Dual phosphorylation of Cdk1 coordinates cell proliferation with key developmental processes in Drosophila

Joseph O. Ayeni*, Ramya Varadarajan*, Oindrila Mukherjee*, David T. Stuart†, Frank Sprenger‡, Martin Srayko* and Shelagh D. Campbell*¶

*Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada

†Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2E9, Canada

‡Institute for Biochemistry, Genetic and Microbiology, NF III, University of Regensburg, Regensburg, Germany

*Corresponding Author
Running head: Developmental cell cycle regulation

Keywords: cell cycle checkpoint, imaginal discs, neuroblast, mitosis, Cdk1

Corresponding Author:

Shelagh D. Campbell,
shelagh.campbell@ualberta.ca
Department of Biological Sciences, University of Alberta,
11455 Saskatchewan Drive,
Edmonton, AB, T6G2E9, Canada
ph: 780-492-3546, fax: 780-492-9432

Abbreviations:
Cdk1 (Cyclin-dependent kinase 1)
ZNC (Zone of non-proliferating cells)
VFP (Venus fluorescent protein)
ABSTRACT

Eukaryotic organisms use conserved checkpoint mechanisms that regulate Cdk1 by inhibitory phosphorylation to prevent mitosis from interfering with DNA replication or repair. In metazoans, this checkpoint mechanism is also used for coordinating mitosis with dynamic developmental processes. Inhibitory phosphorylation of Cdk1 is catalyzed by Wee1 kinases that phosphorylate tyrosine 15 (Y15) and dual-specificity Myt1 kinases found only in metazoans that phosphorylate Y15 and the adjacent threonine (T14) residue. Despite partially redundant roles in Cdk1 inhibitory phosphorylation, Wee1 and Myt1 serve specialized developmental functions that are not well understood. Here, we expressed wild type and phospho-acceptor mutant Cdk1 proteins to investigate how biochemical differences in Cdk1 inhibitory phosphorylation influence Drosophila imaginal development. Phosphorylation of Cdk1 on Y15 appeared to be crucial for developmental and DNA damage-induced G2 phase checkpoint arrest, consistent with other evidence that Myt1 is the major Y15-directed Cdk1 inhibitory kinase at this stage of development. Expression of non-inhibitable Cdk1 also caused chromosome defects in larval neuroblasts that were not observed with Cdk1(Y15F) mutant proteins that were phosphorylated on T14, implicating Myt1 in a novel mechanism promoting genome stability. Collectively, these results suggest that dual inhibitory phosphorylation of Cdk1 by Myt1 serves at least two functions during development. Phosphorylation of Y15 is essential for the pre-mitotic checkpoint mechanism, whereas T14 phosphorylation facilitates accumulation of dually inhibited Cdk1-Cyclin B complexes that can be rapidly activated once checkpoint-arrested G2 phase cells are ready for mitosis.

Keywords: Drosophila, cell cycle checkpoint, imaginal development, neuroblast, mitosis, Cdk1
INTRODUCTION

Conserved cell cycle checkpoints delay entry into mitosis by inhibiting Cyclin-dependent kinase 1 (Cdk1), blocking cell-cycle progression when DNA replication or repair would threaten cell survival (Nurse, 1990). In *Schizosaccharomyces pombe*, where the Wee1 inhibitory kinases were first discovered, phosphorylation of Cdk1 on a conserved tyrosine residue (Y15) is both necessary and sufficient for checkpoint arrest of cells in S or G2 phase until DNA replication and repair are completed and cells reach a critical size (Gould and Nurse, 1989; O'Connell et al., 1997; Rhind and Russell, 1998). Membrane-bound Myt1 kinases are related but metazoan-specific Cdk1 inhibitory kinases that co-evolved with Wee1 (Mueller et al., 1995; Booher et al., 1997; Liu et al., 1997). Myt1 kinases regulate Cdk1 by dual inhibitory phosphorylation of Y15 and the adjacent threonine residue, T14 (Gu et al., 1992; Blasina et al., 1997; Poon et al., 1997). They have also been implicated in Cdk1/Cyclin B nucleo-cytoplasmic trafficking mechanisms coordinating the G2/M transition (Liu et al., 1999; Wells et al., 1999; Gavet and Pines, 2010). These complexities have made it difficult to assign specific molecular functions to Wee1 and Myt1 kinases (Okamoto et al., 2002; Burrows et al., 2006; Oh et al., 2010).

During interphase, Cdk1 bound to mitotic cyclins can be detected in four distinct states with respect to inhibitory phosphorylation: T14-Y15, T14p-Y15, T14-Y15p and T14p-Y15p (Edgar et al., 1994; Mayya et al., 2006; Coulonval et al., 2011). During *Drosophila* gastrulation, expression of Cdc25^{Stg} dual-specificity phosphatases remove Cdk1 inhibitory phosphorylation to activate Cdk1 in a dynamic developmental G2/M checkpoint mechanism used to coordinate mitosis with cell movements (Edgar and O'Farrell, 1989; Edgar and O'Farrell, 1990). The expression of non-inhibitable Cdk1(T14A,Y15F) mutants (also called Cdk1AF) forces cells to by-pass G2 phase checkpoint arrest by triggering auto-amplification of feedback mechanisms that activate endogenous Cdk1 (Krek and Nigg, 1991a; Norbury et al., 1991; Jin et al., 1996; Su et al., 1998). In contrast, phospho-mimetic
substitutions of Cdk1 on T14 and/or Y15 produce dominant negative, kinase-dead mutants that block cells in interphase, indicating that negative charges at either position inhibited Cdk1 activity (Krek et al., 1992). Other studies of singly phosphorylated Cdk1 isoforms suggested that Y15 phosphorylation more potently inhibits Cdk1 activity than T14 phosphorylation, however (Fletcher et al., 2002; Potapova et al., 2009), or that T14 phosphorylation promotes T161 activating phosphorylation of Cdk1/Cyclin B complexes by CAK (Cdk1 Activating Kinase) kinases, perhaps because complexes phosphorylated only on Y15 were unstable during G2 phase (Coulonval et al., 2011). These findings suggest that biochemical differences in Wee1 and Myt1 phosphorylation mechanisms could impart distinct functional properties important for Cdk1 regulation at different stages of development.

Indeed, genetic studies in Drosophila have defined specialized developmental roles for Wee1 and Myt1 kinases, despite partial functional redundancy. Maternally expressed Wee1 is essential for checkpoint responses that delay mitosis to accommodate late firing DNA replication origins and control chromosome condensation after DNA damage during the syncytial divisions of early embryogenesis (Price et al., 2000; Stumpff et al., 2004; Shermoen et al., 2010; Fasulo et al., 2012). Although zygotic Wee1 activity is dispensable for post-embryonic development, it is functionally redundant for viability when Myt1 becomes the major biochemically detectable Cdk1 inhibitory kinase and myt1 mutants are male sterile with sensory bristle defects (Jin et al., 2005; Jin et al., 2008). Understanding the biochemically distinct mechanisms that Wee1 and Myt1 use to regulate Cdk1 by inhibitory phosphorylation could help us to understand specialized functions of these conserved cell cycle kinases.

