














HDAC
Domain

A1009S

HDAC4

Signal
Peptide

Membrane

Notch
NICDNECD

S29P

Transcriptional
Machinery

Transcriptional
Repression
Machinery

0 0.5 1.0 1.5 2.0
× 107

0

1

2

3

4

5

−
lo

g[
1
−

P
r(
ξ)

]

0 0.5 1.0 1.5 2.0
× 107

− 4

− 2

0

2

4

6

8

S f

Chromosome X, Sf

NICD HDAC4 x

Chromosome X, XP-SFselect

Notch target gene Notch target gene

Figure 8: Signatures of selective sweeps affecting Notch pathway in hypoxia tolerant

flies. XP-SFselect and Sf on fly chromosome X. The regions highlighted in grey were found

significant by both Sf and XP-SFselect. The region highlighted in yellow is an artifactual region

deemed significant under Sf , but not under XP-SFselect. The region highlighted in green contains

the Notch gene, which activates the Notch signaling pathway. The mutation S29P may enhance the

activity of Notch by improving the stability of the signal peptide domain. The region highlighted

in red contains the HDAC4 gene, including the mutation A1009S near the active site of the protein,

which may reduce its ability to impact Notch gene targets. Both of these mutations are consistent

with hypoxia-tolerant flies genetically activating the Notch pathway as a mechanism of adaptation.

Models of human demography. In order to assess the ability of our framework to detect

selection under complex demographic scenarios, as in many extant human populations, we

simulated data under a more involved model. A strength of our framework is that if the

demographic history is well characterized, a specific model of the SFS that is fine tuned

to that history can be learned. Focusing on the recent demographic histories of Northern

Europeans (CEU) and Western Africans (YRI), we note that multiple models can potentially

explain the observed patterns of polymorphism (Schaffner et al. 2005; Voight et al. 2005;

Fagundes et al. 2007), and that a clear consensus has not yet been reached.

We use a model described recently by Gravel et al. (2011), with two instantaneous bottle-
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Figure 9: The demographic model used to simulate the CEU and YRI populations.

The model is shown with time flowing downward. Model parameters are as described by Gravel

et al. (2011), including a growth rate of 0.48% per generation in the European expansion period.

We simulated an allele under positive selection (s = 0.02, 0.005) introduced 20, 25, and 50 kya

(assuming 25 years per generation).

necks followed by a period of exponential growth in the European population (Figure 9). In

this demographic scenario, we simulated a beneficial (s = 0.02, 0.005) allele in the European

population, introduced at various time points (20, 25, and 50 thousand years ago (kya)).

In our simulations, we assume neutral evolution prior to the populations separating. As a

result, we do not expect cross-population tests to have a distinct advantage, as their main

strength is to decrease the effect of shared selection in the ancestral population.

We evaluated the power of single- and cross-population SVMs trained on the simulated

data to detect selection. Table 2 shows power of the SVMs at various time points, compared

with other tests. As in constant-sized populations, we observe that Fay & Wu’s H is less

powerful except in the late stages (e.g., 50 kya for s=0.02), and that among the cross-

population tests, XP-CLR is generally more powerful than XP-EHH. Additionally, we note

that both the single- and cross-population SVMs show significantly higher power than all

other tests. Finally, as postulated, we did not observe a consistent advantage for cross-

population over single-population tests.

Application to human populations. As no clear consensus exists on the demographic

history of any human population, we applied our general SVM test (XP-SFselect) to data

from two human populations sequenced by the 1000 Genomes Project (Abecasis et al. 2010):

individuals of Northern European descent from Utah (CEU, 88 individuals) and Yoruban
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s kya D H XP-CLR XP-EHH SFselect-s XP-SFselect-s

0.02

20 0.64 0.05 0.58 0.22 0.85 0.80

25 0.82 0.22 0.77 0.28 0.89 0.88

50 0.97 0.95 0.99 0.40 0.99 0.99

0.005

20 0.04 0.04 0.06 0.06 0.29 0.40

25 0.05 0.03 0.04 0.05 0.23 0.48

50 0.45 0.11 0.41 0.25 0.71 0.66

Table 2: Power (0.05 FPR) of different tests on data simulated under a demographic

model. The beneficial allele was simulated in the “Northern European” population (CEU), while

the “Western African” population (YRI) evolved neutrally, and was used as control for the cross-

population tests.

