybridisations

RNA in situ hybridizations on whole-mount, four hour old fixed (4% paraformaldehyde in phosphate buffered saline) and methanol devitellinised embryos were performed using a DIG-labelled anti-sense RNA probe transcribed from a pGEMT-Easy (Promega) clone of *sna* (F-5’CGCAGGATCTATCCCTGAAA-3’, R-5’ AGCGACATCCTGGAGAAAGA-3’) following standard protocols (Tomancak et al. 2002). Briefly, probes were hybridized to embryos overnight at 55°C and washed in hybridization buffer (4x saline sodium citrate buffer, 50% vol/vol formamide, 0.1% vol/vol Tween-20, 50 mg/ml heparin) for 36 h before incubation with alkaline phosphatase conjugated anti-digoxigenin and colour development with 5-bromo-4-chloro-3-indolyl phosphate and nitro blue tetrazolium chloride. Imaging was performed under differential interference contrast optics on a Leica DM LB compound microscope.

Live imaging

Flies were allowed to lay for four hours and their embryos collected, dechorionated.
and placed ventral side down in the wells of an 8-chambered slide and covered in PBS. Following the completion of cellularisation, ten optical slices, covering a 20µm range starting at the ventral surface, were captured every 30s for each embryo using a 20x objective (UPLSApo, 0.7NA) and CV1000 microscope. Movies were generated at 10 frames per second using images captured 9µm below the embryo surface.

Data and reagent availability statement

Data and reagents are available upon request. Supplemental material file 1 contains one figure and the legends for supplemental files S2 and S3.

Results

We previously generated a null mutant of *tsl* (*tsl^Δ*) via ends-out gene targeting (Johnson *et al.* 2013), as the available *tsl* alleles (eg. *tsl^1-5* and *tsl^60617*; Stevens *et al.* 1990; Savant-Bhonsale and Montell 1993) were point mutations or P-element insertions and potentially hypomorphic. As expected, and similar to observations for other maternal terminal class genes, embryos laid by *tsl^Δ* homozygous females lacked terminal structures (including abdominal segment 8, the telson, and filzkorper, Fig. 1B, C). Strikingly however, a large proportion (>90%) of these embryos also displayed ventrally-located cuticular holes (Fig. 1D, E). These holes were variable in size and number and most often occurred in the posterior region of the embryo (Fig. S1).

To ensure that this phenotype was due to loss of *tsl* we first performed complementation tests with other available *tsl* alleles. Placing the *tsl^Δ* allele *in trans*
with chromosomes carrying tsl^2 or tsl^3 alleles produced embryos with only terminal defects and no ventral holes (Fig. 1E). However, in transheterozygotes for tsl^4 and the tsl^d and tsl^i alleles, both of which are known to be stronger with respect to the terminal class phenotype (Savant-Bhonsale and Montell 1993), cuticular holes were readily observed (Fig. 1E). We also performed a rescue experiment using a genomic tsl construct in which Tsl is tagged at the N-terminus by a hemaglutinin (HA) epitope ($HA-Tsl$; Jimenez et al. 2002). We have previously shown that this transgene fails to rescue the terminal patterning defects in tsl^4 embryos (Johnson et al. 2013), possibly due to its inability to accumulate at the embryonic plasma membrane (Mineo et al. 2015). Despite this, $HA-Tsl$ fully rescues the ventral hole phenotype (Fig. 1F).

In terminal patterning, maternal Tsl originates from ovarian follicle cells at the anterior and posterior poles of the developing oocyte (Stevens et al. 1990; Savant-Bhonsale and Montell 1993; Martin et al. 1994). Given the maternal nature of both the terminal and the cuticular hole phenotypes, we were interested to know whether the latter phenotype is also caused by loss of tsl from the follicle cells, or whether it reflects an unreported expression pattern of tsl. To this end, we expressed a functional UAS transgene encoding a carboxy-terminal eGFP tagged form of Tsl ($Tsl-eGFP$) in the tsl null background specifically in the ovarian follicle cells that are known to express tsl (using $Slbo$-Gal4; Rorth 1998). Strikingly, these embryos showed full restoration of the ventral cuticle (Fig. 1E, G). These data strongly suggest that the ventral cuticular hole phenotype is due to loss of maternal tsl from the same cells in which it is needed for terminal patterning.