To study how biochemical differences in Cdk1 inhibitory phosphorylation affect Drosophila development we expressed fluorescently tagged Cdk1 proteins to analyze phenotypic consequences during larval imaginal development. Expression of tagged wild type Cdk1 functionally complemented conditional loss of function cdc2 (cdk1) mutants, the fusion proteins interacted with endogenous
mitotic cyclin A and B and were phosphorylated by endogenous inhibitory and activating kinases. Expression of tagged, non-inhibitable Cdk1 caused G2/M checkpoint by-pass and chromosome defects, as expected. Distinct phenotypic effects were associated with expression of mutant versions of Cdk1 that could only be phosphorylated on T14 or Y15 residues, however. While other properties could also be a factor in these Cdk1 mutant proteins, our results provide new insights into developmental regulation of Cdk1 by inhibitory phosphorylation that may also be relevant to other systems.

MATERIALS AND METHODS

Construction of Gal-4 Inducible Cdk1-VFP Strains

Constructs were made from pSP64 plasmids carrying Cdk1WT, Cdk1(T14A), Cdk1(Y15F) and Cdk1(T14A,Y15F) sequences that were amplified using high fidelity Platinum® Pfx DNA polymerase (Invitrogen, Carlsbad, CA, USA) with the following primers: LPE 192 (5’-CACCATGGAGGATTTTGAGAA-3’) and RPE 192 (5’-ATTTCGAACTAAGCCCGATTG-3’). The amplified DNA was sub-cloned into a pENTR directional TOPO vector (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol with One Shot® chemically competent E.coli TOP10 cells (Invitrogen, Carlsbad, CA, USA). Gateway recombination of the pENTR clones with the Drosophila destination vector pPWV (a UASp vector with 14 Gal4 UAS sites and a C-terminal Venus tag) was then used to generate Gal4-inducible, C-terminal VFP tagged expression constructs (Brand and Perrimon, 1993). Each construct was verified by sequencing on both strands before being used for P element transformation (Best Gene), with strains showing similar expression chosen for the experiments (further details available on request).
Analysis of Wing Imaginal Disc Development and Checkpoint Responses to Radiation

Imaginal wing discs were dissected in phosphate-buffered saline (PBS) from larvae cultured at 22° on standard Drosophila media supplemented with 0.05% bromophenol. Late third instar larvae were selected by disappearance of bromophenol blue from the gut and initiation of wandering behavior (Maroni and Stamey, 1983). The discs were fixed for 15 minutes in 4% paraformaldehyde at room temperature, washed three times for 5 minutes each in PBT (1X PBS and 0.3% Triton X-100) and blocked for 30 minutes with 5% bovine serum albumin in 1X PBT before incubation with primary antibodies overnight at 4°. Antibodies were used at the following dilutions: rabbit anti-phospho-Histone H3 (Upstate Biotechnology), 1:4000; rabbit anti-cleaved Caspase-3 (Cell Signalling Technology), 1:1000; mouse anti-Cyclin A, 1: 200; mouse anti-Cut, 1:200 and mouse anti-Wingless, 1:10 (all from Developmental Studies Hybridoma Bank). Secondary antibodies (Invitrogen) conjugated with Alexa Fluor-488 or Alexa Fluor-568 were used at a working dilution of 1:1000. Figures 4, 5 and 6 were composed from overlapping images to show the entire imaginal wing disc and were de-convolved by iterative restoration using Volocity software, then compiled with Adobe Photoshop software using identical manipulations for each experimental set.

Radiation induced pre-mitotic checkpoint assays were performed using established protocols (Brodsky et al., 2000). Briefly, staged late third instar larvae were irradiated with 40 Gy using a Co60 gamma-ray source, then allowed to recover for 1 hour at room temperature before dissecting, fixing and labeling the wing discs with phospho-(S10)-Histone H3 antibodies to mark mitotic cells.

Scanning Electron Microscopy of Adult Drosophila Eyes

Pharate adults were dissected from their pupal cases and fixed for 2 hours with 2% gluteraldehyde in PBS (adding a drop of 0.2% Tween-20 to reduce surface tension). Following fixation, the samples were rinsed with distilled water and then dehydrated by passage through a graded ethanol series (once each
for 30 minutes: 25%, 50%, and 75%, followed by twice with 100% ethanol) and mounted for imaging with a Philips/FEI LaB6 environmental scanning electron microscope (ESEM).

Western Blot Analysis of Protein Extracts

Wing imaginal discs were dissected from late third instar larvae and kept on ice. Ten wing discs per sample were homogenized in SDS-PAGE sample buffer and the protein extracts were separated by 10% SDS-PAGE and transferred to Hybond P membranes (Amersham). After blocking with 5% bovine serum albumin in TBST buffer (10 mM Tris-HCl, pH 8.0, 150 mM NaCl and 0.1% Tween-20) for 1 hr the blots were incubated with primary antibodies overnight at 4º. Labelled proteins were then detected with anti-rabbit or anti-mouse secondary antibodies conjugated to horseradish peroxidase (Amersham), using a GE Healthcare ECL Plus chemiluminescence kit. The primary antibodies used for these experiments were rabbit anti-pT14-Cdk1 (1:500), pY15-Cdk1 (1:1000) and rabbit pT161-Cdk1 (1:1000), all from Cell Signaling Technology as well as mouse anti-GFP (1:5000; Clontech), and mouse anti-Actin (1:5000; Chemicon).

Immunoprecipitation of Transgenic Cdk1 Protein and Histone H1 Kinase Assays

Thirty to thirty five wing discs from larvae expressing VFP-tagged Cdk1 transgenes under control of *en Grailed-Gal4* were dissected for each sample into ice-cold PBS and stored at -80º until proceeding. After thawing, the tissue was homogenized in 200 µL of ice-cold lysis buffer containing phosphatase and protease inhibitors (20 mM Tris, pH 7.5, 50 mM NaCl, 5 mM EDTA, 2 mM EGTA, 0.1% NP-40, 1 mM Benzamidine, 2 mM Sodium orthovanadate, 80 mM Glycerophosphate, 2.5 mM beta-Mercaptoethanol, 10 mM NaF, 2 mM PMSF, 10 mM Pepstatin A, 0.5 µg/mL Leupeptin, and 2.5 mg/mL Aprotinin). Lysates were kept at 4º throughout the remainder of the experiment. Cellular debris was pelleted by centrifugation at 14000 x g for 15 minutes and the supernatant was removed and pre-cleared by incubation with 20 µL of a 50% slurry of lysis buffer and protein A beads for 1 hour, followed by centrifugation at 3000 x g for 5 minutes. The pre-cleared lysates were then incubated with
0.5 µL of rabbit anti-GFP for 1 hour at 4°C and the GFP-fused proteins were immunoprecipitated by adding 20 µL of a 50% slurry of protein A beads and incubated at 4°C overnight. The precipitated proteins, the remaining supernatant (adsorbed) fractions and aliquots of the initial pre-cleared lysates were then analyzed on western blots by probing with mouse anti-Cyclin B and Cyclin A antibodies (1:1 dilution), from the Developmental Studies Hybridoma Bank (Lehner and O'Farrell, 1990) and then with horseradish peroxidase-coupled secondary antibodies (Sigma) and ECL chemiluminescence to detect the labeled proteins.

