Distinguishing driver and passenger mutations in an evolutionary history categorized by interference

Christopher J R Illingworth* and Ville Mustonen*

September 5, 2011

*Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
Running Title: Distinguishing driver and passenger mutations

Key Words: discerning selection, interactions between mutations, molecular evolution

Corresponding Author:

Ville Mustonen

Wellcome Trust Sanger Institute
Wellcome Trust Genome Campus
Hinxton, Cambridge, CB10 1SA
United Kingdom
Phone: +44 1223 492375
Fax: +44 1223 496802
Email: vm5@sanger.ac.uk
Abstract

In many biological scenarios, from the development of drug resistance in pathogens to the progression of healthy cells towards cancer, quantifying the selection acting on observed mutations is a central question. One difficulty in answering this question is the complexity of the background upon which mutations can arise, with multiple potential interactions between genetic loci. We here present a method for discerning selection from a population history which accounts for interference between mutations. Given sequences sampled from multiple time-points in the history of a population, we infer selection at each locus by maximizing a likelihood function derived from a multi-locus evolution model. We apply the method to the question of distinguishing between loci where new mutations are under positive selection (drivers) and loci which emit neutral mutations (passengers) in a Wright-Fisher model of evolution. Relative to an otherwise equivalent method in which the genetic background of mutations was ignored, our method inferred selection coefficients more accurately for both driver mutations evolving under clonal interference, and for passenger mutations reaching fixation in the population through genetic drift or hitchhiking. In a population history recorded by 750 sets of sequences of 100 individuals taken at intervals of 100 generations, a set of 50 loci were divided into drivers and passengers with a mean accuracy of greater than 0.95 across a range of numbers of driver loci. The potential application of our model, either in full or in part, to a range of biological systems, is discussed.
INTRODUCTION

Interference between mutations in an evolving population can have significant effects on adaptation, affecting the development of both beneficial and non-beneficial mutations. In the absence of recombination, beneficial mutations arising within different individuals compete with one another, in a process referred to as clonal interference (Fisher 1930; Muller 1932). Where the effects of selection are strong, effects on non-beneficial mutations are seen, with neutral and deleterious alleles fixing via hitchhiking with strongly beneficial alleles (Smith and Haigh 1974).

The importance of interference, caused by genetic linkage between mutations, has been noted in a range of experimental studies. For example, clonal interference places a constraint on the speed of adaptive evolution (de Visser et al. 1999) and it affects the magnitude of selection coefficients of mutations escaping genetic drift (Perfeito et al. 2007). Studies of the evolution of an RNA virus have shown a loss of beneficial mutations through interference (Betancourt 2009; Bollback and Huelsenbeck 2007). Observations of reduced genomic diversity in regions of genomes with lower recombination rates are consistent with the fixation of alleles through hitchhiking (Stephan and Langley 1989). In a recent large-scale study of beneficial mutations in the adaptation of yeast, background genetic variation was observed to be critical in determining the fate of new mutations (Lang et al. 2011).

In an attempt to understand the underlying dynamics of populations characterized by interference, a range of theoretical models have been developed, giving estimates for properties such as the fixation probability of a beneficial mutation, the expected rate of change of the mean fitness of the population, and the rate of substitutions within the population (see e.g. (Barton 1995; Gerrish and Lenski 1998; Gillepie 2001; Rouzine et al. 2003; Wilke 2004; Desai and Fisher 2007)). As summarized in recent reviews (Park et al. 2010; Sniegowski and Gerrish 2010), these studies and others have made a substantial
and still growing contribution to the understanding of asexual evolution.

In this work we present a method to infer selection in an evolving population characterized by multiple genetic linkages between mutations at different loci. While in our understanding we lean heavily on the body of theoretical work discussed above, our approach is substantially different. Rather than describing general properties of systems under selection, such as mean times for allele fixation, we consider the evolutionary history of a single system. Using time-resolved data from the system, we try to deduce the fitness landscape according to which adaptation has in that one specific case taken place.

Our method complements existing methods of discerning selective effects. In a commonly used method, the labelling of a fraction of the population by a genetic marker with known or neutral effect can be used to measure evolutionary fitness (Hegreness et al. 2006; Kao and Sherlock 2008; Barrick et al. 2010; Lang et al. 2011). Our method bears some similarity to this approach, in that we consider subsections of the population with and without given mutations at a locus, but extends the idea to consider all mutations present at any one time.

Our method is designed for the analysis of time-series data. In microbial systems, an increasing amount of data of this form is becoming available via application of modern sequencing technologies, with measurements in some cases taken over long time periods (Barrick et al. 2009). The potential scope for application, however, may extend beyond these examples. In studies of the development of cancer, for example, a distinction is made between driver mutations, which push a cell towards a cancerous state, and passenger mutations not directly contributing to the cancer phenotype of the cell (Stratton et al. 2009). Time-series genetic data, recorded over the development of a cancer, has the potential to aid the identification of mutations which lead to cancer. To give another example, viral systems
adapt over time to acquire resistance to drug therapy (COFFIN 1995), or to evade immune pressure (GRENFELL et al. 2004). The analysis of time-series data of viral evolution, in a single patient or across a local or global outbreak, leads to the possibility of distinguishing the selective effects of observed mutations.

In order to demonstrate the principles of our method, we here apply it to a model system consisting of two-allele loci divided into ‘drivers’, at which mutants convey a fixed fitness benefit, and ‘passengers’, which evolve neutrally. The inspiration for the model is taken from a viral system which evolves under pressure to escape from its host’s immune system. A survey of 35 negative-sense RNA viruses has suggested that homologous recombination is relatively rare, implying the potential importance of genetic background effects on mutations (CHARE 2003). RNA viruses have high mutation rates, allowing for rapid adaptation to selective pressure (HOLLAND et al. 1982). Our model, in which beneficial mutants at driver loci revert to wild-type fitness levels upon fixation, represents to an extent viruses such as influenza, where immune escape is an important driver to evolution in strains affecting both humans and other species (SMITH et al. 2004; PARK et al. 2009).

We here demonstrate the ability of our method to separate driver and passenger loci by discerning selection coefficients in a system characterised by interference between mutations. We examine the performance of the method in capturing the effects of selection under a range of sampling conditions, considering different time-resolution and depths of sequencing. Finally, we discuss the potential for developing and applying the method for use with biological data.
MATERIALS AND METHODS

Overview of the inference method We divide our description of the method into two sections, considering first methods and results which are inherent to our procedure for estimating selection in a system of linked mutations, and second those adaptations or implementations which are particular to the testing of the method carried out here. Thinking first about the inherent method, we here consider a population of \(N \) individuals, represented by sequences each of \(L \) loci. We suppose that each locus \(i \) is biallelic with alleles \(\{0,1\} \), the mutant allele having constant selection coefficient \(\sigma_i = f^1_i - f^0_i \) (i.e. constant fitness difference between the alleles).