Having established that loss of tsl was the cause of the cuticular holes, we next wanted to pinpoint the origins of the defect during embryogenesis. Given the ventral location of the holes, we reasoned that tsl might function in an aspect of early ventral
development such as patterning or morphogenesis. We therefore first asked whether ventral cell fate is specified correctly in \(tsl^d \) embryos by examining \(snail (sna) \) expression, a well-known marker for ventral cell differentiation (Leptin et al. 1992). In order to ensure that any deviations from wild type we observed were not due to the terminal class mutant phenotype, we compared \(tsl^d \) embryos to control terminal class mutant embryos that did not display the cuticular holes. For this we used either \(HA-Tsl; tsl^d/tsl^d \) embryos (as their genetic background is very close to that of \(tsl^d \)), or, when large numbers of embryos were required for precisely timed fixations, homozygotes of the \(tor \) null allele, \(tor^{XR1} \) (Sprenger et al. 1989).

No obvious defects in the \(sna \) expression domain were seen in \(tsl^d \) embryos, with the exception of its extension posteriorly to the pole; a known consequence of lacking posterior Tor signalling, and also observed in the control terminal mutant embryos (Fig. 2A-C; Leptin and Grunewald 1990; Ray et al. 1991). These data suggest that the cuticular hole phenotype is unlikely to be due to a failure of ventral fate specification.

To determine whether instead morphogenesis is affected by loss of \(tsl \), \(tsl^d \) embryos were stained for the membrane marker Neurotactin (Nrt), which becomes concentrated at the apical region of constricting cells (Hortsch et al. 1990). In contrast to wild type embryos, which formed normal furrows (Fig. 2D), and to terminal class mutant embryos, that formed a largely normal but extended furrow (Fig. 2E), \(tsl^d \) embryos formed irregular and often incomplete ventral furrows (Fig. 2F). Imaging the dorsal side of approximately 4.5-hour old \(tsl^d \) embryos revealed defects in the extended germ band. As expected for terminal class embryos, and also seen in the terminal class mutant control (Fig. 2H), the posterior midgut invagination failed, leaving the pole cells at the dorsal surface rather than being internalised (Fig. 2
compare panels G and H with I; Costa et al. 1994). By contrast, in \(tsl^d \) embryos an additional large field of cells posterior to the pole cells was observed (Fig. 2I). We reasoned that these cells might be mesodermal tissue remaining at the embryo surface as a consequence of invagination failure. To confirm this, we stained \(tsl^d \) embryos with anti-Twist (Twi), a marker of the presumptive mesoderm (Leptin and Grunewald 1990). Twi-positive cells were not detected at the surface of wild type nor terminal class mutant embryos following ventral furrow invagination; indicating their successful internalisation (Fig. 2J, K). In \(tsl^d \) embryos, however, Twi-positive cells were readily visible at the surface, indicating regional invagination failure (Fig. 2L). Collectively, these data strongly suggest that \(tsl \) functions to promote invagination of the ventral mesoderm during morphogenesis.