For Histone H1 kinase assays, immunoprecipitates were prepared as above except that 180 dissected third instar wing discs were used for each genotype. Precipitates were washed three times with lysis buffer and twice with H1 kinase buffer (20mM Tris-HCl, pH 7.5, 10mM MgCl₂), before incubation in a reaction mixture containing kinase buffer supplemented with 10 μM un-labeled ATP, 1 mg/mL histone H1, and 30 μCi of [γ-³²P]-labeled ATP for 15 min at 30°C. The reactions were quenched by addition of one volume of 2× SDS loading buffer and incubated for 5 min at 100°C. Reaction products were then separated on 10% SDS-PAGE gels and the phosphorylated histone H1 was detected and quantified by scanning the dried gels with a Molecular Dynamics STORM Phosphoimager. To estimate the amount of transgenic protein in each sample, 20 µL aliquots of each precipitate were western blotted and probed with anti-Cdk1 (PSTAIR) antibodies (diluted 1:5000), then quantified using IMAGEJ software. Catalytic activity was determined by normalizing the H1 kinase activity of each sample to the amount of protein, and shown relative to Cdk1(WT) activity set as 100%. Data from three independent experiments were compiled for Figure 1D.

Analysis of mitosis in larval neuroblasts

To study larval neuroblasts we dissected third-instar larvae in PBS to remove eye-antennal discs from the brains, which were incubated for 1.5 hours in 10⁻⁵ M colchicine at room temperature. This was followed by 10 minutes incubation in hypotonic solution (0.5% sodium citrate), then incubation for 2
minutes in 45% acetic acid and incubation for 20 s in 60% acetic acid before squashing hard between a poly-lysine-coated slide and siliconized coverslip. The slides were then frozen immediately in liquid nitrogen before removing the coverslip and dehydrated in absolute ethanol at room temperature then left to air-dry, before rehydration, staining with Hoechst 33258 and mounting in anti-fade glycerol-based medium. The slides were then examined for metaphase karyotypes to look for chromosome aberrations and to quantify the mitotic index by counting the number of cells with condensed, mitotic chromosomes per microscopic field (the area observed with a 40X Zeiss objective). To account for experimental variation, 10-20 fields were sampled from each of 4 brains per slide, with 3 slides per genotype examined.

Live analysis of mitosis was performed using published protocols to visualize both VFP expressed from each of the Cdk1 transgenes and microtubules (Buffin et al., 2005), using an α-Tubulin-RFP transgene (Goshima et al., 2007). Data for fluorescent time-lapse movies were acquired with an inverted microscope (IX81; Olympus; 60×, NA 1.42 oil objective) equipped with a spinning-disc confocal head (CSU10; Yokogawa). Image capture with a CCD camera (ORCA-R2; Hamamatsu Photonics) was controlled by MetaMorph software (Molecular Devices). Stacks of 5 sections at 0.5 micron intervals were collected every 30 seconds. Images showing maximum intensity projections were adjusted for brightness and contrast, with mitosis defined as the interval between the appearance of centrosomes at opposite poles of the dividing cell to the end of cytokinesis.
RESULTS

Functional Characterization of Cdk1-VFP Proteins Expressed in Wing Imaginal Discs

To test the possibility that specialized developmental roles of Wee1 and Myt1 kinases reflect different functional properties of Cdk1 proteins phosphorylated on T14 and/or Y15 residues, we made four Gal4-inducible transgenes for comparing the behaviour of different phospho-isoforms, *in vivo*: Cdk1(WT)-VFP, Cdk1(T14A)-VFP, Cdk1(Y15F)-VFP and Cdk1(T14A,Y15F)-VFP. The fusion proteins were C-terminally tagged with Venus Fluorescent Protein (VFP), allowing us to visualize protein expression. To characterize basic biochemical properties of these Cdk1 fusion proteins in a tissue where Wee1 and Myt1 are both expressed (Jin et al., 2008) we used genetic crosses to *engrailed-Gal4* (*en-Gal4*) to induce transgene expression in the posterior regions of late third instar wing imaginal discs. Western blots of protein extracts (30-35 wing discs per sample) probed with anti-Cdk1 (PSTAIR) antibodies detected both endogenous Cdk1 (34 kDa) and Cdk1-VFP (61 kDa) fusion proteins (Figure 1A), as expected. To determine if these Cdk1-VFP fusion proteins interacted with endogenous mitotic cyclins we first optimized conditions for quantitatively immunoprecipitating Cdk1(WT)-VFP from wing disc extracts (Figure S1A), using a non-transgenic *yw* strain as a negative control (Figure S1B). Using this protocol, Western blots of the immunoprecipitated Cdk1-VFP proteins were then sequentially probed with mouse anti-*Drosophila* Cyclin B, Cyclin A and mouse anti-GFP antibodies (Figure 1B). The results showed that Cyclin A and Cyclin B proteins co-precipitated with each of the transgenic Cdk1 fusion proteins, confirming that VFP-tagged Cdk1 proteins could physically interact with endogenous mitotic cyclins.

When Cdk1 proteins are bound to mitotic cyclins they are subject to inhibitory phosphorylation by Wee1 and Myt1 kinases (Meijer et al., 1991) and activating phosphorylation on residue T161 by a Cdk activating kinase, CAK (Solomon et al., 1992). We induced transgenic Cdk1 proteins in wing discs with *en-Gal4* to analyze phosphorylation status by sequentially probing Western blots with antibodies against phospho-T14-Cdk1 (pT14), phospho-Y15-Cdk1 (pY15) and phospho-T161-Cdk1
(pT161). All of these antibodies labeled Cdk1WT-VFP (Figure 1C), detecting pT14, pY15 and pT161 Cdk1 phospho-isoforms that showed the proteins were recognized as substrates by endogenous Cdk1 inhibitory kinases. Cdk1(Y15F)-VFP was only labeled by pT14-Cdk1 antibodies whereas Cdk1(T14A)-VFP was only labeled by pY15-Cdk1 antibodies, however, confirming that the T14 and Y15 residues of transgenic Cdk1 were in fact mutated and the remaining sites were independently phosphorylated by endogenous kinases. Cdk1(T14A-Y15F)-VFP was not recognized by antibodies against either pT14 or pY15, as expected.

Antibodies used to detect Cdk1 phosphorylation on the T161 activating residue labeled the Cdk1(WT)-VFP, Cdk1(Y15F)-VFP and Cdk1(T14A-Y15F)-VFP fusion proteins (Figure 1C). Curiously, these antibodies did not detect T161 phosphorylation of the Cdk1(T14A)-VFP sample. Similar results were observed when the Cdk1 transgenes were expressed in other tissues (data not shown), consistent with a proposal that T14Y15p Cdk1 phospho-isoforms are compromised for T161 phosphorylation (Coulonval et al, 2011), although we cannot exclude alternative explanations.

To assess Cdk1 catalytic activity, the VFP-tagged fusion proteins were immunoprecipitated from wing disc extracts with GFP antibodies for histone H1 kinase assays, using 180 wing discs for each sample (Figure 1D and S1B). The incorporation of radioactive phosphate into histone H1 was quantified by densitometry after normalizing each sample for protein concentration, setting Cdk1(WT)-VFP activity as 100%. Mock immunoprecipitates from a non-transgenic yw strain used as a negative control exhibited negligible background levels of histone H1 kinase activity (Figure S1B). Pooled data compiled from three independent experiments were used to prepare Figure 1D, indicating that the relative levels of Cdk1WT-VFP and Cdk1(T14A)-VFP kinase activity were indistinguishable. In contrast, the Cdk1(Y15F)-VFP precipitates had roughly 2-fold higher activity than Cdk1WT-VFP whereas Cdk1(T14A,Y15F)-VFP precipitates had roughly 3-fold higher activity (Figure 1D).

