Synchronous waves of failed soft sweeps in the laboratory: Remarkably rampant clonal interference of alleles at a single locus

Ming-Chun Lee*¹ & Christopher J. Marx*§²

*Department of Organismic and Evolutionary Biology, §Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA, 02138.

¹Present Address: Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong

Running Title: Waves of parallel beneficial mutations during adaptation.

Key words: adaptation, clonal interference, experimental evolution, parallelism, soft sweep

²Corresponding author: Department of Organismic and Evolutionary Biology, Faculty of Arts and Sciences Center for Systems Biology, 3083 Biological Laboratories, 16 Divinity Avenue, Cambridge, MA 02138. Office: 617.496.8103; Fax: 617.495.8848; Email: cmarx@oeb.harvard.edu
Abstract

It has increasingly been recognized that adapting populations of microbes contain not one, but many lineages continually arising and competing at once. This process, termed clonal interference, alters the rate and dynamics of adaptation, and biases winning mutations toward those with the largest selective effect. Here we uncovered a dramatic example of clonal interference between multiple, similar mutations occurring at the same locus within replicate populations of *Methylobacterium extorquens* AM1. Because these mutational events involved the transposition of an insertion sequence into a narrow window of a single gene, they were both readily detectable at low frequencies and could be distinguished due to differences in insertion sites. This allowed us to detect up to 17 beneficial alleles of this type coexisting in a single population. Despite conferring a large selective benefit, the majority of these alleles rose and then fell in frequency due to other lineages emerging that were more fit. By comparing allele frequency dynamics to the trajectories of fitness gains by these populations, we estimated the fitness values of the genotypes that contained these mutations. Collectively across all populations, these alleles arose upon backgrounds with a wide range of fitness values. Within any single population, however, multiple alleles tended to rise and fall synchronously during a single wave of multiple genotypes with nearly identical fitness values. These results suggest that alleles of large benefit arose repeatedly in failed “soft sweeps” during narrow windows of adaptation due to the combined effects of epistasis and clonal interference.
Article Summary

From populations of microbes evolving in the laboratory to human genomic diversity, it is becoming increasingly clear that adaptation can often involve multiple beneficial alleles at the same locus that all rise in frequency together as a “soft sweep”. We report a dramatic example of this complexity during experimental evolution of *Methylobacterium*, whereby up to 17 similar alleles were simultaneously present in a single population. Most remarkably, these allele frequencies rose and fell at different times across populations but synchronously within each population as a single wave of genotypes of nearly equivalently fit genotypes.

Introduction

The classic view of adaptation has been one of periodic selection, whereby the beneficial mutations that escape loss due to drift can rise to fixation unchallenged by additional, independent improvements. Evidence that adaptation consists of a series of discrete events caused by successive selection of individual beneficial mutations came both from the dynamics of rare phage resistant mutants of *Escherichia coli* in chemostats (Novick and Szilard 1950), as well as the apparent set of punctuated jumps in fitness for long-term populations of *E. coli* (Lenski et al. 1991). Under this regime, known also as the “strong-selection, weak-mutation” limit (Gillespie 2004), adaptation is directly constrained by the supply rate of rare beneficial mutations into the population.

More recent theory and data have suggested that, under the conditions tested in the laboratory, beneficial mutations occur and escape drift more quickly than the average time to fixation. Since asexual genomes effectively behave as a single locus, beneficial mutations occurring on different backgrounds cannot rise to fixation together, and thus interfere with each other. This leads to an extreme version of the Hill-Robertson effect (Hill and Robertson 1966) known as “clonal interference” (Gerrish and Lenski 1998). Relative to the baseline scenario of periodic selection, clonal interference slows the rate of fixation of any particular mutation, skews winning mutations toward larger selective effects, and provides time for competing lineages to continue to accrue additional
beneficial mutations before the current sweep is completed (Desai et al. 2007; Desai and Fisher 2007; Rouzine et al. 2008).

Beyond affecting the fate of individual genotypes, at the population level clonal interference changes the dynamics of adaptation relative to the null expectation from periodic selection. First, the rate of adaptation is slower, and exhibits a sub-linear response to increasing population size because an ever-increasing proportion of the beneficial mutations generated will be out-competed (Campos and Wahl 2010; De Visser et al. 1999; Miralles et al. 1999; Wilke 2004). Second, unlike the discrete series of fitness steps expected from a periodic process, clonal interference leads to many overlapping rises (and falls) of genotypes with relatively smaller fitness differentials. This leads to a rate of fitness increase that is substantially smoother than the saltation expected from periodic selection (Desai et al. 2007; Desai and Fisher 2007; Rouzine et al. 2008).