A failure of invagination is most commonly due to defects in apical constriction. We therefore assessed constriction at the onset of ventral furrow formation by staining embryos for \(\beta \)-catenin, an integral intracellular component of the AJ (Cox et al. 1996). In wild type embryos, strong and uniform apical accumulation of \(\beta \)-catenin was observed in constricting ventral cells (Fig. 3A). This was also observed in control terminal class mutant embryos that did not display the cuticular holes (Fig. 3B). By contrast, in \(tsl^d \) embryos, ventral cells that were attempting furrow formation showed greatly reduced levels of apical \(\beta \)-catenin, often coinciding with incorrectly positioned nuclei close to the apical surface (Fig. 3C). These cells were misaligned at their apical edges, suggesting apical constriction failure, and likely underly the inconsistent and poorly formed early furrow. These defects were particularly evident at the posterior ends of \(tsl^d \) embryos (Fig. 3D-F), corresponding with the final position of the cuticular holes. These data therefore strongly suggest that the holes are caused by furrow defects.
Our observation that not all \(tsl^4 \) embryos displayed defects in furrow formation suggested that \(tsl \) is important but not essential for apical constriction, and thus may perform a regulatory role in morphogenesis. We therefore hypothesised that \(tsl \) might be required to coordinate the timing of apical constriction across the ventral domain. To investigate this, we imaged ventral morphogenesis live in embryos expressing Ecad-GFP (Oda and Tsukita 2001), a marker of the AJ. Control (Ecad-GFP) embryos showed the characteristic rapid and coordinated apical constriction, and internalisation of a band of ventral cells following cellularisation (Fig. 3G, I, K, File S2). In contrast, in \(tsl^4 \) embryos there was a delay in the initiation of ventral apical constriction of approximately 8 minutes. Once constriction initiated in \(tsl^4 \) embryos, however, the timing of tissue folding appeared relatively normal. We noted that the action of the furrow was wave-like rather than simultaneous, with the most constricted patches invaginating first, and appearing to pull less constricted cells into the furrow along with them. In agreement with the fixed embryo cross-sections, constriction was highly irregular and limited to seemingly random patches of cells across the ventral domain (Fig. 3H, File S3). Furthermore, we commonly observed apical constriction failure in a large proportion of posterior-ventral cells, often corresponding to a failure of the entire posterior half of the embryo mesoderm to invaginate (Fig. 3L, compare to panel K). Taken together, these support the idea that Tsl both promotes and coordinates apical cell constriction during early furrow formation.

Cell shape changes that occur during \textit{Drosophila} gastrulation require the activity of the Rho1 pathway (Barrett \textit{et al.} 1997; Nikolaidou and Barrett 2004; Kolsch \textit{et al.} 2007). Since loss of \(tsl \) causes defects in apical constriction, we next asked if Tsl might function in this pathway. To test this, we took advantage of the
variation in the tsl\(^4\) cuticle phenotype and investigated whether reducing the gene dosage of RhoGEF2, which encodes the upstream activator of Rho1, could enhance its severity. Loss of either RhoGEF2 or Rho1 results in an identical phenotype whereby no ventral furrow forms (Barrett et al. 1997; Hacker and Perrimon 1998; Nikolaidou and Barrett 2004; Dawes-Hoang et al. 2005). We found that reducing RhoGEF2 gene dosage (RhoGEF2\(^{4/4}\)/+) strikingly enhanced the severity of the tsl\(^4\) cuticular phenotype, resulting in all embryos missing their entire ventral cuticle (Fig. 4B, C). This finding suggests that Tsl activity during ventral morphogenesis requires the function of RhoGEF2.

In terminal patterning Tsl acts extracellularly and upstream of the Tor receptor ligand Trk (Casanova and Struhl 1989; Stevens et al. 1990; Sprenger and Nusslein-Volhard 1992). Recently we have reported that Tsl likely achieves this by controlling the extracellular accumulation of Trk (Johnson et al. 2015). We therefore hypothesised that in gastrulation Tsl may regulate a receptor/ligand pathway upstream of the effectors RhoGEF2 and Rho1. The only extracellular molecule known to act upstream of Rho1 in Drosophila ventral morphogenesis is the zygotically expressed protein Fog (Costa et al. 1994; Dawes-Hoang et al. 2005). Loss of Fog has been reported to result in ventral defects similar to the phenotypes observed here for tsl\(^4\), including uncoordinated ventral apical constriction (Costa et al. 1994; Oda and Tsukita 2001) and ventral cuticle holes (Wieschaus et al. 1984; Zusman and Wieschaus 1985). In addition, we noted that fog mutant (fog\(^{4/4}\)/Y) cuticle holes were often positioned at the posterior (Fig. 4D) as observed in embryos laid by tsl\(^4\) females (Fig. 1D) further indicating that the two genes may be acting in the same pathway.