At the heart of our method is a maximum likelihood calculation. Given a set of measurements from a system describing allele and two-locus haplotype frequencies at a range of different points in time (frequencies potentially being derived from individual sequences), we calculate the likelihood of these data given an arbitrary set of locus selection coefficients. This provides an objective function, which can be maximised to obtain the maximum likelihood set of locus selection coefficients. Figure 1 provides an overview of the different steps of the method, which we now describe in more detail.

[Figure 1 about here.]

Measuring allele and haplotype frequencies Given our population, we consider changes in the population over time. At a given time \(t \), we define \(q^a_i(t) \) to be the frequency of the allele \(a \in \{0,1\} \) at locus \(i \), and \(q_{ij}^{ab}(t) \) to be the frequency of the two-locus haplotype \(a, b \in \{0,1\} \) at loci \(i, j \). We now suppose that the population is sampled at a set of time-points \(t_k \) for \(k = 1, 2, \ldots \), with \(n_g(t_k) \) individuals being sequenced at time \(t_k \). We write \(\tilde{q}^a_i(t_k) \) for the sampled frequency of the allele \(a \in \{0,1\} \) at locus \(i \) at time \(t_k \), and \(\tilde{q}_{ij}^{ab}(t_k) \) as the sampled frequency of the two-locus haplotype \(a, b \in \{0,1\} \) at loci \(i, j \), also at time \(t_k \).
Dividing mutant allele frequencies into trajectories Sampled allele frequencies from each locus were divided into trajectories, each trajectory consisting of a set of frequencies at consecutive sample times describing the evolution of a single polymorphism. The first element in a trajectory was characterised by the first observation of polymorphism at a locus at which no trajectory was already in progress, while the last element of a trajectory was defined as the first observation at which the fixation or death of the polymorphism was observed. In order to distinguish between the real fixation or death of a polymorphism from artefacts of the finite sampling process, sample allele frequencies subsequent to the apparent fixation or death were examined.

Guessing initial locus selection coefficients We use the notation \(\{\tilde{\sigma}_i\} \) to describe the set of estimates of the locus selection coefficients \(\{\sigma_i\} \). Initial estimates for locus selection coefficients were assigned from a uniform random distribution \(U[-\sigma, \sigma] \).

Identifying non-neutral trajectories As we will go on to describe, our method attempts to identify the strength of selection on an allele from observations of changes in the allele frequency, making the assumption that changes in allele frequency are driven primarily by selection. This assumption only makes sense if selective effects are indeed the main cause of allele frequency changes. We note that, at very small frequencies, changes in an allele frequency are dominated by genetic drift, with selection becoming the primary driver of evolution at a threshold frequency of \(1/N\sigma \) (Rouzine et al. 2001). To avoid assigning selection to primarily stochastic events, observed trajectories were divided into two sets according to their maximum observed frequency. Given an estimated locus selection coefficient \(\tilde{\sigma}_i \), trajectories at the locus \(i \) with a maximum allele frequency of less than a threshold \(q_{\sigma_i} = \min\{1/N\tilde{\sigma}_i, 1/10\} \), or less than 1/10 for \(\tilde{\sigma}_i \leq 0 \), were modelled as evolving neutrally, the value of \(N \) here being taken from the underlying population. Trajectories above this threshold were modelled as evolving non-neutrally, due to the effects of selection. While not
eliminating drift from the system, this removed from consideration a substantial number of trajectories for which selection was not the primary driver of allele frequency change.

Calculating time-dependent selection coefficients accounting for linkage effects
Due to effects such as hitchhiking and clonal interference, the selection acting on a mutant allele can change over time. We define the effective selection coefficient \(\sigma_i^e(t_k) \) as the selection acting on a mutant allele at locus \(i \) at time \(t_k \), accounting for linkage to alleles at other loci under positive or negative selection. Assuming an additive model of selection, the effect of linkage with other alleles can be written as a sum of pairwise interactions, such that

\[
\sigma_i^e(t_k) = \sigma_i + \sum_j \sigma_{ij}(t_k)
\]

where \(\sigma_{ij}(t_k) \) is the effect that alleles at locus \(j \) have on the selection acting on the mutant allele at \(i \) at time \(t_k \).

To demonstrate this, we first recall the standard result that, assuming deterministic dynamics, changes in the two-locus haplotype frequencies can be written in the form

\[
\dot{q}_{ab} = f_{ij}^{ab} q_{ij}^{ab} - q_{ij}^{ab} \left(\sum_{a',b'\in\{0,1\}} f_{ij}^{a'b'} q_{ij}^{a'b'} \right)
\]

where a dot denotes a time derivative, \(f_{ij}^{ab} \) denotes the fitness of the respective two locus haplotype, and the term in parentheses is the mean fitness. We now consider the development of the frequency of a mutant allele at locus \(i \) given a simultaneous polymorphism at locus \(j \). At the locus \(i \), the change in the mutant allele frequency can be expressed as

\[
\dot{q}_i^1 = \dot{q}_{ij}^{11} + \dot{q}_{ij}^{10}
\]

Combining this with the equation above, and using the assumption of additive fitness, we obtain

\[
\dot{q}_i^1 = (\sigma_i + \sigma_j) q_{ij}^{11} + \sigma_i q_{ij}^{10} - (q_{ij}^{11} + q_{ij}^{10}) \left[(\sigma_i + \sigma_j) q_{ij}^{11} + \sigma_i q_{ij}^{10} + \sigma_j q_{ij}^{01} \right]
\]
Collecting terms in σ_i and σ_j and rearranging gives

$$\dot{q}_i = \sigma_i [q_{i1}^{11} + q_{i1}^{10} - (q_{i1}^{11} + q_{i1}^{10})^2] + \sigma_j [q_{ij}^{00} q_{ij}^{11} - q_{ij}^{10} q_{ij}^{01}]$$

which with further rearrangement gives the form

$$\dot{q}_i = \left[\sigma_i + \sigma_j \left(\frac{q_{i1}^{11}}{q_{i1}^{11} + q_{i1}^{10}} - \frac{q_{ij}^{01}}{q_{ij}^{01} + q_{ij}^{00}}\right)\right] q_i^1 (1 - q_i^1)$$

Noting that, in a single locus case, changes in the mutant allele frequency can be written as

$$\dot{q}_i = \sigma_i q_i^1 (1 - q_i^1)$$

we obtain the result

$$\sigma_{ij}(t_k) = \sigma_j \left(\frac{q_{i1}^{11}(t_k)}{q_{i1}^{11}(t_k) + q_{i1}^{10}(t_k)} - \frac{q_{ij}^{01}(t_k)}{q_{ij}^{01}(t_k) + q_{ij}^{00}(t_k)}\right)$$

While only two interacting loci are considered here, Equation 8 is correct for multiple interacting loci (for derivation repeat the above calculations for $\dot{q}_i = \dot{q}_{i11}^{11} + \dot{q}_{ij1}^{110} + \dot{q}_{ij1}^{101} + \dot{q}_{ij1}^{100}$).