individuals from Nigeria (YRI, 85 individuals). These populations have been considered in

several studies of selection (Frazer et al. 2007; Sabeti et al. 2007; Pickrell et al. 2009; Chen

et al. 2010), thus we expected our results to overlap with previously reported regions. Using

a 0.2% genomic control FDR in overlapping windows, and collapsing significant windows

within 100 kbp of each other, we identified 339 distinct regions, of which 217 overlap known

genes. As expected, several of the regions we find have been previously reported. We do

however find signal in regions that have not so far been reported, and may be of phenotypic

interest. In Table S2, we list 40 regions showing the strongest signal of selective sweep using

XP-SFselect. We used SnpEff (Cingolani et al. 2012) to annotate the functional impact

of mutations, and extracted all high impact (splice or nonsense) mutations as well as all

nonsynonymous mutations deemed damaging by SIFT (Kumar et al. 2009). In Table S3 we

list the subset of these SNPs that fall within significant regions, and show a high frequency

differential (≥ 30%) between the two populations (we find 11 such SNPs genome wide).

Known regions identified by XP-SFselect. We compared the significant regions found by

XP-SFselect to the top regions identified in four previous studies of the same populations:

Chen et al. (2010), Pickrell et al. (2009), Frazer et al. (2007), and Sabeti et al. (2007). Of

the 339 regions, 36 were reported in these studies (8 of top 40). This partial overlap likely

stems from the considerable difference in density between the genotyping data used in the

previous studies, and that of whole genome sequencing. When considering the top 1% of our

results, however, the overlap becomes substantial (see Figure 10). Specifically, the overlap

was 35.3% for Frazer et al. (2007), 47.8% for Pickrell et al. (2009), 57.9% for Sabeti et al.

(2007), and 67.5% for Chen et al. (2010).

Of the previously reported regions, particularly noteworthy are the genomic regions of

KITLG (12q21.32) and SLC24A5 (15q21.1), found at 0.002% and 0.1% of the genome wide
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Figure 10: Cumulative rank distribution of the top regions reported by previous stud-

ies, in the results of XP-SFselect. Rank distributions of previous studies shown in red, and

those of 1000 identically sized sets of regions (per study) sampled at random from the genome,

shown in blue. We see a significant enrichment of the regions from previous studies among the

top 0.2% (dark-grey) and 1% (light-grey) of XP-SFselect results. The P-values shown are for a

Mann-Whitney U test with null hypothesis of equality between the rank distribution of a given

study, and that of the corresponding random samples. The studies compared to were Chen et al.

(2010), Pickrell et al. (2009), Sabeti et al. (2007), and Frazer et al. (2007).

distribution, respectively. Variation in these genes has been associated with skin pigmenta-

tion, and was reported to show evidence of selection (Pickrell et al. 2009). Additionally, we

found the region containing the lactase gene (LCT) significant at 0.16% genome wide. Sev-

eral studies have reported this gene as showing evidence of selection in Northern European

populations (Bersaglieri et al. 2004; Chen et al. 2010).

Novel regions identified by XP-SFselect. We identified a region (1q44) significant at 0.01%

genome wide, containing a cluster of olfactory receptor (OR) genes: OR2T8, OR2L13,

OR2L8, OR2AK2, and OR2L1P. Notably, the subregion containing OR2L8, OR2L13, and

OR2AK2 has particularly low diversity in Northern Europeans, with a dense block of 97
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nearly fixed SNPs (mean frequency = 0.95) in comparison to the same block in Western

Africans (mean frequency = 0.24). This block also includes 6 nonsynonymous SNPs, of

which two were deemed damaging (rs10888281 and rs4478844 , see Table S3). Olfactory

receptors make up the largest gene family, containing several hundreds of genes, many of

which are pseudogenes. It has been suggested that a subset of (intact) OR genes are subject

to selection in several human populations (Gilad et al. 2003; Pickrell et al. 2009), but to the

best of our knowledge this OR cluster has not been identified as under selection in Northern

European or Western African populations.

Additionally, the regions containing MSR1 (macrophage scavenger receptor 1) and MASP2

(mannan-binding lectin serine protease 2) were found significant at 0.07% and 0.09% of the

genome wide distribution, respectively. These genes also contained 2 of the 11 variants with

high frequency differential between the populations that were deemed damaging (rs435815

and rs12711521, see Table S3). Interestingly, the ortholog of MSR1 has been shown to confer

a protective effect from malaria infection in a recent study on mice (Rosanas-Urgell et al.