The simplest interpretation of these results is that phosphorylation of Cdk1(Y15F)-VFP on T14 partially inhibits Cdk1 catalytic activity, as reported in other systems (Krek and Nigg, 1991b; Fletcher
et al., 2002), although we recognize that the Y15F mutation might also influence Cdk1 activity by affecting protein folding, stability or interactions with other proteins. Interpreting the Cdk1(T14A)-VFP results was more difficult, however. The low activity of this mutant can be attributed to Y15 inhibitory phosphorylation and low levels of activating T161 phosphorylation (Figure 1C), in addition to other functional properties of the T14A mutant that could potentially be affecting Cdk1 activity.

To rigorously assay the functionality of the Cdk1 fusion proteins in vivo we undertook genetic tests for complementation of cdc2	x (cdk1) mutant lethality (Stern et al., 1993). Genetic crosses to tubulin-Gal4 and actin-Gal4 strains were used to ubiquitously express each transgene in a cdc2E1-24/cdc2B47 mutant background that was temperature-sensitive for Cdk1 activity. The progeny were grown at 25°C throughout development (the restrictive temperature for cdc2E1-24). Adult progeny were then analyzed for phenotypic markers carried on the balancer chromosomes to score genotypes (Figure 2 and S1, C-E). Cdk1(WT)-VFP expression completely rescued cdc2 pupal lethality (Figure 2B, B’ and D, Class A in Figure S1E). The rescued adults were morphologically indistinguishable from sibling heterozygous controls (Figure 2A, A’ and D, Class D in Figure S1E) and western blots (Figure S1C, D) confirmed that the fusion proteins were highly expressed in both cdc2B47/cdc2E1-E24;UAS-Cdk1WT-VFP/tubulin-Gal4 and cdc2B47/cdc2E1-E24;UAS-Cdk1WT-VFP/actin-Gal4 flies. Surprisingly, ubiquitous expression of transgenic Cdk1(T14A)-VFP also rescued cdc2 mutant lethality (Figure 2C, C’ and D, Class A in Figure S1E), showing that the Cdk1 activity produced by this transgene was sufficient for complementation despite low T161 phosphorylation noted earlier (Figure 1C). In both cases, the percentage of rescued progeny was not significantly different from the maximum expected for full genetic complementation (Figure 2D).

In contrast, expression of Cdk1(Y15F)-VFP or Cdk1(T14A,Y15F)-VFP did not rescue cdc2 pupal lethality (Class A, Figure S1E). Moreover, ubiquitous expression of either of these transgenes was lethal in an otherwise heterozygous cdc2x/+ background (Class C in Fig. S1E). These results
showing that ubiquitous expression of Cdk1 transgenic mutants that could not be phosphorylated on Y15 were dominant lethal implied that regulation of this residue might be critical for normal *Drosophila* development.

Impact of Cdk1 Inhibitory Phosphorylation Mutants on Adult Eye and Wing Development

Expression of non-inhibitable Cdk1 in *Drosophila* in an otherwise wild type background induces G2 phase cells to prematurely enter mitosis, disrupting the developmental timing of cell division (Sprenger et al., 1997; Su et al., 1998; Jin et al., 2005). To assess whether Cdk1 phosphorylated only on T14 or Y15 residues caused similar defects we used genetic crosses with *sd-Gal4* to induce expression during wing disc development, in an otherwise wild-type genetic background (Campbell et al., 1992). The examples shown in Figure 3 were representative of at least 100 adult flies analyzed for each genotype. Wing development was not noticeably affected by expression of Cdk1(WT)-VFP, Cdk1(T14A)-VFP or Cdk1(Y15F)-VFP (Figure 3A-C), however Cdk1(T14A,Y15F)-VFP expression caused wing margin defects (Figure 3D).

We also analyzed transgene expression during eye-antennal disc development, using *ey-Gal4* (Hazelett et al., 1998). Expression of Cdk1(WT)-VFP, Cdk1(T14A)-VFP or Cdk1(Y15F)-VFP resulted in adults with normal eyes (Figure 3E-G), however Cdk1(T14A,Y15F)-VFP expression produced eyeless, pharate adult flies that were unable to eclose (Figure 3H). These phenotypic defects induced by expression of non-inhibitable Cdk1 mutants that were not seen with singly phosphorylated Cdk1 isoforms suggested that phosphorylation of Cdk1 on either T14 or Y15 was sufficient for regulating transgene activity *in vivo*, although other factors besides phosphorylation could also be involved.

Expression of non-inhibitable Cdk1 mutants causes dominant phenotypic defects that can be enhanced by increasing levels of mitotic cyclins (Heald et al., 1993; Jin et al., 1998; Su et al., 1998). To assess this variable we co-expressed transgenic *Drosophila* Cyclin B with each Cdk1 variant by genetic
crosses to sd-Gal4. Expression of Cyclin B alone (Figure 3I) had no detectable effect on the adult wing, nor did Cyclin B co-expressed with Cdk1WT-VFP (Figure 3J) or Cdk1(T14A)-VFP (Figure 3K). Wing margin defects were observed, however, when Cyclin B was co-expressed with Cdk1(Y15F)-VFP (compare Figure 3C with 3L). Co-expression of Cyclin B with Cdk1(T14A,Y15F)-VFP enhanced the severity of phenotypic defects compared to the mutant alone, resulting in complete loss of the adult wing (compare Figure 3D with 3M). These results indicate that both Cdk1(T14A,Y15F)-VFP and Cdk1(Y15F)-VFP compete with endogenous Cdk1 for mitotic cyclins, as a limiting factor for Cdk1 activity. Our finding that co-expression of cyclin B with Cdk1(T14A,Y15F)-VFP caused more severe wing and eye defects than with Cdk1(Y15F)-VFP suggested that phosphorylation of Cdk1(Y15F)-VFP on T14 partially inhibited Cdk1 activity in vivo, though other factors may also contribute.

To further test this hypothesis that T14 phosphorylation partially inhibited the activity of Cdk1 in vivo and prevented phenotypic defects we expressed Cdk1(Y15F)-VFP in a myt1 null mutant background by genetic crosses with en-Gal4 and neur-Gal4 (Jin et al., 2005). Previous analysis of these myt1 mutants showed that Myt1 activity accounts for all detectable T14 phosphorylation of endogenous Cdk1 in Drosophila (Jin et al., 2008). We therefore predicted that loss of endogenous T14 kinase activity in a myt1 mutant would mean that Cdk1(Y15F)-VFP expression would affect cells more like Cdk1(T14A,Y15F)-VFP, if T14 phosphorylation alone partially inhibits transgene activity. In myt1/+ heterozygote controls, adult progeny were observed with en-Gal4 or neurP72-Gal4 expression of Cdk1(Y15F)-VFP (data not shown). These genotypes were not observed in a myt1 mutant background, however, indicating that Cdk1(Y15F)-VFP expression was lethal. These results showed that Myt1 phosphorylation of transgenic Cdk1(Y15F)-VFP on T14 was responsible for partially inhibiting Cdk1 activity in vivo, consistent with the in vitro H1 kinase measurements shown in Fig. 1D.
Cdk1(Y15F) and Cdk1(T14A,Y15F) Expression Causes Mitotic Index and Apoptosis Defects

Drosophila wing discs maintain tissue homeostasis by compensatory mechanisms controlling the balance of cell proliferation and apoptosis (Reis and Edgar, 2004; Davidson and Duronio, 2012). We examined wing discs for cell proliferation and ectopic apoptosis defects using en-Gal4 to specifically express transgenes in the posterior compartment of third instar wing discs that were then probed with antibodies against activated cleaved-Caspase3, to label apoptotic cells (Jackman et al., 2002) or phosphorylated Histone-H3 on S10 (PH3), to mark mitotic cells (Hendzel et al., 1997; Brodsky et al., 2000). Few apoptotic cells were observed in either compartment of discs expressing Cdk1WT-VFP or Cdk1(T14A)-VFP (Figure 4A and 4E, B and F, N = 10). In contrast, many apoptotic cells were observed specifically in the posterior regions of discs expressing Cdk1(Y15F)-VFP (Figure 4C and 4G, N = 10) or Cdk1(T14A,Y15F)-VFP (Figure 4D and 4H, N = 10). Wing discs expressing Cdk1(T14A,Y15F)-VFP always appeared smaller than normal and abnormally shaped relative to the other genotypes, as shown (Figure 4D and 4H). Expression of either Cdk1 transgene that could not be phosphorylated on the Y15 residue therefore promoted ectopic apoptosis.