These equations are part of the standard population genetic toolkit and as shown above are straightforward to derive from Equation 2 (for a thorough treatment of multi-locus systems including equations for the time-evolution of the linkages, see (Barton and Turelli 1991; Kirkpatrick et al. 2002; Neher and Shraiman 2011)).

For trajectories with maximal frequency less than the threshold frequency, the effective selection coefficient $\tilde{\sigma}_i(t_k)$ was set to zero for each t_k, while the effects of linkage between these and other trajectories was ignored i.e. $\sigma_{ij}(t_k) = 0$ where $\max(q_j^1(t_k)) < 1/N\sigma_j$. For all other trajectories, approximate time-dependent selection coefficients $\tilde{\sigma}_i(t_k)$ were calculated from the estimated locus selection coefficients $\{\tilde{\sigma}_i\}$ and the sample haplotype frequencies $\tilde{q}_{ij}^{ab}(t_k)$ using Equations 1 and 8, to obtain a description of the selection acting on the mutant allele throughout the time for which it remained polymorphic.
Fitting maximum likelihood deterministic trajectories A deterministic curve, satisfying the approximate selection coefficients $\tilde{\sigma}_i^e(t_k)$, was fitted to each trajectory. Under a deterministic scenario, if the locus i is the only polymorphic locus in the system, the evolution of q_1^i has the analytical solution

$$q_1^i(t) = \frac{q_1^i(0)e^{\sigma_i t}}{1 - q_1^i(0) + q_1^i(0)e^{\sigma_i t}}$$ \hspace{1cm} (9)$$

where $q_1^i(0)$ is the frequency at time $t = 0$. Where more than one locus in the system is polymorphic, changes in the haplotype frequencies and effective selection coefficients become interlinked, leading to complex evolutionary behaviour, however, changes in the mutant allele frequency can be approximated using a discrete method. If $\Delta t_k = t_{k+1} - t_k$ is small, such that the linkage between alleles does not change substantially within this time interval, we can write the difference equation

$$q_1^i(t_{k+1}) = \frac{q_1^i(t_k)e^{\sigma_i^e(t_k)\Delta t_k}}{1 - q_1^i(t_k) + q_1^i(t_k)e^{\sigma_i^e(t_k)\Delta t_k}}$$ \hspace{1cm} (10)$$

This gives an approximation to the behaviour of a mutant allele in a linked system under a deterministic scenario, making the assumption of constant linkage between consecutive sampling points.

Assuming the underlying frequencies $q_1^i(t)$ to evolve in a deterministic manner according to selection, Equation 10 was applied to values of $\tilde{\sigma}_i^e(t_k)$ generated from the locus selection coefficients $\{\tilde{\sigma}_i\}$. This gave, for each observed allele trajectory, a hypothetical mutant allele trajectory $\{\tilde{q}_1^i(t_k)\}$, approximating the evolution of $q_1^i(t)$, in accordance with the observed linkage between alleles, and obeying the calculated effective selection coefficients. Equation 10 defines a family of frequency curves, parameterised by $q_1^i(t_k)$ for any one time-point t_k. For each trajectory, the sampling time t_c closest to equidistant between the start and end points of the trajectory was found, and the frequency $\tilde{q}_1^i(t_c)$ was optimised to identify the deterministic curve best fitting the observed allele frequencies.
Curve fitting was carried out using a maximum likelihood method, utilising a binomial model. Given a large population in which the frequency of a mutant allele is q, the probability that a sample of n_g sequences from the population will have the mutant allele frequency \hat{q} is

$$P(\hat{q}|q, n_g) = \binom{n_g}{n_g \hat{q}} q^{n_g \hat{q}} (1 - q)^{n_g (1 - \hat{q})}$$ \hspace{1cm} (11)$$

Considering a specific locus i at time t_k, the likelihood of a given underlying frequency $q_i^1(t_k)$ given the observation $\hat{q}_i^1(t_k)$ can be expressed as

$$\mathcal{L}(q_i^1(t_k)|\hat{q}_i^1(t_k), n_g(t_k)) = P(\hat{q}_i^1(t_k)|q_i^1(t_k), n_g(t_k))$$ \hspace{1cm} (12)$$

while given multiple observed frequencies $\{\hat{q}_i^1(t_k)\}$, the log likelihood of the underlying frequencies $\{q_i^1(t_k)\}$ can be written as

$$\log \mathcal{L}(\{q_i^1(t_k)\}) = \sum_{t_k} \log \mathcal{L}(q_i^1(t_k)|\hat{q}_i^1(t_k), n_g(t_k))$$ \hspace{1cm} (13)$$

For each trajectory, this equation was used to find the inferred frequencies $\{\tilde{q}_i^1(t_k)\}$ best approximating the underlying allele frequencies $\{q_i^1(t_k)\}$, whether the trajectory was neutral or non-neutral. An illustration of the fitting process for a single polymorphism is shown in Figure 2.

[Figure 2 about here.]

Calculating the overall likelihood for the selection coefficients The fitting of inferred frequencies to the observed frequencies for each trajectory results in an associated log likelihood in each case, the likelihood being a function of the estimated selection coefficients $\{\tilde{\sigma}_i\}$. Summing over all trajectories gave an overall log likelihood for the observed polymorphism frequencies given these selection coefficients. Varying the locus selection coefficients using a simulated annealing process gave an estimate of the most likely selection coefficients given the behaviour of the system. Full details of the annealing process are given below.
Testing the performance of the method using model data

Having outlined the general principles of the method we now describe its application to detect selection in a simulated population. A Wright-Fisher model was used to simulate a population of fixed size, with loci divided into 'drivers', at which the mutant allele was under positive selection, and 'passengers', which evolved in a neutral fashion. Under a range of different model parameters, the ability of the method to identify locus selection coefficients was tested. Details of the process are given below.