Many experimental evolution studies have uncovered multiple evolved lineages that have risen to detectable levels within a population. Some examples have involved adaptive radiations (Friesen et al. 2004; Rainey and Travisano 1998; Rozensweig et al. 1994; Rozen and Lenski 2000), but as these exhibited stable coexistence due to ecological interactions rather than transient clonal interference they are not discussed further here. There are several examples of two (or more) evolved alleles at the same locus simultaneously vying for fixation (Barrick and Lenski 2009; Couñaga et al. 2006; Gresham et al. 2008; Miller et al. 2011; Notley-McRobb and Ferenci 1999; Wichman et al. 1999, Woods et al. 2011). Although some experiments have persisted long enough to observe a single winning allele at these loci, these represent experimental examples of nascent “soft sweeps”, whereby the ancestral allele was being replaced by multiple alleles simultaneously (Pritchard et al. 2010).

In order to characterize the rate and selective effects of beneficial mutations, as well as the potentially complex dynamics of adaptation due to clonal interference, a number of studies have evolved replicate populations that were started with a mixture of two or three ancestors that only differed by neutral, discernible markers (Rozen et al. 2002; Hegreness et al. 2006; Kao and Sherlock 2008). A more recent elaboration involved constructing an ancestor that would become fluorescently labeled contingent
upon a particular class of beneficial mutations occurring (Lang et al. 2011). These experiments have revealed that many populations had substantial deviations from the simple pattern of single beneficial mutations rising alone to fixation, and some adapting lineages can increase, decrease and then increase again. These more complex dynamics, as long as there are not frequency-dependent, ecological interactions, can be interpreted in light of whether the labeled genotype in question was more (or less) fit than the population average, causing it to rise (or fall) in frequency, accordingly (Lang et al. 2011). During a reversal of frequency, the peak abundance (or trough) necessarily represents the timepoint at which that genotype had fitness equivalent to the population mean (Figure S1). In most cases, however, there has been no method for tracking the frequencies of many beneficial mutations simultaneously.

The work described here examines an evolution experiment with Methylobacterium extorquens AM1 that was not explicitly designed to address clonal interference, but which turned out to be uniquely well suited for this purpose. The model system was the adaptation of an engineered M. extorquens AM1 (hereafter ‘EM’) in which the native pathway for formaldehyde oxidation during growth on methanol was eliminated, and then replaced with a foreign pathway from a distant species (Marx et al. 2003). The foreign pathway was expressed upon a plasmid backbone that can replicate, but not conjugate itself into new lineages (Marx and Lidstrom 2001). These novel enzymes allowed the EM strain to recover the ability to grow on methanol, but it was three-fold slower than wild-type (hereafter ‘WT’) (Chou et al. 2011). The dependence of these specific defects upon the introduced pathway allowed this system to serve as a model to study adaptation subsequent to the introduction of new metabolic capacities (Chou et al. 2011; Marx 2012). One beneficial mutation that was identified decreased expression of the foreign formaldehyde oxidation pathway itself (Chou et al. 2011). This mutation benefited the host by reducing the costs of over-expressing this pathway in the EM ancestor. Across the eight replicate populations (named F1-F8), all lineages incorporated mutations that reduced expression (a 17-24% fitness increase when tested alone), but these were due to a wide spectrum of mutational types (Chou and Marx 2012).

One class of strongly beneficial mutations that repeatedly emerged due to reducing the expression costs of the foreign pathway had unique properties permitting
Six alleles were discovered that involved transposition of an insertion sequence (IS) element (ISMex25) from a small, single-copy, endogenous plasmid (pMETA2) (Vuilleumier et al. 2009) into the replication initiation gene for this plasmid, trfA (Marx and Lidstrom 2001). This event resulted in a single cointegrate consisting of the two plasmids concatenated together (Chou and Marx 2012) (Figure 1A). Because this event interrupted the catalytic domain of TrfA required to initiate plasmid replication (Lin and Helinski 1992), it rendered the cointegrate dependent upon the replication machinery of pMETA2, and thereby decreased both plasmid copy number and expression of the costly foreign pathway. All six cointegrates involved insertions between positions 835 and 1103 of the trfA coding sequence. This provided a unique opportunity to study clonal interference because a single PCR amplification technique might be able to detect and distinguish multiple such alleles.