Examination of PH3-labeled cells in wing discs expressing Cdk1WT-VFP (Figure 4I and 4M, N= 15) or Cdk1(T14A)-VFP (Figure 4J and 4N, N= 15) showed similar numbers of mitotic cells in the anterior and posterior (VFP-positive) compartments. In contrast, there were markedly more PH3-labeled cells in the posterior compartment of discs expressing Cdk1(Y15F)-VFP (Fig. 4K and 4O, N = 15) or Cdk1(T14A,Y15F)-VFP (Figure 4L and 4P, N= 9). To quantify this phenotype we obtained a (P/A) mitotic index ratio using de-convolved images to count PH3-labeled cells in the posterior (VFP-positive) and anterior (PH3-negative) compartments of these wing discs (N = 7, per genotype). The box plot data shown in Supplementary Figure S2 confirmed that the P/A ratio of wing discs expressing Cdk1(Y15F)-VFP and Cdk1(T14A,Y15F)-VFP was markedly higher than with the other two transgenes. Collectively, these results showed that Cdk1 transgenes that could not be phosphorylated
on Y15 had similar effects on wing disc mitotic index and induction of apoptosis, even though expression of these transgenes had quite different ultimate effects on adult morphological development.

Expression of Cdk1(Y15F) alone can bypass developmentally regulated G2 phase arrest

Cdk1 activation by Cdc25\(^{stg}\)-catalyzed removal of dual inhibitory phosphorylation is an essential mechanism used for coordinating mitosis with key developmental processes in *Drosophila* (Edgar and O'Farrell, 1990; Fichelson and Gho, 2004). Since our data suggested that Y15 inhibitory phosphorylation of Cdk1 was particularly important for this regulatory mechanism we examined the zone of non-proliferating cells (ZNC) in late third instar wing discs, where cells of the presumptive dorsal-ventral wing margin undergo developmentally programmed cell cycle arrest (O'Brochta and Bryant, 1985). The ZNC is a tripartite structure consisting of a central row of G1-arrested cells flanked by G2-arrested cells (Johnston and Edgar, 1998). We used antibody labeling to examine the wing-margin patterning proteins Cut or Wingless (Wg) when Cdk1 variants were expressed using genetic crosses with *sd-Gal4* (Jack et al., 1991; Williams et al., 1994). Expression of Cdk1WT-VFP resulted in discs with normal Cut expression at the presumptive wing margin (Figure 5A and A’, N = 10), as did expression of Cdk1(T14A)-VFP (Figure 5B and 5B’, N=10) or Cdk1(Y15F)-VFP (Figure 5C and 5C’, N= 10). Expression of Cdk1(T14A,Y15F)-VFP, however, resulted in reduced Cut labeling (Fig. 5D and 5D’, N= 10) of discs that were smaller than normal and abnormally shaped, as noted earlier with *en-Gal4* (Figure 4). We observed similar results from analyzing Wingless, which was only disrupted by Cdk1(T14A,Y15F)-VFP expression (Figure S3).

To specifically assay developmental G2 phase arrest we used genetic crosses with a *neu\(^{p72}\)* enhancer trap Gal4 insertion to express each transgene specifically in sensory organ precursor (SOP) cells of the ZNC (Fichelson and Gho, 2004). VFP-positive SOP cells expressing either Cdk1(WT)-VFP (Fig. 5E and 5E’, N = 8) or Cdk1(T14A)-VFP (Figure 5F and 5F’, N = 8) were not labeled by the PH3
antibodies that detect mitotic cells, consistent with these cells being arrested in G2 phase. In contrast, many of the SOP cells expressing Cdk1(Y15F)-VFP (Figure 5G and 5G’, N = 8) or Cdk1(T14A,Y15F)-VFP (Figure 5H and 5H’, N = 7) were PH3-positive, indicating that these cells had already initiated mitosis. These results indicated that Cdk1(Y15F)-VFP and Cdk1(T14A,Y15F)-VFP were equally effective at bypassing the G2/M developmental checkpoint mechanism in SOP cells, even though only Cdk1(T14A,Y15F)-VFP expression caused adult wing defects. Although other factors may also contribute to differences between these mutants, the simplest interpretation is that Y15 phosphorylation is specifically required for the developmental G2 phase arrest checkpoint mechanism and partial inhibition of Cdk1 by T14 phosphorylation prevented more serious defects.

Expression of Cdk1(Y15F) Can Bypass DNA Damage Checkpoint Responses

Exposure to ionizing radiation causes DNA damage, eliciting interphase checkpoint responses that promote Cdk1 inhibitory phosphorylation to block cell cycle progression and allow time for DNA repair before mitosis. In *S. pombe*, phosphorylation of Cdk1 on Y15 is both necessary and sufficient for the DNA damage checkpoint (O'Connell et al., 1997; Rhind et al., 1997). In human cells, T14 and Y15 residues of Cdk1 are both phosphorylated in response to DNA damage (Blasina et al., 1997) and in *Drosophila*, Myt1 is required for the DNA damage checkpoint response in larval wing discs (Jin et al., 2008). Whether this involves Myt1 dual phosphorylation of Cdk1 or a specific role for T14 or Y15 inhibitory phosphorylation is not known, however. To investigate this issue we expressed transgenic Cdk1 in the posterior compartment of wing discs using *en-Gal4* to examine DNA damage checkpoint responses caused by exposure to 40Gy ionizing radiation (Brodsky et al., 2000) One hour after exposure, wing discs were dissected, fixed and immunolabeled with PH3 antibodies. Mitotic (PH3-positive) cells were not observed in either anterior or posterior (VFP-positive) compartments of irradiated discs expressing Cdk1WT-VFP (Figure 6A and A’, N = 10) or Cdk1(T14A)-VFP (Figure 6B and B’, N = 10), demonstrating a functional checkpoint response. In contrast, many PH3-positive cells
were observed specifically in the posterior compartment of discs from irradiated Cdk1(Y15F)-VFP (Figure 6C and C’, N = 10) and Cdk1(T14A,Y15F)-VFP larvae (Figure 6D and D’, N = 10). The simplest interpretation of these results is that phosphorylation of Cdk1 on Y15 is specifically required for pre-mitotic checkpoint responses to DNA damage in late third instar wing discs, although other factors may also contribute.