Simulating evolutionary histories

The underlying population was simulated using a Wright-Fisher model with a fixed population size of \(N = 10^4 \) individuals. Each individual consisted of a sequence of \(L = 50 \) binary loci, \(a_{ij} \in \{0, 1\} \), where the first index denotes the individual \((1 \leq i \leq N) \) and the second denotes the locus \((1 \leq j \leq L) \). Loci themselves were divided into \(D \) 'driver' loci, at which the mutant allele had some selection coefficient \(\sigma > 0 \), and \(L - D \) passenger loci, at which the mutant allele had no selective advantage. An additive fitness landscape was assumed, such that the fitness \(F_i \) of an individual in the population was defined as the sum of its allele fitnesses \(f_j^{a} \):

\[
F_i = \sum_{j=1}^{L} f_j^{a_{ij}} \tag{14}
\]

Within each generation, the alleles of any individual were subject to mutation from 0 to 1 or vice versa with fixed probability \(\mu \) defined by \(2N \mu = 0.01 \). Subsequent generations were sampled from the previous population using a multinomial sampling process, in which the probability \(p_i \) of choosing an individual \(i \) for replication was proportional to \(e^{F_i} \). Simulations were carried out using a range of values of \(D \in \{5, 10, 15, 20, 25, 50\} \), and with \(2N \sigma \in \{10, 20, 50, 100\} \). In each case the evolution of the population was recorded over 4 million generations. For each combination of parameters \(\{D, 2N \sigma\} \), five simulated population histories were generated.
In viral systems such as influenza, selective pressure on antigenic loci varies according to immune adaptation to the current strain. Here, a model of constant selective pressure on the driver loci was assumed, such that any new allele is always under selective advantage. As such, when a mutant allele at some locus fixed in the population, the frequency of the mutant was kept at fixation, removing the possibility of back mutations, for 3200 generations, the mutant frequency then being set to zero. The value of 3200 generations was picked arbitrarily, but allowed, with the exception of very long sample times, fixation events to be detected. Resetting fixed mutant allele frequencies in this manner caused difficulties in calling trajectories which would not be encountered with biological sequence data; details of the solution applied in this instance are given in Supporting Text.

Generating sample populations A sample of constant size n_g individuals was drawn from the population at regular intervals of dt_s generations, across a total of T generations. The occurrence and development of polymorphisms at each of the loci in the system were recorded, along with two-locus haplotype frequencies at each sample point.

Fitting deterministic trajectories In order to enable fitting between the inferred and observed frequencies in the case of very short polymorphisms (the extreme case being a single observation), null ‘observations’ of zero frequency were added to the start of each trajectory, with further ‘observations’, representing fixation or death as appropriate, being added to the end of the trajectory. The number of observations, n_o, added in each case was calculated as a function of the difference between sample times across the trajectory, dt_s, and the mean time to fixation of a trajectory across the simulation, \bar{t}_{fix}, each measured in generations

$$n_o = \max\{\bar{t}_{fix}/(10dt_s), 10\}$$ (15)

Additional ‘observations’ were added at intervals of dt_s. At these additional sample times, for trajectories identified as being non-neutral, effective selection coefficients were set to the locus selection coefficient if the deterministic estimate for the wild type frequency was in
the interval \([q_{\sigma_i}, 1 - q_{\sigma_i}]\), and to zero, representing neutral evolution, for allele frequencies outside of this interval. For trajectories not crossing the neutral threshold, effective selection coefficients were set uniformly to zero.

Simulated annealing For each simulation, and each set of values \(\{T, n_g, dt_s\}\), five separate annealing runs were carried out, each beginning with a different set of estimates for the locus selection coefficients \(\{\tilde{\sigma}_i\}\). At each step of the annealing process, a trial change was made to a randomly chosen \(\tilde{\sigma}_i\) of magnitude chosen from a uniform random distribution. If the resulting change in log likelihood, \(\Delta \log L\), was positive, this change was accepted, while if \(\Delta \log L\) was negative the change was accepted with probability \(e^{\beta \Delta \log L}\) for an annealing parameter \(\beta\). In the case where a change in a locus selection coefficient led to a change in log likelihood of precisely zero, the change was accepted if the new selection coefficient had a smaller magnitude than the previous selection coefficient. This step implies the null hypothesis that each locus evolves under neutral selection; if no data were observed at a locus, it would be assigned close to zero selection. The annealing parameter \(\beta\) used in the evaluation of changes in likelihood was set to an initial value of 0.002, increasing by a factor of 1.005 each generation. In the event of 80 consecutive rejections of changes to \(\{\tilde{\sigma}_i\}\) the magnitude of the random changes was decreased, the algorithm terminating after the third such set of rejections. In a sample set of calculations, across a variety of parameters, the mean standard deviation in a single optimized selection coefficients calculated across five annealing process was 0.04, measured in units of \(2N\sigma\).

Linked and unlinked analyses Analysis of the simulated population data was carried out using two distinct methods. In the first method, referred to from this point as the 'linked method', identification of selection coefficients was carried out precisely as described in the
methods above. In a second method, referred to as the 'unlinked method', selection coefficients were discerned without the inclusion of linkage, setting \(\tilde{\sigma}_i(t_k) = \sigma_i \) for all time points. Comparison of the results of the linked and unlinked methods gave an insight into the importance of linkage for correctly identifying selection effects.

Analysis of results from model data Having obtained predicted selection coefficients for each locus, two methods were applied to separate predicted driver loci from predicted passenger loci. In an initial measurement of the ability of the method to distinguish driver from passenger loci in a case where the number of driver loci is known to be equal to \(D \), the loci with the \(D \) highest selection coefficients were identified as drivers, the remaining \(L - D \) loci being identified as passengers. Using this approach, ROC curves were plotted comparing true and false positive identifications of drivers across cases in which the model had between 5 and 25 driver loci for a default set of parameters \(n_g = 100 \) and \(dt_s = 100 \), representing 1% sampling of the population in 1% of generations, and \(T = 5 \times 10^5 \), for each value of \(\sigma \). A comparison was made between results of the linked and unlinked methods. Optimised selection coefficients obtained for driver and passenger loci were examined, examining the effect of linkage on estimates of each of these values.

In a more thorough assessment of the performance of the method, a clustering algorithm was used to separate drivers from passenger loci. Loci with large negative selection coefficients (less than minus the mean absolute value of \(\{ \tilde{\sigma}_i \} \)) were automatically classified as passengers, while remaining loci were separated using a K-means clustering method, identifying initial cluster centres as the two loci with estimated selection coefficients closest to \(2N\sigma \) and zero respectively. The accuracy of identifying drivers and passenger loci was then calculated from the numbers of correctly and incorrectly classified loci:

\[
\text{Accuracy} = \frac{d^+ + p^+}{d^+ + d^- + p^+ + p^-}
\]

where \(d^+ \) is the number of correctly identified driver loci, \(p^+ \) is the number of correctly iden-
tified passenger loci, d^- is the number of incorrectly assigned passenger loci, and p^- is the number of incorrectly assigned driver loci. Mean accuracy values were calculated across simulated population histories with between 5 and 25 driver loci. Next, to assess the ability of the method to reproduce precise magnitudes of selection, the mean predicted selection coefficient was calculated over the pre-specified driver loci across simulated population histories having between 5 and 50 driver loci. Calculations were performed separately for population histories with each specified value of $2N\sigma$, and for a range of sampling parameters (T, dt, n_g). Results were compared for selection coefficients obtained using the linked and unlinked methods.