Here we describe the repeated emergence of the trfA::ISMex25 cointegration alleles and the effects of clonal interference upon their fate in populations. We developed a semi-quantitative PCR amplification method that both detected these events at low frequency and simultaneously distinguished each independent insertion. Although only three of the eight populations went on to fix a trfA::ISMex25 allele, we found a further 95 cointegrates that transiently rose to detectable frequencies, with up to 17 distinct alleles present simultaneously in a population as a nascent, but usually failed, soft sweep. The dynamics of fitness gains corroborated this picture of abundant clonal interference and allowed us to infer that these alleles usually arose on backgrounds already containing other beneficial mutation(s). Perhaps most remarkably, the trfA::ISMex25 alleles that rose to detection did so in nearly simultaneous waves in any given population, but upon backgrounds of varying fitness values across different populations. We discuss how this synchrony could have emerged due to the joint effects of clonal interference and epistasis.

Materials and Methods

Growth medium and strains
All strains used are derivatives of *Methylobacterium extorquens* AM1. Cultures were routinely grown in ‘Hypho’ minimal medium containing a modified trace metal mix as described (Chou *et al.* 2009). The details of the evolution of the F1-F8 populations have been described (Chou *et al.* 2011). Briefly, the two ancestral EM strains, CM701 or CM702, were derived from introducing the pCM410 plasmid expressing the foreign formaldehyde oxidation pathway into strains CM508 and CM624 which lack the first step of H₄MPT biosynthesis (Marx 2008). These two plasmid-free strains solely differed from each other in terms of whether or not they produced pink carotenoids (Van Dien *et al.* 2003), a trait which has been previously shown to be neutral in this environment (Lee *et al.* 2009). The odd numbered F populations were founded with the pink CM701 strain; even populations with the white CM702 version. Every four days 150 µL of the culture was transferred into 9.45 mL of fresh medium containing 15 mM methanol (a 1/64 dilution that permitted six generations per transfer and a final population size of 1-2 x 10⁹). After 300 generations all cultures had improved sufficiently that the time between transfers was reduced to two days.

Four strains with known sites of ISMex25 insertion into *trfA* were used to test the PCR method for cointegrate detection/quantification. These were strains CM935 (isolate from F1 at generation 120; *trfA*::ISMex25 inserted ‘reverse’ after nucleotide 1055), CM937 (F7 at generation 120; forward after nucleotide 1103), CM946 (F4 at generation 120; reverse after nucleotide 472), and CM1013 (F6 at generation 300; forward after nucleotide 907) (Chou and Marx 2012).

PCR technique for detection and quantification of cointegration events

PCR products were directly amplified from 1 µL of boiled-prepped frozen population stocks in a volume of 20 µL, using four primers in different pairings, as illustrated in Figure 1B. One of each pair has homology outside of *trfA* gene (S11: GACTTCCGGCAAGCTATACG, reverse (to *trfA*) 173 bp downstream, or S12: CCCGCAAGGAGGGTGAATG, forward starting 16 bp upstream of *trfA* and overlaps the ATG) and the other within ISMex25 (L: CATGCGGGCTCTATGGTCAAC, reverse 54 bp downstream of the first nt of ISMex25, or R1:...
CAAAGCGTGAAAGCAGAACGGTAG, forward 64 bp upstream of the last nt of ISMEX25. L/S11 and R1/S12 generate products for a ‘reverse’ allele and R1/S11 and L/S12 amplify a forward allele. Pools of PCR products from controls or mixed populations were quantified using an Agilent 2100 Bioanalyzer with the DNA1000 kit. The molarity estimated by Bioanalyzer was used as the intensity of each PCR product. Two bands were considered as a pair if the summation of their size amplified by the primers of forward pair or reverse pair was around 1500 bp and the pair was detected at least in two generations of the same population. Due to PCR amplification efficiency, some alleles were also identified by just one shorter band amplified from one primer pair, with the condition that this product showed up in consecutive generations. The intensity was determined by the average of the two products for each direction or divided in half for single band alleles (Figure S2, Supplemental spreadsheet). Integrations were conservatively considered to have two peaks through time if their intensity was greater than 1.0, and changed by 5-fold.