If Tsl acts in the Fog pathway then we might expect that the combination of loss of fog and loss of terminal patterning would replicate the overall phenotype of
Consistent with this idea, we found that embryos mutant for fog while also lacking the maternal contribution of tor produced cuticles that closely resemble the tslΔ cuticle (Fig. 4E). In order to more directly determine whether Fog activity requires Tsl we ectopically expressed fog from the female germline at high levels (nanos::VP16-Gal4; pUASP-fog), which has previously been shown to overactivate the Fog pathway (Dawes-Hoang et al. 2005). This resulted in a severely defective cuticle phenotype, with only small amounts of recognisable cuticle remaining (Fig. 4F). Remarkably however, loss of tsl function strongly suppressed the effects of ectopic Fog, resulting in cuticles more closely resembling the tslΔ phenotype (Fig. 4G). We note, however, that despite being null for tsl, many of these embryos no longer had ventral cuticle holes, possibly due to a partial rescue of tslΔ by residual Fog activity. Together these data strongly suggest that Fog activity and the Rho1 pathway depend upon the maternal action of Tsl for morphogenesis.

Discussion

The apical constriction of cells underlies the critical ability of animal tissues to fold and change shape during development. While the intracellular mechanisms that govern this process, including the involvement of the highly-conserved Rho1 pathway, are quite well characterised, relatively little is known about the extracellular signals that coordinate this process. Here we make the unexpected finding that Tsl plays a second maternal role as a key extracellular component of the Fog/Rho1 pathway.

Extensive characterisation of the role of Fog in the ventral furrow has demonstrated its importance in the coordination of cellular apical constriction in the
cells of the ventral domain (Costa et al. 1994; Oda and Tsukita 2001; Dawes-Hoang et al. 2005; Fuse et al. 2013; Manning et al. 2013). Consistent with the phenotype of Fog mutants, we find that loss of maternal Tsl leads to irregular and uncoordinated ventral cell apical constrictions, incomplete furrow formation, and resultant ventral cuticle holes. Furthermore, we find that the activity of ectopic ubiquitous Fog delivered through the maternal germline is highly dependent on Tsl, suggesting that Tsl serves to regulate ventral Fog activity.

 tsl has been studied for many years in its terminal patterning role, so it is somewhat surprising that the ventral cuticle defects described here have not been previously reported. This may be because most terminal patterning studies have utilised hypomorphic alleles of tsl. Here, we found that the ventral cuticle defects are only observed in embryos laid by homozygotes of the null allele, or when the null allele is placed in trans with those hypomorphic alleles of tsl that have been reported to be stronger with respect to terminal patterning (tsl4 and tsl5; Savant-Bhonsale and Montell 1993). We also made the surprising finding that the ventral morphogenesis defects we observed in tsl mutants can be rescued by expressing tsl in the same polar ovarian cells required for its function in terminal patterning. These data accordingly suggest that the same population of Tsl molecules is involved in both roles.

How might polar localised Tsl influence ventral Fog activity? Recent data on the role of Tsl in terminal patterning suggests that it mediates the extracellular accumulation of the ligand for the Tor receptor, Trk (Johnson et al. 2015). Thus one possibility is that Tsl acts to directly mediate secretion or activity of Fog. However, this idea seems unlikely as the overlap between the ventral cells that produce Fog and polar localised Tsl would be small or non-existent. Furthermore, mosaic analyses by Costa et al. (1994) estimated that Fog could induce apical constriction only two to
three cells away from its cell of origin. In addition, since immunostaining experiments by Mineo et al. (2015) have shown that Tsl remains localised to the embryo termini plasma membrane, we therefore reason it is improbable that Tsl could directly influence Fog produced at the centre of the embryo. Accordingly, an alternative idea is that Tsl is responsible for the extracellular accumulation of a hitherto unidentified molecule that can diffuse to the ventral region and control local Fog activity. A mechanism such as this might aid in coordinating the timing of apical constriction and subsequent furrow formation by controlling extracellular Fog activity uniformly across the cells of the ventral domain.