RESULTS

Measuring selection in a linked system In general, a good fit was observed between the frequencies inferred with the linked method and the observed allele frequencies. This is a non-trivial result as the inference is based on a deterministic approximation (see Methods) of a complex stochastic system. It is precisely due to this approximate description of the dynamics that the inference problem remains computationally tractable.

Figure 3 gives an illustration of the output generated by the inference at a single time point in a set of sample data.

[Figure 3 about here.] Comparison between the observed allele frequencies and those inferred shows errors where linkage between polymorphisms was ignored, but a close fit where linkage was included. The inclusion of linkage in the inference accounts for changes in the mutant allele’s effective fitness caused by changes in the background population. The graph of correct fitness values and inter-locus effects shows that linkage has a substantial effect on the locus selection coefficients and the resulting network of interactions is complex at the time-point shown. While the mutant alleles at each of the five polymorphic loci are all beneficial, the growth
of the mutant at locus 9 is opposed by the influence of the beneficial alleles at loci 2, 10, 14, and 15, leaving it under strong negative selection. The mutant at locus 2, while opposed by the influence of the mutant allele at locus 9, is positively influenced by the mutant alleles at loci 10, 14, and 15, so retaining a strong positive selection.

The distribution of haplotypes gives some insight into these fitness effects. While the beneficial allele at locus 9 is the only mutation in its haplotype, most other haplotypes contain two or more mutant alleles, and as such have higher fitnesses. Relative to the remainder of the population, the haplotype with the mutant at locus 9 is therefore under negative selection. By contrast, the haplotypes containing the mutant at locus 2, which span the majority of the population, are on average positively selected for, resulting in positive selection on the mutant at locus 2.

Graphs illustrating effective selection evaluated from the inferred selection coefficients show the ability of the linked method to capture interference between mutations and more generally the importance of linkage in the evolution of the system. At the time point in question, the unlinked method infers loci 2, 14 and 15 to be under weak positive selection, while loci 9 and 10 are close to neutral. Under the linked method, however, the inferred pattern of selection and linkage between loci is close to being correct, with for example locus 9 under strong negative selection, and locus 15 close to neutral.

We note here that the inferred selection coefficients represented in the graphs have been evaluated from the entire dataset, rather than simply for this time window. Differences between the values obtained through the linked and unlinked methods therefore reflect, to some extent, the ability of these models to explain the whole of the data. Replicas of the three graphs in which numerical values for the effective selection acting on each locus and the effects on the effective selection resulting from each pairwise interaction between loci are shown, are given in Supporting Figure S1.
Comparison of selection coefficients obtained with and without the incorporation of linkage

Examination of selection coefficients inferred with the linked method showed an improvement in two characteristics. First, driver loci inferred using the linked method had substantially more accurate (higher) selection coefficients than those obtained with the unlinked method. This is due to the former method accounting for clonal interference. Second, passenger loci at which a fixation occurred were inferred to have significantly lower selection coefficients under the linked method compared to the unlinked method. This result arises because the linked method can detect hitchhiking of neutral alleles with drivers.

Under the default parameters for the sampling process, 100 individuals were sampled from the population every 100 generations for a total of 5×10^5 generations. With these parameters, using the method of taking the D loci with the highest selection coefficients to identify drivers, the linked method showed a large improvement over the unlinked method in its ability to discern driver from passenger loci. Figure 4 shows ROC curves for the default model for various values of σ, the selection coefficient acting on driver loci in the population. Here, and throughout, this selection coefficient is expressed in terms of $2N\sigma$, where N is the population size.

At each level of selection, the accuracy of the linked method was greater than that of the unlinked method. With $2N\sigma=10$, the calculated accuracies were 0.85 and 0.79 for the linked and unlinked methods respectively, while with $2N\sigma=50$, the accuracies were 0.999 and 0.91. At the higher selection coefficients, the linked method separated driver and passenger loci almost perfectly.

The histograms of selection coefficients identified with the linked and unlinked methods
at $2N\sigma = 50$ showed a clear improvement by the former in the assignment of selection coefficients to driver loci. Under the linked method, inferred selection coefficients of drivers and passengers were well-separated into roughly Gaussian distributions, with clusters close to 0 and 1 (in units of $2N\sigma$), with mean selection coefficients for driver and passenger loci of 0.94 and 0.08 respectively. Under the unlinked method, the distribution of the inferred driver loci selection coefficients had a substantially lower mean of 0.41 resulting from the failure to recognise clonal interference between drivers, while the mean of the passenger loci selection coefficients was 0.07.

Although no significant difference between methods was seen between mean selection coefficients for passenger loci, an improvement was seen under the linked method in the assignment of selection coefficients for passenger loci at which a fixation event took place, with substantially lower mean selection coefficients being assigned. Supporting Figure S2 shows mean optimized selection coefficients for this subset of loci.

Performance of the method across varying sampling parameters The performance of both methods was tested across a range of sampling parameters, the accuracy in identifying drivers and passengers being quantified using a clustering method, and selection coefficients being measured for driver loci. Results for the linked method are shown in Figure 5, with equivalent figures for the unlinked method shown in Supporting Figure S3. For each parameter set, five different sets of sample frequencies were generated from the evolutionary history of the population. These sets of frequencies were analysed in five independent runs of the annealing process, so that each point in the figure represents a mean over at least 125 calculations (averaging also over at least five values of D). While statistical noise is still evident in the data, the overall trends are captured by the analysis.
The ability of the linked method to distinguish driver from passenger loci increased as the amount of sampling data increased, here quantified in terms of the number of generations sampled, T. Accuracies were higher at larger selection coefficients, due primarily to the increased difference between driver and passenger loci, but also because of the greater amount of information available for highly selected driver loci. At large selection coefficients, the probability of a mutant allele escaping genetic drift is increased, leading to a larger number of observed fixation events. Furthermore, fixations occur more quickly, allowing for more fixations to occur in a given time. In the simulation run here, a mean of 2.71 fixations per 10^5 generations were observed in each driver locus for $2N\sigma=100$, but only 0.38 fixations in the same time period for each driver locus for $2N\sigma=10$. For $2N\sigma=100$, an accuracy of greater than 0.95 was observed after 75000 generations. The same result was observed for $2N\sigma=50$ at 2×10^5 generations, while the accuracy for $2N\sigma=20$ is close to 0.95 after one million generations. As T increased, the accuracy of the method increased, representing better discrimination between drivers and passengers with more information available to the method. Perfect discrimination between driver and passenger loci was observed after one million generations for $2N\sigma=100$. Results obtained with the unlinked method were substantially worse, with an accuracy of less than 0.85 for all selection coefficients tested after two million generations.