Cdk1(T14AY15F) Causes Chromosome Defects and Mitotic Delays, But Not Cdk1(Y15F)

The severe developmental outcomes associated with expression of Cdk1 (T14AY15F) could reflect defects in mitotic progression, as reported recently for HeLa cells (Santos et al., 2012). To examine this possibility we analyzed mitotic cells using *prospero-Gal4* to express the Cdk1 transgenes in type I larval brain neuroblasts. These are large neural stem cells with well-characterized metaphase checkpoint mechanisms (Basto et al., 2000; Donaldson et al., 2001; Royou et al., 2005). We first treated squashed brain preparations with colchicine, a microtubule poison used to arrest cells in mitosis, then stained for DNA to quantify the mitotic index (Figure 7A). In larval brains expressing Cdk1WT-VFP or Cdk1(T14A)-VFP we observed 10-20 mitotic cells per field. Cdk1(Y15F)-VFP expression resulted in a much higher mitotic index, however, ranging from 50-80 mitotic cells per field. In contrast, the mitotic index of brains expressing Cdk1(T14A,Y15F)-VFP was much lower, ranging from 5-10 mitotic cells per field.

Cells use conserved metaphase checkpoint mechanisms for monitoring chromosome integrity and spindle attachment prior to anaphase that can be assayed by karyotype analysis of colchicine-treated neuroblasts (Hardwick et al., 1996). This results in cells arresting in a metaphase-like state, with paired sister chromatids (Gonzalez et al., 1988; Gatti and Baker, 1989). Colchicine-treated neuroblasts expressing Cdk1(WT)-VFP or Cdk1(T14A)-VFP (Figure 7B and 7C) had paired sister chromatids in 99.5 % of the karyotypes, demonstrating a functional metaphase checkpoint response. Most neuroblasts expressing Cdk1(Y15F)-VFP (89.5%) also had karyotypes with paired sister chromatids.
(Figure 7D), however in some cells the sister chromatids appeared to have lost cohesion (9.5%, see Figure 7E).

Strikingly, almost half of colchicine-treated neuroblasts expressing Cdk1(T14A,Y15F)-VFP exhibited gross chromosome aberrations, including polyploidy (4%, Figure 7F), abnormally thin, entangled chromosomes (5%, Figure 7G) and chromosome breaks (35%, Figure 7H). Since chromosomal aberrations are associated with genome instability and apoptosis, these defects could underlie the severe consequences of non-inhibitable Cdk1 expression that were not observed with Cdk1(Y15F)-VFP.

We also analyzed mitosis in live neuroblasts to further investigate the mitotic index differences described earlier. In particular, we wondered if differences in mitotic index between expression of Cdk1(Y15F)-VFP and Cdk1(T14A,Y15F)-VFP (Figure 7A) might be due to effects on mitotic progression causing an accumulation or deficit of mitotic cells, respectively. To test this idea we co-expressed each of the Cdk1-VFP variants with Tubulin-RFP by genetic crosses with prospero-Gal4 and used both fluorescent reporters for live imaging of mitosis, defined as the interval between appearance of centrosomes at opposite poles to the completion of cytokinesis (movement of VFP into the nucleus can also be observed at prophase).

Mitosis took approximately 12.6 min ± 1.2 min for Cdk1(WT)-VFP-expressing neuroblasts (N = 5, Figure 8A and 8E and Movie S1). Neuroblasts expressing Cdk1(T14A)-VFP- or Cdk1(Y15F)-VFP showed similar results, with mitosis lasting 13.5 min ± 1.3 min (N = 5, Figure 8B and 8E; Movie S2) and 13.0 min ± 0.7 min, respectively (N = 5, Figure 8C and 8E; Movie S3). These results showed that the higher mitotic index associated with Cdk1(Y15F)-VFP expression was not caused by delays in M-phase. Instead, these cells may undergo a faster cell cycle due to premature mitosis resulting from bypass of developmentally regulated G2 phase arrest, as observed with SOP cells of the presumptive wing margin (Figure 5).
Mitosis was much longer in Cdk1(T14A,Y15F)-VFP-expressing neuroblasts than with any of the other transgenes and these cells were difficult to find (28.5min ± 2.3 min, N= 3; Figure 8D and 8E), see Supplementary Movie S4. These mitotic delays can be reconciled with the lower mitotic index that was also associated with Cdk1(T14A,Y15F)-VFP expression if there were simply fewer neuroblasts in these larval brains, perhaps because ectopic apoptosis had already removed many of the cells from this lineage earlier in development. Collectively then, the mitotic defects, chromosome aberrations and severe developmental defects caused by Cdk1(T14A,Y15F)-VFP expression (but not Cdk1(Y15F)-VFP) provide strong evidence that inhibitory phosphorylation of T14 has a significant role in regulating Cdk1 activity in vivo.

DISCUSSION

Pre-mitotic checkpoint mechanisms coordinate mitosis with fundamental processes of metazoan development by controlling the activity of the master mitotic regulator Cdk1 via inhibitory phosphorylation. In this study we analyzed how differences in T14 and Y15 inhibitory phosphorylation of Cdk1 affected these pre-mitotic checkpoint mechanisms by expressing transgenic Cdk1 phospho-acceptor mutants during Drosophila development. The Cdk1(Y15F) and Cdk1(T14AY15F) mutants could not be phosphorylated on Y15 and both were equally effective at dominantly bypassing both developmental and radiation-induced G2/M checkpoint arrest in wing discs. These results indicated that Y15 phosphorylation of Cdk1 was essential for G2/M checkpoint arrest, although other properties could also conceivably be affected in these mutants. Our interpretation is also consistent with genetic and biochemical data showing that Myt1 is the predominant Y15-directed Cdk1 kinase controlling pre-mitotic checkpoint responses in wing discs, even though Wee1 and Myt1 both phosphorylate Cdk1 on Y15 and are functionally redundant for viability during post-embryonic development (Jin et al., 2008).

Although expression of Cdk1(Y15F) or Cdk1(T14A,Y15F) appeared equally effective at
bypassing G2/M checkpoint arrest, only Cdk1(T14A,Y15F) caused profound developmental abnormalities associated with chromosome aberrations and mitotic defects in larval neuroblasts. Although these mutants may differ in other respects besides their phosphorylation states, the simplest interpretation is that partial inhibition of Cdk1 activity by Myt1-mediated T14 phosphorylation serves a checkpoint-independent function that promotes cell survival. Studies of cultured mammalian cells suggest several possible mechanisms. Expression of non-inhibitable Cdk1 causes mis-regulation of the APC/C with defects in mitotic exit (Chow et al., 2011) and G1 phase (Ma et al., 2012). Myt1 has been implicated in checkpoint mechanisms used for coordinating Golgi and endoplasmic reticulum structural dynamics with mitosis (Nakajima et al., 2008; Villeneuve et al., 2013). The expression of Cdk1(T14A,Y15F) activity during S phase also causes DNA replication defects leading to genome instability and mitotic catastrophe (Heald et al., 1993). The idea that partial inhibition of Cdk1 by T14 phosphorylation might play a role during S phase is particularly attractive, because Cdk activity levels required to trigger S phase are lower than those required for initiating mitosis (Coudreuse and Nurse, 2010; Thomson et al., 2010). Further studies are clearly needed to define exactly how T14 phosphorylation of Cdk1 prevents chromosome instability and mitotic defects.