Is tsl also required for other fog-dependent morphogenetic events? Previous work has implicated fog in several other developmental roles, including morphogenesis of the larval wing disc (Nikolaidou and Barrett 2004; Manning et al. 2013), salivary gland formation during mid-embryogenesis (Lammel and Saumweber 2000), and invagination of the posterior midgut (the second major morphogenetic movement during gastrulation; Costa et al. 1994). While it remains possible that maternal tsl contributes to salivary gland morphogenesis and posterior midgut invagination, the dependence of these processes upon Tor signalling through the activities of target genes tailless and forkhead (Weigel et al. 1989; Costa et al. 1994; Wu and Lengyel 1998), precludes our ability to determine whether this is the case. In addition, since tslΔ adults have no discernable wing defects, we reason that Tsl is unlikely to play a role in wing morphogenesis. Determining if Tsl is required in other fog-mediated processes is thus challenging and will require sophisticated further studies.

The finding that maternal Tsl functions in two distinct processes during early Drosophila embryogenesis further raises the question as to whether Tsl was coopted
from one role to the other during the course of evolution. Interestingly, bioinformatic studies of patterning pathway components in *Drosophila* and other insects have revealed that the function of Tsl in terminal patterning is likely a relatively recent adaptation (Duncan *et al.* 2013). For example, the honeybee uses an alternative terminal patterning system to Tor signalling, as its genome lacks *tor-* and *trk-* encoding sequences (Duncan *et al.* 2013). Further, in the honeybee, *tsl* is expressed ubiquitously in ovarian tissue, suggesting that its maternal function is not spatially restricted as it is in *Drosophila*. In addition, a recent study used RNAi to knockdown *tsl* transcripts in the milkweed bug (*Oncopeltus fasciatus*), which like the honeybee also lacks the canonical terminal patterning pathway (Weisbrod *et al.* 2013). Intriguingly, rather than yielding terminal patterning defects, embryonic invagination defects were observed, indicating that Tsl may also function in morphogenesis in this insect. Together, these studies infer that the ancestral role of maternal Tsl in insects may have been in morphogenesis rather than terminal patterning. Furthermore, they raise the possibility that the localising activity of Tsl, which has been its defining feature in terminal patterning, may instead represent a novel exploitation of its molecular function.

Tsl is a member of the pore forming perforin-like protein superfamily (Ponting 1999; Rosado *et al.* 2007). In contrast to most perforin-like proteins, however, which function as immune effectors or virulence factors, Tsl is instead critical for cell signaling during insect development. While we are yet to determine whether Tsl functions via pore formation or indeed via another mechanism of action, it is clear that its activity is crucial for several processes during fly development (Stevens *et al.* 1990; Grillo *et al.* 2012; Johnson *et al.* 2013; Forbes-Beadle *et al.* 2016). Our ability to identify the commonalities and differences between these roles has to date,
however, been hampered by our lack of knowledge of the genetic pathways in which Tsl operates.

The data presented here suggest that, remarkably, Tsl serves to control two molecularly distinct signaling pathways in the context of the same early embryonic extracellular space. Tor is a receptor tyrosine kinase that signals through the Ras and mitogen activated protein kinase cassette to influence cellular transcription (Sprenger et al. 1989), whereas Mist is a G-protein coupled receptor that modulates the actomyosin cytoskeleton via G-protein signalling and the Rho1 GTPase (Manning et al. 2013). We therefore reason that the apparent lack of similarities between the Trk/Tor and Fog/Mist pathways, together with the influence of Tsl on extracellular Trk accumulation, is more in keeping with a function for Tsl in regulation of either trafficking or secretion. Indeed, it will be interesting to learn how the active Mist ligand is generated and whether a Tsl-regulated event common to both ventral morphogenesis and terminal patterning is involved. Such information will undoubtedly provide valuable insights for our understanding of both the cellular coordination of tissue folding and of how perforin-like proteins function during development.