Growth rate analysis of evolved populations

Growth rate measurements were conducted as previously described (Delaney et al. unpublished). Briefly, 5 µL of cryopreserved mixed populations were inoculated into 640 µL medium supplemented with 13.125 mM methanol and 0.4375 mM succinate (ratio of carbon from methanol:succinate = 7:1) in 48-well microtiter plates (Costar) and grown to saturation to acclimate to growth on methanol. Cultures were then transferred with a 1:64 dilution into fresh Hypho medium supplemented with 20 mM methanol and placed into a humidified plate shaking tower (Liconic) at 30 °C. Optical densities were obtained every 2 hrs by using a de-lidding station and Twister arm (Caliper) to automatically transfer plates to a Wallac Victor 2 plate reader (Perkin-Elmer) until cultures reached saturation, using the open source laboratory manager software, Clarity (Delaney et al. 2012). Growth rates were determined by fitting a logistic growth model using the custom analysis software, Curve Fitter (Delaney et al. unpublished) with a minimum of 4 replicates (Supplemental spreadsheet).
Model fitting for fitness dynamics

For each of the eight populations, the trajectory of mean fitness was fit to three different models we wished to compare: exponential, hyperbolic, and step-like models. Exponential and hyperbolic models were performed by using the “nls” function in R (Ihaka and Gentleman 1996), with equations $a(1-e^{-bx})$ or $(ax)/(b+x)$, respectively (a and b representing the two parameters to be fitted). As the exponential model performed worse than the hyperbolic for all populations, we focus on the latter. The step-like model fitting was performed by “pava” function in “isotone” package (de Leeuw et al. 2009) and a backward elimination procedure was applied to avoid overfitting the model with too many steps (threshold of 0.05) as before (Lenski et al. 1991). Akaike information criterion (AIC) was used to evaluate the model fitting, using an approximate function $\text{AIC} = n \ln(\text{RSS}/n) + 2k$ with correction for finite sample size: $\text{AICc} = \text{AIC} + 2k(k+1)/(n-k-1)$ (Burnham and Anderson 2002) where n is the sample size and k is the number of parameters.

Results

Semi-quantitative PCR method to detect IS-mediated cointegrations

In order to examine the diversity and frequencies of beneficial, IS-mediated cointegrations that occurred in our eight evolved populations we developed a semi-quantitative PCR method to detect these events. As described above, all cointegrates previously identified involved ISMEx25 and occurred within a small region of the IncP plasmid replication gene $\text{trf}A$, yet the exact insertion points were distinct (Chou and Marx 2012). We therefore developed a PCR-based approach to directly detect such events from population samples (Figure 1B).

In order to first test the approximate limit of detection for this method, we applied this semi-quantitative PCR method to mixed cultures of the EM ancestor (CM701) and four $\text{trf}A::\text{ISMEx25}$ containing strains with known insertion sites (Chou and Marx 2012). We could reliably generate bands with all four primers down to 0.01-0.1% of the population. This compares rather favorably to previous high-throughput methods for
quantifying SNPs directly in a mixed population sample (Gresham et al. 2008; Herring et al. 2006), including our recently developed frequency sequencing (FREQ-Seq) method (Chubiz et al. 2012).

We further tested the degree to which our PCR technique produces quantitative data. For this we varied the ratio of strains with two different insertions (Figure S2). Although PCR amplification favors the smaller amplified products, fortunately, these effects will be well-balanced by two pairs of primers, since an insertion allele with a shorter upstream amplicon will have a longer downstream one. Correspondingly, by taking the average of the two control curves, this bias became a sigmoidal shape centered around the expected template ratios (Figure S2). It should be noted, however, that because different insertion events will amplify with varying efficiency we do not aim to interpret the absolute values between amplified products for different insertions, but simply the temporal dynamics of the detected alleles.