The ubiquitous expression of Cdk1(T14A)-VFP rescued cdc2ts mutant lethality, demonstrating that regulation of Cdk1 by Y15 phosphorylation alone could be sufficient for normal development. Intriguingly, we observed effects on the steady state levels of T161 activating phosphorylation associated with the Cdk1(T14A)-VFP mutant (Fig 1C) that were consistent with a proposed role for T14 phosphorylation in promoting or stabilizing T161 activating phosphorylation of Cdk1/Cyclin complexes during G2 phase (Coulonval et al., 2011). Indeed, such a role for T14 phosphorylation of Cdk1 could explain requirements for Myt1 activity in cells that undergo prolonged developmentally regulated G2 phase arrest during Drosophila male meiosis, or oocyte maturation in other systems (Karaiskou et al., 2004; Jin et al., 2005; Burrows et al., 2006). Thus, dual phosphorylation of Cdk1 by
Myt1 kinases may have evolved as a dynamic mechanism for facilitating developmentally regulated G2 phase checkpoint arrest, without compromising cell’s ability to initiate mitosis without delay when triggered by Cdc25 de-phosphorylation.

ACKNOWLEDGEMENTS

We gratefully acknowledge advice and encouragement from Ellen Homola, antibodies from the Developmental Studies Hybridoma Bank (DSHB, U. Iowa) and technical assistance from the Molecular Biology and Microscopy Units in the Biological Sciences Department, University of Alberta. We also appreciate helpful comments on the manuscript from other Campbell lab members, Zhigang Jin (Cross Cancer Institute), Michel Gho and Agnes Audibert (UPMC, Paris). Funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) to S.D.C, the Canadian Institutes of Health Research (CIHR) to D.T.S., and the Deutsche Forschungsgemeinschaft to F.S. is also gratefully acknowledged.

FIGURE LEGENDS

Figure 1. Biochemical analysis of transgenic Cdk1 fusion proteins expressed in wing discs with en-Gal. In panels A and C, each sample was extracted from ten late third instar wing discs. (A) Western blot of wing disc extracts probed with PSTAIRE antibodies (conserved Cdk1 epitope) detected both endogenous (34 kDa) and transgenic fusion (61 kDa) proteins, except in the non-transgenic yw control. Adjusting for exposure times, we estimated that levels of the transgenic Cdk1 proteins were ~4-fold
lower than endogenous Cdk1 in this experiment. (B) Western blot of transgenic Cdk1 that was immuno-precipitated from wing disc lysates (30-35 discs per sample) using rabbit anti-GFP. The blot was sequentially probed with mouse anti-GFP, *Drosophila* Cyclin B and Cyclin A. Note that Cyclin A runs as a doublet (Lehner and O'Farrell, 1990). (C) Western blot of wing disc extracts, with the top section (proteins above 48kDa) probed sequentially with phospho-specific antibodies against the pT14-Cdk1, GFP, pY15-Cdk1, pT161-Cdk1 phoso-isoforms, stripping between each re-probing. The lower part of the blot containing 34kDa endogenous Cdk1 was probed with PSTAIRE antibodies as a loading control. (D) Compilation of data from three independent experiments for each genotype that measured Histone H1 kinase activity of Cdk1 fusion proteins immuno-precipitated from wing disc extracts with anti-GFP antibodies (180 discs for each sample). We determined kinase activity for each Cdk1 variant by normalizing the H1 kinase activity per unit of total Cdk1 protein, estimated by probing western blots of aliquots of the immuno-precipitates with anti-PSTAIRE for each experiment. Relative percentage kinase activity was plotted with respect to Cdk1(WT) activity, which was set as 100%. Error bars show standard deviation calculated from data from three experimental replicates for each genotype.

Figure 2. Temperature sensitive *cdc2 (cdk1)* mutants are rescued by ubiquitous expression of Cdk1WT and Cdk1(T14A), but not by Cdk1(Y15F) or Cdk1(T14AY15F). Panels A and A’ show the dorsal and side views of wild-type control flies, respectively. Panels B and B’ show flies ubiquitously expressing the Cdk1WT-VFP transgene with *tubulin-Gal4* in temperature sensitive *cdc2* mutant background (*cdc2*^{B47}/cdc2^{E1-E24};UAS-Cdk1WT-VFP/tubulin-Gal4). Panels C and C’ show adult flies ubiquitously expressing the Cdk1(T14A)-VFP transgene with *tubulin-Gal4* (*cdc2*^{B47}/cdc2^{E1-E24};UAS-Cdk1(T14A)-VFP/Gal4). Panel D summarizes progeny data tabulated in Figure S1, Panel E, showing the percentage of rescued flies relative to the expected maximum percentage rescue.
Figure 3. Phenotypic effects of expression of Cdk1 transgenes during adult wing and eye development are enhanced by co-expression of Cyclin B using sd-Gal4 and ey-Gal4 respectively, with ~500 adults examined for each genotype. Panels A to C show progeny expressing Cdk1(WT), Cdk1(T14A) or Cdk1(Y15F) in an otherwise wild-type background that have no defects in adult wing morphology. Panel D shows that Cdk1(T14A,Y15F) expression caused wing margin defects. Panels E to G, show scanning electron micrographs of adult eyes from progeny expressing Cdk1(WT), Cdk1(T14A) or Cdk1(Y15F) that did not affect adult eye development. Panel H shows that Cdk1(T14A,Y15F) expression severely affected adult eye and head structures and caused pharate adult lethality (N=200). Panels I to K show that expression of Cyclin B alone, co-expression of Cyclin B with Cdk1(WT), or co-expression of Cyclin B with Cdk1(T14A) had no detectable effect on adult wings. Panel L shows that co-expression of Cdk1(Y15F) with Cyclin B caused extensive loss of adult wing margin. Panel M shows that co-expression of Cdk1(T14A,Y15F) with Cyclin B resulted in complete loss of the adult wing.

Figure 4. Expression of Cdk1(Y15F) and Cdk1(T14A,Y15F) caused increased apoptosis and mitotic index in late third instar larval wing discs. VFP-tagged Cdk1 constructs (Green label, in E-H and M-P) were expressed with en-Gal4 in the posterior compartment and the discs were labeled with antibodies against activated Caspase-3 (Red in E, F, G and H) as an apoptosis marker or antibodies against phosphorylated (S10) histone H3 (PH3; red in M, N, O and P) as a mitotic marker. The VFP-negative anterior compartment serves as an internal control. Panels A, B, E and F show that few apoptotic cells were observed in discs expressing Cdk1(WT) or Cdk1(T14A), (N =10, each genotype). Panels C, D, G and H show that expression of Cdk1(Y15F) or Cdk1(T14A,Y15F) resulted in elevated numbers of apoptotic cells in the posterior region of wing discs (N= 10). Panels I, J, M and N showed no noticeable differences in PH3-labeled cells from expression of Cdk1(WT) or Cdk1(T14A) in wing discs (N= 15, each genotype). Panels K, L, O and P show that more PH3-labeled cells were observed in posterior
regions of Cdk1(Y15F) and Cdk1(T14A,Y15F)-expressing discs (N= 9, each genotype). Wing discs expressing Cdk1(T14A,Y15F) were always smaller and morphologically abnormal relative to the other genotypes, as shown. The scale bar in panel A represents 50 µm.