Literature Cited

Acknowledgements

We thank Lauren Forbes Beadle and the Australian Drosophila Biomedical Research Facility (OzDros) for technical support, and also acknowledge support from Monash
Micro Imaging and the Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging. We thank the Bloomington *Drosophila* Stock Centre for providing fly stocks, and the Developmental Studies Hybridoma Bank and Michael Murray for antibodies. We further thank Eric Wieschaus for discussions and Michelle Henstridge for critical reading of the manuscript. T.K.J. is an ARC Discovery Early Career Researcher Award Fellow. J.C.W. is a National Health and Medical Research Council of Australia Senior Principal Research Fellow.

Author contributions

T.K.J., J.C.W. and C.G.W. conceived the experiments and interpreted the data, co-led the work and wrote the paper. T.K.J. and K.A.M. performed experiments.
Figure legends

Figure 1. Loss of maternal tsl results in ventral cuticular holes that are independent of terminal patterning failure.

(A) Wild type larval cuticle with complete head skeleton (arrowhead) and abdominal segment 7 (A7) present. (B) Cuticle of embryos laid by torXR1 females showing the terminal class mutant phenotype. Note that the head skeleton is reduced and structures posterior to A7 are absent. (C, D) Cuticles of embryos laid by tslΔ mothers display the terminal phenotype (C) similar to torXR1, however a large proportion also possess ventral cuticular holes (D, arrow). (E) Quantification of phenotypes observed in embryos laid by mothers of the genotypes shown. Hypomorphic alleles of tsl in trans with the null allele (tslΔ) form an allelic series with respect to the cuticular hole phenotype. Asterisks indicate significant differences from the tslΔ phenotype (t-test, p<0.05). Means are plotted and error bars represent one standard error calculated from at least three cuticle preparations (>100 cuticles scored for each). (F) A genomic transgene containing HA-tagged tsl (HA-Tsl) completely rescues the cuticular hole phenotype of tslΔ, however does not restore terminal patterning. (G) Expression of an eGFP-tagged tsl transgene in the endogenous ovarian pattern of tsl (Slbo-Gal4) restores the tslΔ ventral cuticle and partially restores terminal patterning, as assessed by rescue of the anterior head skeleton and presence of abdominal segment 8. The cuticle shown is a representative image where the addition of A8 tissue (open arrowhead) and a wild type head skeleton (arrowhead) is observed. Anteriors are to the left. Scale bars are 100 µm.
Figure 2. The ventral cuticular holes in \(tsl^d \) embryos are caused by impaired mesoderm invagination during morphogenesis.

Wild type \((w^{118}, \text{left panels}) \), terminal class mutant \((HA-Tsl, tsl^d, \text{centre panels}) \), and \(tsl^d \) (right panels) embryos stained with various markers of embryogenesis. (A-C) Transcript expression of the ventral cell fate marker \(Snail (sna) \) is repressed at the posterior of wild type embryos by the terminal system \((A, \text{arrow}) \). In \(tsl^d \) (B) and terminal class mutant (C) embryos \(sna \) expression extends to the posterior pole. (D-F) Ventral (v) furrow formation in gastrulating embryos labelled with the membrane marker anti-Neurotactin (Nrt). Wild type (D) and terminal class mutant (E) embryos form regular ventral furrows. The furrows from \(tsl^d \) embryos are irregular and incomplete (F). (G-I) Dorsal (d) views of gastrulated embryos stained with anti-Nrt. (G) Wild type embryos correctly invaginate their posterior midgut (pole cell position indicated by asterisks) unlike terminal class mutant (H) and \(tsl^d \) (I) embryos due to terminal system failure. \(tsl^d \) embryos however, possess a large field of intensely labelled cells on the extended germband (EG) that are not seen in wild type nor terminal class mutant embryos (arrowhead). Anteriors are to the left. (J-L) Posterior-dorsal surface views of gastrulae embryos stained with anti-Nrt (magenta), anti-Twist (Twi, green) to label mesodermal precursors, and DAPI (blue). The ventral furrow has closed at the midline (white arrow) in wild type (J) terminal class mutant (K) embryos but remains open in \(tsl^d \) embryos (L) as indicated by the surface location of Twi positive cells (white arrowheads). Anteriors are to the top. Lower panels (J’-L’) show the z-axis crossection of the top panels at the position indicated by the dotted white line. Twi-positive nuclei are visible only below the dorsal surface in wild type (J’) and terminal class mutant (K’) embryos indicating successful furrow invagination. Many of these cells remain at the dorsal surface of \(tsl^d \) embryos (L’).
Maternal genotypes are shown. Scale bars are 50 µm.
Figure 3. Tsl promotes and coordinates apical constriction during ventral furrow formation.