Individual populations demonstrated waves of synchronous cointegration

We applied the above PCR method directly to frozen samples for 23 time-points from each of the eight replicate populations to quantify cointegration events and track their dynamics (Figure 2 & Supplemental spreadsheet). First, we found that cointegration events occurred in all populations despite only rising to fixation in three (F1, F7, F8). Second, even when just considering this particular class of beneficial mutation there was a tremendous degree of repeatability and clonal interference. We detected between 8 and 17 different events for each population, with 98 cointegrations in total. Third, the typical dynamics for transient alleles was a rapid rise to peak intensity, followed by a rapid decrease. This pattern indicated that the genotype of the strain containing that allele was initially more fit than the population average, peaked in frequency when its fitness matched that of the population, and then fell when outcompeted by more fit lineages (see Figure S1). Fourth, for several alleles, mainly in populations F5 and F6, we detected a more complicated trajectory whereby that allele reached a maximum, fell, and then rose to a second peak value before falling again. There are three possible interpretations for this dynamic: a second, independent genotype with an identical (or nearly so)
trfA::ISMex25 allele, the acquisition of an additional beneficial mutation within the cointegrate lineage, or a change in the selective regime. Two lines of evidence support this last hypothesis: most of these second peaks rose in synchrony in F5 and F6 at precisely 300 generations, coincident with the shift in the transfer regime from four to two days long. This suggests these genotypes’ fitness increased at that juncture, but they still subsequently lost out as other lineages later moved on to fixation.

High-resolution analysis of fitness improvement revealed relatively smooth dynamics through time and increasing variance between populations

How do the complex allele dynamics of repeated cointegrations map onto the pattern of fitness increase? In order to obtain high-resolution phenotypic data, we used the growth rate of mixed populations as a proxy for fitness (Figure 3 & Supplemental spreadsheet). These growth rates were determined via an automated, robotic system (Figure S3; see Materials and Methods for details). Previous work with these populations has shown that growth rates are very highly correlated with fitness values obtained from competition experiments (Chou et al. 2011). Growth rate improvements were quite rapid, with an average increase of ~50% by 150 generations, and ~125% by 900 generations. Consistent with the almost universal trend observed in experimental evolution, the rate of fitness improvement decelerated through time. For example, the average rate of fitness increase between generation 48 and 72 was 151% per 100 generations, whereas from generation 600 to 900, it fell to 11.5% per 100 generations.

Putting aside the direct evidence already amassed for the existence of clonal interference, we can ask in an approximate way how well the dynamics of fitness gains reflected underlying genotypic complexity compared to the null expectation for periodic selection. The adaptation dynamics of individual populations did not reveal a dramatic series of punctuated jumps, but were rather smooth through time (Figure 3). In order to characterize where the dynamics fell on the spectrum from highly periodic to continuous, we compared the dynamics of fitness relative to simplistic models representing these extreme behaviors (Figure S4). Periodic selection has previously been modeled using an isotonic, step-wise fitting model with backward elimination procedure (stepwise F test) to
choose an appropriate number of such steps (Lenski et al. 1991). We compared the quality of fit and complexity of the resultant model by AIC to a hyperbolic model that uses two parameters to describe a continuous, smooth rise in fitness with declining slope. Despite its simplicity, a hyperbola was the better model to describe the data than an optimal step model for all but two out of the eight populations.

Turning to differences between populations, there was substantial, sustained variation in growth rate between populations that suggested different populations had found distinct adaptive solutions (Figure 4). Early in the experiment the variance grew rapidly; the coefficient of variation at generation 120 was indistinguishable from that at generation 900 (F test; \(p = 0.28 \)), despite a transient decrease in between these times.

Synchronous waves of cointegration events occurred upon backgrounds of distinct fitness values in different populations

Obtaining fine-scale data through time for both cointegration allele frequencies and population growth allowed us to compare the context in which cointegrations occurred in different populations. By identifying the timepoint at which a given \(trfA:\text{ISM}	ext{ex25} \) allele hit its apex, we estimated that genotype’s fitness value (i.e., the population mean fitness at that moment, see Figure S1). The inferred fitness values for each of the 98 cointegrate genotypes exhibited great variety across populations (Figure 5). In population F1, for example, cointegrates peaked in frequency when the growth rate was 1.2-1.3x the EM ancestor. Given that this is close to the benefit of the integration alone (Chou and Marx 2012), these peaks likely represent strains with just this event, or perhaps additional mutation(s) of relatively small effect. On the other hand, detectable cointegrate genotypes peaked at much higher growth rates in the other 7 populations, indicating that these \(trfA:\text{ISM}	ext{ex25} \) alleles occurred on backgrounds with other mutations of substantial net benefit. Perhaps most remarkably, although cointegrations were present in genotypes across a broad range of fitness levels when summed across all eight populations, in any particular population they occurred in a single wave. We found these data were very highly clustered compared to a null model whereby the cointegrate genotype fitness values observed for a single population could have been drawn from anywhere within the
distribution of observed alleles in the aggregate distribution across populations (Kruskal-Wallis rank-sum test; \(p = 2.26 \times 10^{-15} \)).