Figure 5. Expression of Cdk1 transgenes during wing development with *sd-Gal4* differentially affects wing margin pattern and developmental regulation of G2 phase arrest. At least ten labeled discs were examined for each genotype. Panels A, B and C shows wing discs from third instar larvae labeled with anti-Cut antibodies (red). Cut expression at the presumptive wing margin was unaffected by expression of Cdk1(WT), Cdk1(T14A) or Cdk1(Y15F), respectively. Panel D shows that expression of Cdk1(T14A,Y15F) disrupted Cut expression. Panels A’ to D’ show that VFP-tagged transgenes were expressed throughout the wing pouch of each disc. Panels E to H show shows wing discs from third instar larvae expressing transgenes driven by *neur*¹⁻²-Gal4 in sensory organ precursor cells (SOP; a subset of G2 phase-arrested ZNC cells) that were labeled with antibodies against phosphorylated (S10) histone H3 (PH3; red). Panels E and F show that SOP cells expressing Cdk1(WT)-VFP and Cdk1(T14A) were PH3-negative. Panels G and H show that SOP cells expressing Cdk1(Y15F)-VFP and Cdk1(T14A,Y15F) were a mixture of smaller, mitotic (PH3-positive) and non-mitotic cells. Panels E’ to H’ show that the VFP-tagged transgenes were expressed in SOP cells.

Figure 6. Expression of Cdk1(Y15F)-VFP and Cdk1(T14A,Y15F) in wing discs causes dominant bypass of DNA damage-induced G2/M checkpoint responses. VFP-tagged Cdk1 transgenes (green) were expressed with *en-Gal4* in the posterior compartment of each wing discs. Wing discs were dissected from late third instar larvae 60 min after exposure to 40 Gy of ionizing radiation and labeled with antibodies against phosphorylated (S10) histone H3 (PH3; White in A-D, red in A’-D’) to mark mitotic cells. At least 10 labeled discs were examined for each genotype. Panels A, A’ and B, B’ show
no PH3-positive cells in either compartment of wing discs expressing Cdk1(WT) or Cdk1(T14A), indicating a functional pre-mitotic checkpoint response. Panels C, C’ and D, D’ show wing discs expressing Cdk1(Y15F) or Cdk1(T14A,Y15F), where PH3 labeling in the posterior compartment indicated a G2/M checkpoint defect. The scale bar in panel A represents 50 µm.

Figure 7. Expression of Cdk1(Y15F)-VFP and Cdk1(T14A,Y15F) with *prospero-Gal4* differentially affects mitotic index measurements in Type 1 larval neuroblasts, however only Cdk1(T14A,Y15F) produced gross chromosome defects. Metaphase karyotypes of colchicine-treated brain squashes were labeled with Hoechst 33258 to identify mitotic chromosomes. At least 800 interpretable karyotypes were examined for each genotype. (A) Bar chart showing mitotic index associated with each Cdk1 transgene. Panels B and C show that neuroblasts expressing Cdk1(WT) or Cdk1(T14A) have chromosomes arrested in metaphase with cohered sister chromatids. (D) Approximately 90% of Cdk1(Y15F)-expressing mitotic neuroblasts also arrest in metaphase with cohered sister chromatids, however defects in sister chromatid cohesion were evident in 9.5% of the karyotypes (E, N=900). Approximately 45% of Cdk1(T14A,Y15F)-expressing neuroblasts exhibited some form of chromosomal aberration (N=850), including polyploidy (G), thin, poorly condensed chromosomes (H) or chromosome breaks, arrow (I).

Figure 8. Live imaging of mitosis in larval neuroblasts driven by *prospero-Gal4* of Cdk1-VFP (green) and Tubulin-RFP (red) shows that only Cdk1(T14A,Y15F) expression causes mitotic timing defects. Each set of panels represent still images taken at four time-points from each of the movies in Supplementary Movies S1 to S4. The top panels show merged images of the respective Cdk1-VFP (green) and Tubulin-RFP (red) fluorescent reporters, bottom panels only show Tubulin-RFP. In panels A-D, the zero time point marks the appearance of centrosomes at opposite poles (t=0), the second panel shows midpoint of bipolar spindle formation and the third and fourth panels represent the beginning
and end of cytokinesis, respectively. (A) Neuroblasts expressing Cdk1WT-VFP, where average time of mitosis was 12.56 min ± 1.2 min (N=5; Movie S1). (B) Neuroblasts expressing Cdk1(T14A), where average time of mitosis was 13.52 min ± 1.26 min (N=5; Movie S2). (C) Neuroblasts expressing Cdk1(Y15F), where average time of mitosis was 13.0 min ± 0.7 min (N=5; Movie S3). (D) Neuroblasts expressing Cdk1(T14A,Y15F), where average time of mitosis was 28.54 min ± 2.25 min, (N=3; Movie S4). (E) Quantification of the mitotic timing data for neuroblasts expressing Cdk1WT-VFP (N= 5), Cdk1(T14A)-VFP (N= 5), Cdk1(Y15F)-VFP (N= 5) and Cdk1(T14A,Y15F)-VFP (N= 3). The bar graph depicts the mean duration of mitosis ± SD for each genotype.

Supplementary Movie Legends:

Movie S1 Live analysis of mitotic timing in neuroblasts expressing Cdk1(WT)-VFP (green) and Tubulin-RFP (red). This movie is representative of five cells that were analyzed showing that the neuroblasts spent approximately 12.6 min ± 1.2 min in mitosis.

Movie S2: Live analysis of mitotic timing in neuroblasts expressing Cdk1(T14A)-VFP (green) and Tubulin-RFP (green). The movie is representative of five cells that were analyzed which showed that these neuroblasts spent approximately 13.5 min ± 1.3 min in mitosis.

Movie S3: Live analysis of mitotic timing in neuroblasts expressing Cdk1(Y15F)-VFP (green) and Tubulin-RFP (red). The movie is representative of five cells that were analyzed which showed that these neuroblasts spent approximately 13.0 min ± 0.7 min in mitosis.

Movie S4: Live analysis of mitotic timing in neuroblasts expressing Cdk1(T14A,Y15F)-VFP and Tubulin-RFP. The movie is representative of three cells analyzed showing that these neuroblasts spent
28.5min ± 2.3 min in mitosis, with apparent delays in spindle assembly.
REFERENCES

30

KREK, W., AND E. NIGG, A., 1991b Mutations of p34cdc2 phosphorylation sites induce premature mitotic events in HeLa cells: evidence for a double block to p34cdc2 kinase activation in vertebrates. EMBO J 10: 3331-3341.

OKAMOTO, K., N. NAKAJO, AND N. SAGATA, 2002 The existence of two distinct Wee1 isoforms in Xenopus: implications for the developmental regulation of the cell cycle. EMBO J 21: 2472-2484.

FIGURE 1
<table>
<thead>
<tr>
<th>Tubulin-Gal4</th>
<th>cdc2^{2847} UAS-Cdk1WT-VFP</th>
<th>cdc2^{E1-E244} Tubulin-Gal4</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM6, Tb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 2

![Image of fly phenotypes and graph showing rescued percentage relative to expected with p-values of 0.78 and 0.8]
FIGURE 3

Comparison of wing and eye phenotypes in flies expressing different Cdk1 constructs.

- **Cdk1WT**
 - (A) Wings
 - (E) Eyes

- **Cdk1A**
 - (B) Wings
 - (F) Eyes

- **Cdk1F**
 - (C) Wings
 - (G) Eyes

- **Cdk1AF**
 - (D) Wings
 - (H) Eyes

- **Sd-Gal4>CycB**
 - (I) Wings
 - (J) Eyes

- **Sd-Gal4>CycB;Cdk1WT**
 - (K) Wings

- **Sd-Gal4>CycB;Cdk1F**
 - (L) Wings

- **Sd-Gal4>CycB;Cdk1AF**
 - (M) Wings
FIGURE 4
FIGURE 5
FIGURE 8