(A–C) Cross-sections of fixed early gastrulae embryos sectioned at approximately two-thirds the embryo length (from the anterior to posterior) and labelled with anti-β-catenin to reveal adherens junctions (AJs). β-catenin localises strongly to the apical surface in the early ventral furrow in wild type (w1118, A) and terminal class mutant (torXR1, B) embryos, but poorly and irregularly in tslΔ embryos (C). Lower panels are (A’–C’) high-magnification images of the boxed area in the top panels. Areas of low apical β-catenin correspond to unconstricted cells indicated by apical nuclei (arrowed). Posterior view of embryos with closing ventral furrows. Uniform furrows and concentrated apical AJs are observed for wild type (D) and terminal class mutant (E) embryos, despite the latter failing to internalise the posterior midgut (asterisks) and forming a posteriorly extended furrow as expected. tslΔ embryos fail similarly in these regards, however also display an irregular shaped posterior furrow (arrowhead). Ventral is to the bottom. (G–L) Live imaging stills taken at three-minute intervals of representative Ecad-GFP expressing control (G, I, K) and tslΔ (H, J, L) embryos during ventral furrow formation and invagination. Furrow formation in tslΔ embryos is delayed by approximately 8 minutes compared to controls. Cell constrictions in the ventral domain of tslΔ embryos are limited to sporadic patches of cells (arrowheads). Areas containing more constricted cells appear to initiate furrow formation first. Invagination is incomplete in this example due to a large population of cells towards the posterior (bracketed) remaining unconstricted. Time is in minutes post cellularisation completion. Ventral side is shown with anteriors to the left. Maternal genotypes are indicated. Scale bars are 35 µm.
Figure 4. tsl interacts with RhoGEF2 and fog in ventral morphogenesis.

(A) Progeny from RhoGEF2^{4.4} heterozygote females display a wild type cuticle pattern. (B) Progeny from females heterozygous for RhoGEF2^{4.4} and lacking tsl (tsl^d) display a severe loss of ventral cuticle. (C) A striking increase in the proportion of embryos lacking ventral cuticles is observed when RhoGEF2 dosage is reduced in a tsl^d background compared to tsl^d alone (tsl^d=7.3% vs RhoGEF2^{4.4/+}; tsl^d=100%). Means are plotted and error bars represent one standard error calculated from at least three cuticle preparations (>100 cuticles scored for each). (D) Posterior-ventral holes are observed in cuticles of fog^{s4} embryos. (E) fog^{s4};tor^{XR1} double mutant embryos have a cuticle phenotype that closely resembles that of tsl^d. (F) Embryos from females expressing fog ubiquitously from the maternal germline (nos>) are severely compromised in their ability to produce ventral cuticle. (G) The cuticle phenotype of embryos that express fog in the absence of tsl closely resembles the tsl^d phenotype. Maternal genotypes are shown unless otherwise indicated (m, maternal, z, zygotic). Anteriors are to the left, ventral is down. Scale bars are 100 µm.
Figures

Figure 1.
Figure 3.
Figure 4.