Variance in the accuracy of the linked method for varying values of the sample size n_g show roughly constant performance for sample sizes greater than 100, with a decrease in performance at lower sample sizes. At the highest selection coefficients, good results are obtained at a sample size of 20, with accuracies of 0.97 achieved for $2N\sigma=100$, and $2N\sigma=50$, however accuracy is rapidly lost below this point. Comparison of locus selection coefficients obtained from simulations with $n_g = 5$, $n_g = 100$, and $2N\sigma = 50$ suggested poorer accuracy.
at the lowest sampling level to result from an increase in the variance of the inferred locus selection coefficients. Details are shown in Supporting Figure S3.

The accuracy of the linked method showed dramatic changes with increasing the time between sampling points, dt_s. At short sampling times, as already observed, high accuracies can be achieved. However, as dt_s increases, a decline in performance is seen, with an increased rate of decline at higher selection coefficients. At very long intervals between sample points, little information is collected about each trajectory, such that, in the extreme case, fixations are observed as changes in frequency from 0 to 1 at subsequent sample points. In such cases, measurements of linkage either cannot be made or become highly inaccurate when extrapolated over the time between sample points.

In systems for which every locus was a driver, improved selection coefficients were observed with the linked method compared to the unlinked method. Under the default sampling parameters, selection coefficients were underestimated using the unlinked method, with a larger underestimate at high selection coefficients. Mean inferred selection coefficients (in units of $2N\sigma$) varied from 0.29 at $2N\sigma = 100$ to 0.63 at $2N\sigma = 10$. Under the linked method, mean inferred selection coefficients for the all-driver case varied from 0.91 to 1.00, with no clear correlation between inferred coefficient and the size of σ.

Interestingly, analysis of the selection coefficients obtained for driver loci reveals a systematic error in the coefficients obtained. As T increases, the mean selection coefficient appears to tend to a limit which is less than one, with values closer to one obtained at lower selection coefficients. As dt_s increases, a dramatic fall in mean selection coefficients is seen, again with greater errors at higher selection coefficients. An explanation for this is discussed next.
Interference reduces the fitness of mutations Supposing the existence of a polymorphism at locus i, the function $\Sigma_i(t)$ was defined as the difference between the mean fitnesses of sequences in the population with and without the mutant allele at locus i at some time t. Further to this, the change in the selective benefit of the mutant allele at i after some time τ, resulting from changes in polymorphisms at other loci, is given by $\Sigma_i(t+\tau) - \Sigma_i(t)$. Figure 6 shows the mean of this statistic over all polymorphisms and all time steps τ calculated directly from simulations with 20 driver loci and a varying driver selection coefficient. Averaged over all polymorphic observations, the real change in selection is negative, indicating that the selective advantage of a mutant allele generally decreases with time. Because of this, the assumption made in the method that the effective selection coefficient will remain constant between sample points will, on a statistically consistent basis, produce an over-estimate of the selective effects in the system. This over-estimate, while initially small, increases as the interval between sample points increases both with the time interval τ, and with increasing selection coefficient. When selection coefficients are optimized, therefore, the increased selection coefficient generated by the constant fitness assumption will be compensated for by reducing the inferred selection coefficient, the lower selection coefficient combining with the overestimate of selection over time to recreate the behaviour of the system.

[Figure 6 about here.]

DISCUSSION

We have here given examples of the use of a method for quantifying selection in driver-passenger systems, and demonstrated its potential to separate driver from passenger loci in a model system. By accounting for the background set of polymorphisms on which a trajectory develops, the linked method corrects for clonal interference, which can reduce apparent selection coefficients, and, through recognition of fixation events occurring through hitchhiking with driver alleles, assigns lower selection coefficients to passenger loci at which the mutant allele reaches fixation.
Unsurprisingly, the performance achieved in separating driver and passenger loci depended to a great extent on the magnitude of selection acting on the driver loci, a greater driver selection coefficient describing a greater inherent difference between the two classes of loci. Here, a driver selection coefficient of $2N\sigma \geq 50$ led to accuracies greater than 95% under a range of conditions, while drivers at $2N\sigma = 20$ were more difficult to distinguish.

Variation in the sampling parameters gave a range of results. Under variation in the length of the simulation, an increase in the available data consistently improved performance. With an underlying selection coefficient defined by $2N\sigma = 100$, an accuracy of greater than 0.95 in separating driver from passenger loci was achieved in a 50-locus model after 75000 generations of sampling, captured by 750 sample points each containing 100 individuals. Under variance in the depth of sampling, consistent accuracy was achieved down to locus sample sizes of 20, well within the reach of next-generation sequencing methods. Finally, where the time between consecutive samples was varied, while good results were achieved at high sampling rates, increasing the sampling time was detrimental to the accuracy achieved. At the higher selection coefficients, greater than 95% accuracy was achieved up to a sample time of 400 generations, representing the collection of, on average, 10.7 and 6.2 samples within the mean time for a fixation event at $2N\sigma = 50$ and $2N\sigma = 100$ respectively.

Reproducing precise values of selection coefficients proved a challenge, with the assumption of constant selection between sampling points leading to a systematic underestimate in the coefficients assigned to driver loci. Due to the computational and theoretical difficulties inherent in modeling stochastic evolution of multiple linked loci over a number of generations, some form of approximation to model the selection acting on trajectories between sampled time points is necessary (evaluation of selection using a trajectory including stochastic effects has been carried out in a single locus case (Bollback et al. 2008)). We here leave the task of
improving on the constant selection between the sample points approximation to future work.

Considering the application of the method to specific examples of experimental data, we note that care must be taken in the interpretation of the parameters discussed above and their effect on the accuracy potentially achievable. For the number of generations sampled, while the amount of information available increases linearly with time, the rate of this increase is a function of the inherent properties of the system. Under a higher mutation rate, more events would be observed per generation, such that more information would be available in a set number of generations. While if the selection coefficient was increased, more mutations in driver loci would escape being removed at low frequencies by genetic drift, such that more fixation events would be seen. Here, where division of the entire set of loci into driver and passenger sets was the goal, a large amount of data was required, the observation of at least one significant event in a driver locus being necessary for its identification as a driver. Accounting for driver loci in which no fixation was observed improved results at low values of T (data not shown). Depending on what is desired to be learnt from a system, and depending on the underlying dynamics of the system in question, the numerical values for parameters required for a given accuracy may vary substantially.

For the purposes of method development we have here considered a simplified model of a viral genome under constant selective pressure at each locus. However, given the caveats mentioned above, we suggest that the approach we present, with suitable modification, has the potential to be applied to a wide range of biological systems. While, as mentioned above, the use of genetic markers can be used to identify the fitness of subsets of a population (LANG et al. 2011), where a greater amount of sequence information is available, the effect of the genetic background on the development of individual alleles can be quantified. Even in systems for which a small number of mutations are observed, the core component of the method, of fitting trajectories which obey an effectively time-dependent model of selection to observed
allele frequencies, can be applied.