2012). At the same time, it has been shown to have a strong signal of balancing selection in

African primate populations (Tung et al. 2009). Likewise, MASP2 has been associated with

immune response to several diseases, including Chagas disease (Boldt et al. 2011), hepatitis

C (Tulio et al. 2011), and placental malaria (Holmberg et al. 2012). Mutations in this gene

(including rs12711521 (Boldt et al. 2011), see Table S3) have been linked to both the activity

(Thiel et al. 2009) and expression levels (Thiel et al. 2007) of the protein. Such a sharp signal

at these loci may imply a differential disease landscape between the two populations. For

instance, it is conceivable that the YRI population has had to adapt at these loci to deal

effectively with malaria, whereas CEU individuals have not had this stress.

Computational considerations. Our approach is composed of three main steps: data

simulation, model training, and region classification. The first step, simulation, is done with

external tools and is therefore outside the scope of this paper. For training and classification,

there are two options. One may use our pre-trained general model for classifying genomic

regions as selected or neutral. This approach is very fast: a complete cross-population scan

of the human genome (of the CEU and YRI populations) completed in under 2 hours on a

standard desktop with 4GB RAM. We note that this was done on whole genome sequencing

data, with considerably more variants than genotyping.

Another option is to train a model on data simulated under a specific model (e.g. given

a known demographic scenario). The computational space and time required for training

strongly depend on the size of the training data. In our experience, training a specific

model (≈1000 training examples) required under 1 minute, while training the general model

(≈90, 000 training examples) required close to 2 hours.
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It should also be noted that training can potentially be faster. We used the LIBSVM

implementation (Chang and Lin 2011) due to its capability to calculate class probabilities,

which enabled better control of FPR. A strictly linear SVM implementation, such as the one

used by LIBLINEAR (Fan et al. 2008), will yield much better scaling of training times.

DISCUSSION

The site frequency spectrum is heavily skewed under positive selection. Using supervised

learning, we sought to develop a test that would not only yield improved power to detect a

sweep, but also insight into the behavior of the SFS under various sweep types. The scaled

SFS, being uniform in expectation under neutrality, provided a natural choice of features

to learn from. Rather than a fixed weight function that only performs well under certain

regimes, we were able to learn multiple weight functions of the scaled SFS, each providing

optimal performance in its respective regime. When combined, these resulted in a usable

test that improves over existing methods for both simulated and real data.

Although SVMs are standard practice in supervised learning, other classification methods

are also applicable. A popular alternative is logistic regression, with optional (L1 or L2

norm) regularization of the model. While logistic regression has the advantage of providing

a naturally continuous output, it proved less effective for our purposes. The two methods

performed similarly in the single-population test, but we observed a noticeable decrease in

power of the cross-population test (Figures S9, S10). This is likely due to the difference in loss

function. While SVMs use a one-sided hinge-loss, with no penalty for well-classified points

outside the classification margin, logistic regression minimizes the log-loss. Here, correctly

classified points - including those outside the SVM margin - incur a (small) penalty. This

may have a significant impact if the data is dense near the margins, which is likely the case

for the XP-SFS vectors.

Given prior information on a population’s history and mode of selection, one may wish to

apply weights to the regime SVMs, thereby increasing the sensitivity of the test. In our fly

data, we can safely assume a “post-fixation” regime for those loci most (and earliest) affected

by selection, due to the high selective stress and relatively long time (≈ 200 generations).

Thus, we can increase the sensitivity in those regions by weighting down the probabilities

returned from the near-fixation SVM. Of course, this will decrease the sensitivity for regions

in near-fixation regime. When applying no such bias to the regime of selection, our results

indicate that SFselect can identify both types of selection, while previous methods were

limited to specific regimes (Table 1).

Finally, although SFselect has high power in the near-fixation and post-fixation regimes,

there may be room for improvement in early selection. We note that tests based on haplotype

diversity, such as iHH (Sabeti et al. 2002), are considered advantageous in this regime. To

23



increase sensitivity in this regime, one might incorporate frequencies of dominant haplotypes

as additional features. Moreover, although here we considered only the hard sweep model of

positive selection, one might use a similar framework to investigate more complex scenarios,

including the soft sweep model. Our results suggest that applying statistical learning di-

rectly to the scaled SFS can provide valuable insights for detecting non-neutral evolutionary

processes.
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