Discussion

Experimental evolution has been instrumental in demonstrating that the simple dynamics of periodic selection are rarely, if ever observed under the regimes employed in the laboratory. Most studies have either identified segregating evolved alleles or examined the dynamics of marked subpopulations, but few have combined these perspectives (Lang et al. 2011). Here we have taken advantage of the unique molecular details of a particular class of frequent, large benefit mutations that arose in evolving populations of the EM engineered \(\text{Methylobacterium} \) strain in order to directly detect their dynamics from cryopreserved mixed population samples. Our analysis revealed that multiple cointegration events occurred and rose in nearly simultaneous waves in a given population, and thus clonally interfered with each other, as well as other adapting lineages, as they vied for fixation.

Cointegration of an introduced plasmid was remarkably common

When we first recognized that \(\text{trfA}::\text{ISMex25} \) alleles from a couple evolved isolates arose from cointegration of the introduced plasmid into the host genome, it appeared to be a rather unlikely type of mutation (Chou and Marx 2012). After observing nearly identical events in isolates from other populations, we decided it was worth investigating this class of mutations further. That said, we were quite surprised to see up to 17 different types of the same event co-occurring in the same population. These represent attempted soft sweeps of distinct mutational events rising toward fixation. In most populations the whole soft sweep went extinct, however, in three of eight replicates one such allele did rise to fixation, and thus became a “hard sweep”. It should be kept in mind that the numbers we report represent a lower bound of the true number of cointegrations that occurred, as many such events will have been lost to drift, never rose beyond our limit of detection, or were indistinguishable from each other due to integration into the same (or
nearly so) site within *trfA*. Furthermore, there were likely many more successful alleles on the introduced plasmid with similar phenotypic effects, given that the *trfA::*ISMex25 alleles constituted less than half of the mutations reported from isolates common enough to be sampled from three colonies per population (Chou and Marx 2012).

Why did we observe so many coexisting beneficial alleles at a single locus relative to most previous reports? One aspect may have been the great sensitivity and ability to distinguish similar events afforded by our PCR method. Thus far, no method for observing rare SNPs from this many mixed population samples would have unveiled dynamics of variants as rare as our PCR technique could detect. On the other hand, it is likely that the physiological and genetic context of our ancestral strain evolving in methanol medium was key to our repeated observation of their rise in populations. The rate of occurrence of IS-mediated events is often quite high, and has been shown to contribute to the observation of parallelism across replicates (Cooper *et al.* 2001; Chou *et al.* 2009; Stoebel *et al.* 2009). Furthermore, the selective effect of cointegrations was quite large, which would have both helped them escape drift and to rapidly rise in frequency.

Rampant clonal interference was revealed in both the complex dynamics of cointegration frequencies and the smooth dynamics of fitness increases

Although the *trfA::*ISMex25 alleles are interesting in their own right, the ease of detecting them at low frequencies – rather like phage-resistance mutants in early chemostat work (Novick and Szilard 1950) – allowed them to also serve as sentinels for the dynamics of the bulk of the population. Similar to other studies (Lang *et al.* 2011), we observed examples of selective sweeps, clonal interference and multiple mutations. However, due to the high sensitivity for detecting distinct cointegrations of our method, we detected many similar cointegrations present simultaneously in the populations.

The availability of fine-scale data on the dynamics of phenotypic improvement provided a second window into the underlying population dynamics during adaptation. Indeed, despite the massive gains in fitness that we observed in our system relative to most previous evolution experiments with bacteria, the observed dynamics were quite
smooth compared to a punctuated model of periodic selection. The first 2,000 generations of the 12 replicate populations of the long-term experimental evolution of *E. coli* were all better fit as a series of steps with an isotonic model across (Lenski et al. 1991). In contrast, although the adaptation of EM in methanol was certainly more “bumpy” than captured by a two-parameter function, the AIC criteria of a step-like isotonic model only indicated an improved fit in two of eight cases. This relatively continuous improvement emphasizes the interesting divergent effects of clonal interference upon adaptation: allele trajectories become much more complicated than under periodic selection; fitness gains become much smoother.