While many simplifications were made in the application of the inference method presented here, the method has potential to be extended in several directions. Considering biological data, with allowance for synonymous and non-synonymous mutations, the binary locus model used here could be extended. Replacement of the constant sampling time intervals and sampling depths with variable measures is easily implementable within the current framework.

More complex evolutionary scenarios could also be modelled. For example, while recombination decreases linkage between alleles, disrupting the driver passenger paradigm considered here, it would not necessarily prevent application of the method. If the rate of recombination were low relative to the rate of sampling, estimates of linkage captured by haplotype sampling would still be accurate enough to provide a meaningful picture of linkage between polymorphisms until the next sample was taken, thereby allowing for improved discernment of selection in the system.

A larger challenge to the model is that of fitness effects which are epistatic (Weinreich et al. 2005), frequency- and/or genuinely time-dependent reflecting an underlying fitness seascape (Mustonen and Lässig 2009) (as opposed to the effectively time-dependent selection considered here caused by linkage even if the underlying additive fitness landscape is static). While epistatic fitnesses for each pair of loci could easily be incorporated into the model, the multiplication of terms to be learnt would provide a substantial challenge given any but the largest dataset. Modeling of epistasis, therefore, would likely involve some further simplification. Supposing loci interacting through epistasis not to be simultaneously polymorphic, selection coefficients could be determined on a trajectory, rather than a locus level. The same remedy would also be applicable to time-dependent selection if the pres-
sure were to stay roughly constant on the timescale of polymorphism lifetimes. Consistent changes in the fitness detected for trajectories at a given locus would then provide an indication of such effects. In general, we suggest that problems in applying the method to more complex systems arise more from the availability of data than from the theoretical difficulty of adapting the model given here.

ACKNOWLEDGMENTS

We would like to acknowledge the Wellcome Trust for support under grant reference 091747. This research was also supported in part by the National Science Foundation under Grant No. NSF PHY05-51164 during a visit at the Kavli Institute of Theoretical Physics (KITP, Santa Barbara, CA). We would like to thank Stephan Schiffels for advice regarding the implementation of the Wright-Fisher model and participants of the KITP program on Microbial and Viral Evolution for discussions.

References

List of Figures

1. Flow chart illustrating the steps of the method. .. 34

2. Illustration of the method of assigning a likelihood to a set of locus selection coefficients. Data here are presented for a single trajectory in a model two-locus system. **Top:** Two-locus haplotype frequencies (coloured lines) are sampled at each point in time. **Middle:** The sample two-locus haplotype frequencies, along with current estimates of the locus selection coefficients, are used to approximate the time-dependent effective selection coefficients $\sigma_e^i(t_k)$ for the trajectory which has reached fixation. Red dots indicate the estimated selection coefficient, $\tilde{\sigma}_e^i(t_k)$, at each time point, while the accompanying red line gives the approximate selection coefficient propagated over time (i.e. the selection is kept constant until the next sample). The real effective selection coefficient, $\sigma_e^i(t_k)$, measured directly from the simulation, is represented by the grey line. Correct locus selection coefficients ($\sigma_i=0.0025$) have been used to calculate the estimates shown here. **Bottom:** Deterministic curves satisfying these selection coefficients are fitted to the observed allele frequencies using a maximum likelihood method. Observed allele frequencies $\hat{q}_1^i(t_k)$ are shown as blue dots. Estimated allele frequencies $\tilde{q}_1^i(t_k)$ are shown as red dots, with the accompanying red line describing the estimated propagation of the allele frequency. The true allele frequency $q_1^i(t)$ is shown as a grey line. The log likelihood for the trajectory was obtained from the fit between the $\tilde{q}_1^i(t_k)$ and $\hat{q}_1^i(t_k)$ values. Summing the log likelihoods over all trajectories gave the overall fit to the given locus selection coefficients. ... 35
The linked method accurately reproduces observed allele frequencies and underlying selection coefficients. Top: Observed and inferred allele frequencies for loci which are polymorphic at the time point indicated by the vertical line of a simulated population. Allele frequencies inferred by the model (red lines), optimized using the unlinked (left) and linked (right) methods. Observed frequencies are plotted as grey columns, with lighter colours representing higher frequencies. Frequencies are stacked vertically, with the position on the vertical axis being calculated as the locus at which the polymorphism occurs, plus the frequency of the trajectory itself. Loci that are not polymorphic at the time indicated by the vertical line are not shown. Middle: Correct values for time-dependent selection coefficients and inter-locus effects at the time of sampling (left). Nodes are labelled by locus, while directed edges between loci represent inter-locus selection effects $\sigma_{ij}(t)$. Negative effects, which decrease selection at the targeted locus, are coloured blue, while positive effects, which increase selection, are coloured red. In each case, deeper colours represent stronger effects. Self-directed edges represent the time-dependent effective selection $\sigma_i(t)$ acting at each locus. Values were calculated using the locus selection coefficients assigned to the underlying population. Distribution of mutant alleles across haplotypes (right). Haplotypes are plotted horizontally, with coloured blocks representing mutant alleles at the loci enumerated on the horizontal axis. The top 25% of the population, for example, has the mutant allele at loci 2, 10, and 14. Bottom: Estimates for effective selection and inter-locus effects at the time of sampling, estimated using unlinked (left) and linked (right) models. Graphs are plotted in an identical manner to the correct values middle left. Results are taken from a system with 20 drivers of strength $2N\sigma = 50$, sampled to a depth of 100 every 100 generations.

Incorporation of linkage greatly improves discrimination between driver and passenger loci. Top: ROC curves for the default model system sampled over 5×10^5 generations to a depth of 100 every 100 generations, for values of $2N\sigma$ equal to 10 (green), 20 (yellow), 50 (red), and 100 (blue). Curves describing the accuracy with which driver loci were called are shown for the methods including linkage (left, solid lines) and excluding linkage (right, dashed lines). Bottom: Histograms of the inferred locus selection coefficients (in units of $2N\sigma$) obtained using the methods with linkage (left) and without linkage (right) for $2N\sigma = 50$, showing selection coefficients for true driver loci in red, and those for true passenger loci in blue. Inferred selection coefficients are from five annealing runs carried out on each of five sample datasets. The number of driver loci in systems varied between 5 and 50, giving a total of 3125 driver loci and 4375 passenger loci in each histogram.
Performance of the linked method under varying data collection scenarios. Variation in the accuracy of the method in identifying driver and passenger loci (left column) and in the reproduction of selection coefficients (in units of $2N\sigma$) for driver loci (right column). Default parameters were a number of generations sampled of $T = 5 \times 10^5$, a sampling depth of $n_g = 100$, and a sampling frequency of $dt_s = 100$ generations. **Top:** Variation in performance under different values of T, the number of generations sampled. **Middle:** Variation in performance under different values of n_g, the number of individuals sampled at each time point. **Bottom:** Variation in performance given different values of dt_s, the time between sample points. Data is plotted for values of $2N\sigma$ equal to 100 (blue), 50 (red), 20 (yellow) and 10 (green). Accuracy values are averaged over simulations with 5, 10, 15, 20, and 25 drivers, while mean σ values are averaged over simulations with 5, 10, 15, 20, 25, and 50 drivers.