Adaptation of the engineered strain of Methylobacterium was more variable across replicates than typical evolution experiments

One goal of experimental evolution has been to permit inferences to be made about the underlying adaptive landscape based upon the dynamics of improvement, notably the extent to which replicates converge phenotypically to what appears to be a single fitness peak, versus diverge to find very different solutions (Lenski *et al.* 1991). Over 10,000 generations of long-term evolution of *E. coli* populations on glucose, for example, the fitness of the 12 replicate populations increased to an average of ~1.4, with a coefficient of variation of approximately 3% (Lenski and Travisano 1994). Earlier experiments evolving wild-type *M. extorquens* AM1 on methanol, or on the multi-carbon compound succinate, also revealed relatively little variation (3.6% and 2.0%, respectively) (Lee *et al.* 2009). In comparison, the coefficient of variation of the populations founded with the EM strain was sustained at ~15% from generation 120 to 900, a value five to eight-fold higher than the above examples. This is perhaps surprising given that these populations also witnessed multiple examples of parallelism, including all populations reducing expression costs of the foreign formaldehyde oxidation pathway (Chou and Marx 2012) and six of eight having identical insertions of ISMex4 into the promoter of a novel cobalt transporter encoded by *icuAB* (Chou *et al.* 2009).

Why might the adaptive outcomes for the EM strain have been so much more variable than usual? Compared to most experiments, the metabolic rewiring of its central
A metabolic pathway for growth on methanol made this strain particularly unfit. This starting situation is unusual for experimental evolution, but is analogous to the series of events that occur following horizontal gene transfer. Indeed, the exchange of formaldehyde oxidation pathways across natural bacterial lineages has been well documented (Chistoserdova et al. 2004). Regardless of starting genotype, for evolving populations to scale alternative fitness peaks, there must be reciprocal sign epistasis to guarantee that beneficial mutations do not exist which would bridge from one apparent optimum to another (Weinreich et al. 2006). In this regard, beneficial mutations within a single adaptive trajectory from one of the populations studied here exhibited solely positive effects (Chou et al. 2011). A better test for distinct fitness optima, however, would be to test interactions between beneficial mutations that occurred independently in separate trajectories, as has been performed in a few cases (Cooper et al. 2003; Kvitek and Sherlock, 2011; Woods et al. 2011).

Parallel cointegration events occurred in distinct waves at different times and fitness levels across populations

The most surprising result regarding the repeated emergence of cointegrations was their synchronous dynamics within single populations and distinct timings across populations. One possibility would be that the occurrence of cointegrations itself was episodic, due to a factor such as environmental stress leading to increased transposition rates. Although this is possible, the timing of maximal frequency was more synchronous than the first detection of alleles, and replicate populations had waves of detectable cointegrations at distinct times, but were cultured together. Furthermore, we have previously shown the direct ability to select for cointegrates via antibiotic resistance on a plasmid (Chou and Marx 2012). We therefore found this hypothesis less likely than a rather simple alternative which is a simple form of epistasis: once a lineage has one of the possible mutations that decreased expression of the foreign formaldehyde oxidation pathway, there may be little benefit (or perhaps even detriment) to obtain another. Thus, once one expression-decreasing mutation occurred in a lineage, it likely shut the door on all others.
But what prevented the highly beneficial \textit{trfA::ISMex25} from rising in frequency early in populations, at least transiently? There is always a lag in adaptation for experiments that begin from a single genotype, however, in all populations except perhaps F1 there were substantial fitness gains before the first cointegrate peaked in frequency. This demonstrates other mutations had occurred and rose in frequency well before these alleles became detectable. Either clonal interference and/or epistasis could have prevented the early success of cointegrates. At the start of the experiment there may have simply been mutations even more beneficial than the 17-24\% conferred cointegration alleles. Indeed, the three populations where \textit{trfA::ISMex25} peaked at the highest fitness values (F2, F3, F4) were also the three that were most consistently amongst the most fit populations through time. Using our recently developed allele frequency sequencing method (FREQ-Seq), we demonstrated that the first beneficial mutation in the F4 population was in \textit{gshA} (encodes \(\gamma\)-glutamylcysteine synthetase), whose selective benefit is \(~3\)-fold higher than \textit{trfA::ISMex25} (Chubiz \textit{et al.} 2012). Furthermore, the \(gshA^{Evo}\) mutation from F4 reduces the benefit of turning down the foreign pathway by half (Chou \textit{et al.} 2011). These data suggest that the complex interaction of clonal interference and epistasis may have collaborated to radically alter the relative likelihood of this class of beneficial mutations rising to high frequency, thereby producing surprisingly synchronous waves of success and failure of independent beneficial mutations occurring at a single locus.