Interference decreases the fitness of a mutant allele over time. The mean change in the difference in fitness between sequences with the mutant or the wild-type allele at a given locus in the sequence, measured as a function of time. Changes in the selection coefficient are measured in units of $2N\sigma$. Data was calculated across five simulations of length 2×10^6 generations containing 20 driver and 30 passenger loci under varying selection coefficients, and for selection coefficients $2N\sigma$ equal to 100 (blue), 50 (red), 20 (yellow) and 10 (green).
Figure 1: Flow chart illustrating the steps of the method.
Figure 2: Illustration of the method of assigning a likelihood to a set of locus selection coefficients. Data here are presented for a single trajectory in a model two-locus system. **Top:** Two-locus haplotype frequencies (coloured lines) are sampled at each point in time. **Middle:** The sample two-locus haplotype frequencies, along with current estimates of the locus selection coefficients, are used to approximate the time-dependent effective selection coefficients $\sigma^e_i(t_k)$ for the trajectory which has reached fixation. Red dots indicate the estimated selection coefficient, $\tilde{\sigma}^e_i(t_k)$, at each time point, while the accompanying red line gives the approximate selection coefficient propagated over time (i.e. the selection is kept constant until the next sample). The real effective selection coefficient, $\sigma^e_i(t_k)$, measured directly from the simulation, is represented by the grey line. Correct locus selection coefficients ($\sigma_i=0.0025$) have been used to calculate the estimates shown here. **Bottom:** Deterministic curves satisfying these selection coefficients are fitted to the observed allele frequencies using a maximum likelihood method. Observed allele frequencies $\hat{q}^1_i(t_k)$ are shown as blue dots. Estimated allele frequencies $\tilde{q}^1_i(t_k)$ are shown as red dots, with the accompanying red line describing the estimated propagation of the allele frequency. The true allele frequency $q^1_i(t)$ is shown as a grey line. The log likelihood for the trajectory was obtained from the fit between the $\tilde{q}^1_i(t_k)$ and $\hat{q}^1_i(t_k)$ values. Summing the log likelihoods over all trajectories gave the overall fit to the given locus selection coefficients.
Figure 3: The linked method accurately reproduces observed allele frequencies and underlying selection coefficients. Top: Observed and inferred allele frequencies for loci which are polymorphic at the time point indicated by the vertical line of a simulated population. Allele frequencies inferred by the model (red lines), optimized using the unlinked (left) and linked (right) methods. Observed frequencies are plotted as grey columns, with lighter colours representing higher frequencies. Frequencies are stacked vertically, with the position on the vertical axis being calculated as the locus at which the polymorphism occurs, plus the frequency of the trajectory itself. Loci that are not polymorphic at the time indicated by the vertical line are not shown. Middle: Correct values for time-dependent selection coefficients and inter-locus effects at the time of sampling (left). Nodes are labelled by locus, while directed edges between loci represent inter-locus selection effects $\sigma_{ij}(t)$. Negative effects, which decrease selection at the targeted locus, are coloured blue, while positive effects, which increase selection, are coloured red. In each case, deeper colours represent stronger effects. Self-directed edges represent the time-dependent effective selection $\sigma_i^e(t)$ acting at each locus. Values were calculated using the locus selection coefficients assigned to the underlying population. Distribution of mutant alleles across haplotypes (right). Haplotypes are plotted horizontally, with coloured blocks representing mutant alleles at the loci enumerated on the horizontal axis. The top 25% of the population, for example, has the mutant allele at loci 2, 10, and 14. Bottom: Estimates for effective selection and inter-locus effects at the time of sampling, estimated using unlinked (left) and linked (right) models. Graphs are plotted in an identical manner to the correct values middle left. Results are taken from a system with 20 drivers of strength $2N\sigma = 50$, sampled to a depth of 100 every 100 generations.
Incorporation of linkage greatly improves discrimination between driver and passenger loci. Top: ROC curves for the default model system sampled over 5 x 10^5 generations to a depth of 100 every 100 generations, for values of 2Nσ equal to 10 (green), 20 (yellow), 50 (red), and 100 (blue). Curves describing the accuracy with which driver loci were called are shown for the methods including linkage (left, solid lines) and excluding linkage (right, dashed lines). Bottom: Histograms of the inferred locus selection coefficients (in units of 2Nσ) obtained using the methods with linkage (left) and without linkage (right) for 2Nσ = 50, showing selection coefficients for true driver loci in red, and those for true passenger loci in blue. Inferred selection coefficients are from five annealing runs carried out on each of five sample datasets. The number of driver loci in systems varied between 5 and 50, giving a total of 3125 driver loci and 4375 passenger loci in each histogram.
Figure 5: **Performance of the linked method under varying data collection scenarios.** Variation in the accuracy of the method in identifying driver and passenger loci (left column) and in the reproduction of selection coefficients (in units of $2N\sigma$) for driver loci (right column). Default parameters were a number of generations sampled of $T = 5 \times 10^5$, a sampling depth of $n_g = 100$, and a sampling frequency of $dt_s = 100$ generations. **Top:** Variation in performance under different values of T, the number of generations sampled. **Middle:** Variation in performance under different values of n_g, the number of individuals sampled at each time point. **Bottom:** Variation in performance given different values of dt_s, the time between sample points. Data is plotted for values of $2N\sigma$ equal to 100 (blue), 50 (red), 20 (yellow) and 10 (green). Accuracy values are averaged over simulations with 5, 10, 15, 20, and 25 drivers, while mean σ values are averaged over simulations with 5, 10, 15, 20, 25, and 50 drivers.
Figure 6: **Interference decreases the fitness of a mutant allele over time.** The mean change in the difference in fitness between sequences with the mutant or the wild-type allele at a given locus in the sequence, measured as a function of time. Changes in the selection coefficient are measured in units of $2N\sigma$. Data was calculated across five simulations of length 2×10^6 generations containing 20 driver and 30 passenger loci under varying selection coefficients, and for selection coefficients $2N\sigma$ equal to 100 (blue), 50 (red), 20 (yellow) and 10 (green).