\textbf{Acknowledgements}

We thank David Robinson for expert assistance with statistical analyses, David Chou for initial information about the populations and strains examined, and Michael Desai, members of the Marx lab, and anonymous reviewers for helpful suggestions on the manuscript. This work was supported by individual National Science Foundation grant DEB-0845893 (to C.J.M.) and an individual National Institutes of Health grant R01 GM078209 (to C.J.M.).

\textbf{References}

Chistoserdova, L., C. Jenkins, M. G. Kaluzhnaya, C. J. Marx, A. Lapidus et al., 2004 The enigmatic Planctomycetes may hold a key to the origins of methanogenesis and methylotrophy. Mol. Biol. Evol. 21: 1234-1241.

Figure Legends

FIGURE 1. Formation and quantification of cointegrate alleles in evolving populations. (A) Cointegrates were formed through the incomplete transposition (or subsequent recombination) of ISMex25 from the endogenous p2META plasmid into a small region of the trfA replication gene of the introduced pCM410 plasmid. (B) PCR amplification with pairs of primers internal to ISMex25 and flanking trfA allowed multiple, coexisting trfA::ISMex25 alleles to be quantified.

FIGURE 2. Dynamics of trfA::ISMex25 cointegrate alleles in evolved populations. (A-H) Intensities of diagnostic PCR products resulting from cointegrate quantification in populations F1-F8, respectively. Vertical guideline on each figure indicates the change in transfer scheme from 4 days to 2 days at generation 300. Populations F1, F7, and F8 (A,G,H) had a cointegrate allele rise to fixation. Double-peak alleles in F4, F5 and F6 are shown in dashed lines.

FIGURE 3. Relative growth rates through 900 generations. Average across populations is indicated in the black dashed line.

FIGURE 4. Maintenance of amongst-population variance in growth rate. After a rapid rise in the first 120 generations, the coefficient of variation was sustained between 10-17% despite continued adaptation. The first point shows the experimental variation for the ancestor.

FIGURE 5. Distribution of inferred growth rates for genotypes containing cointegrate alleles. The growth rates for each of these genotypes were estimated by determining the population average at the time point for which the allele peaked in frequency, and were binned (±0.05 relative growth rate). In the foreground are color-coded
distributions for the genotype fitness values observed for each individual population; in the rear (in black) is the summed distribution across the eight populations.

FIGURE S1. Illustration of the fate of a contending, unsuccessful genotype in a population. Each blue distribution represents the fitness values present in the population at that generation, with later time points illustrated in subsequent rows. When a new cointegrate allele occurs in a given background (red arrow), it increases the fitness of that genotype (by s_{trf4}, in grey) up to a value greater (by s_{up}, in orange) than the current population mean. This causes the frequency of this genotype (height of red peak) to rise through time as long as its fitness exceeds the population mean, whereas it recedes once it is on the tail of fitness distribution. The population fitness at the zenith of the genotype’s frequency thereby provides the means to estimate the fitness of the genotype itself. Modified with permission from Lang et al. (2011).

FIGURE S2. As two PCR products are amplified for each cointegrate allele, the respective biases for shorter or longer products can be largely corrected by averaging the two signals.

FIGURE S3. Example growth curves. Depicted are the EM ancestor and the mixed F4 population at generations 60, 120, 300, and 600. Three replicate curves for each are shown.

FIGURE S4. Comparison of continuous versus stepped model for describing the dynamics of fitness increase through time. The isotonic model (pink) is the extreme punctuated scenario, whereas the exponential (green) and hyperbolic (blue) functions are continuous.
Figure 1

A

p2META
37858 bp
ISMex25

trfA

pCM410

ISMex25

Cointegrate

ISMex25

3' trfA

ISMex25

5' trfA

B

ISMex25

trfA

ISMex25

R1

L

S11

S12

PCR amplification from population samples

L/S12

R1/S11

Quantify each band by Bioanalyzer
Figure 2

A

B

C

D

E

F

G

H

Intensity vs. Generation

Population F1

Population F2

Population F3

Population F4

Population F5

Population F6

Population F7

Population F8
Figure 3

![Graph showing relative growth rate over generations for different families (F1 to F8) with error bars. The x-axis represents generations, ranging from 0 to 900, and the y-axis represents relative growth rate, ranging from 0.8 to 2.8. Each family line is differentiated by color and style, with the average growth rate represented by a black line with filled markers.](image-url)
Figure 4
Figure 5