Cell polarity in *Saccharomyces cerevisiae* depends on proper localization of the Bud9 landmark protein by the EKC/KEOPS Complex

Yu Kato, Hiroshi Kawasaki, Yoshifumi Ohyama, Takashi Morishita¹, Hiroshi Iwasaki², Tetsuro Kokubo and Hisashi Hirano

Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Suehiro-cho 1-7-29, Tsurumi-ku, Yokohama 230-0045, Japan

Present Address
¹ Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
² Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuda-cho 4259 B-8, Midori-ku, Yokohama 256-8501, Japan

Running head: EKC/KEOPS complex localizes Bud9p

Keywords: cell polarity, EKC/KEOPS, *BUD32, BUD9*, bud site selection

Corresponding author: Hiroshi Kawasaki

mailing address: Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, Suehiro-cho 1-7-29, Tsurumi-ku, Yokohama 230-0045, Japan

phone: 045-506-7556, FAX: 045-506-7667, e-mail: kawasaki@yokohama-cu.ac.jp

Copyright 2011.
ABSTRACT

In diploid *Saccharomyces cerevisiae* cells, bud-site selection is determined by two cortical landmarks, Bud8p and Bud9p, at the distal and proximal poles respectively. Their localizations depend on multigenerational proteins, Rax1p/Rax2p. Many genes involved in bud site selection were identified previously by genome-wide screening of deletion mutants, which identified *BUD32* that causes a random budding in diploid cells. Bud32p is an atypical kinase involved in a signaling cascade of Sch9p kinase, the yeast homolog of Akt/PKB, and a component of the EKC/KEOPS complex that functions in telomere maintenance and transcriptional regulation. However, its role in bipolar budding has remained unclear. In this report, we show that the Sch9p kinase cascade does not affect bipolar budding but that the EKC/KEOPS complex regulates the localization of Bud9p. The kinase activity of Bud32p, which is essential for the functions of the EKC/KEOPS complex but is not necessary for the Sch9p signaling cascade, is required for bipolar bud site selection. *BUD9* is necessary for random budding in the each deletion mutant of EKC/KEOPS components, and *RAX2* is genetically upstream of EKC/KEOPS genes for the regulation of bipolar budding. The asymmetric localization of Bud9p was dependent on the complex, but Bud8p and Rax2p were not. We concluded that the EKC/KEOPS complex is specifically involved in the regulation of Bud9p localization downstream of Rax1p/Rax2p.
The generation of cell polarity is important for the function of many cell types and underlies various processes such as cell division, differentiation, cell migration, cell–cell signaling, and fertilization (FREIFELDER 1960; MOOSEKER 1985; HYMAN and WHITE 1987; BEDINGER et al. 1994; CHANT and PRINGLE 1995; KRAUT et al. 1996). In the budding yeast Saccharomyces cerevisiae, such polarization induces asymmetric growth to form a bud that becomes the daughter cell. Yeast cells polarize and divide by budding in two patterns: the axial pattern of haploid a or α cells and the bipolar pattern of diploid a/α cells. Axial budding in the haploid a and α cells forms chain-like buds adjacent to the immediately preceding bud site, while bipolar budding in diploid a/α cells forms cluster-like buds at either the proximal pole or its opposite distal pole. Alternate bud site selections between proximal and distal poles usually occur in bipolar budding.

The establishment of yeast cell polarity undergoes three basic steps (DRUBIN and NELSON 1996). First, site selection occurs on the cell surface, a spatial landmark, where cells will polarize. The bud sites during axial budding are marked with the axial landmarks Axl1p, Axl2p, Bud3p, and Bud4p (FUJITA et al. 1994; CHANT et al. 1995; HALME et al. 1996; SANDERS and HERSKOWITZ 1996). The bipolar landmarks Bud8p and Bud9p of the distal and proximal poles, respectively, determine the polarization axis of budding in diploid cells (HARKINS et al. 2001). These cortical landmarks provide recognition sites for the Rsr1p/Bud2p/Bud5p GTPase signaling module (KANG et al. 2001; PARK and BI 2007). Next, the GTPase module transmits positional information from the axial and bipolar cortical markers to the protein Cdc42p GTPase and its guanine nucleotide-exchange factor (GEF) Cdc24p for polarity establishment. Finally, Cdc42p recruits the machinery that organizes and polymerizes actin, actin-associated proteins, and septins to the selected site of growth.

Numerous proteins have been found to be involved in bud site selection (PARK and BI 2007). A genome-wide screening of homozygous deletion mutants identified 127 mutants
representing three different bud site phenotypes: unipolar, axial-like, and random (NI and SNYDER 2001). Among them, 112 mutants displayed strong or weak random budding phenotypes. The homozygous deletion mutant of the gene \textit{BUD32} displayed a random budding pattern (NI and SNYDER 2001). \textit{BUD32} was originally found as a gene encoding an atypical protein kinase that belongs to the piD261 family of atypical Ser/Thr protein kinases found in virtually all eukaryotic and archaeal organisms (STOCCHETTO \textit{et al.} 1997). Recently, two independent studies of haploid cells have shown that Bud32p is a component of the KEOPS (kinase, putative endopeptidase, and other proteins of small size) or the EKC (endopeptidase-like, kinase, chromatin-associated) complexes with functions of telomere maintenance and transcriptional regulation, respectively (DOWNEY \textit{et al.} 2006; KISSELEVA-ROMANOVA \textit{et al.} 2006). Cgi121p, a component of the KEOPS complex, was identified by a genome-wide screen as a suppressor of \textit{cdc13-1}, an allele of the gene encoding the telomere-capping protein Cdc13p (DOWNEY \textit{et al.} 2006). The components of the KEOPS complex containing Cgi121p are the protein kinase Bud32p, the putative peptidase Kae1p, and the uncharacterized protein Gon7p. Deletion of \textit{BUD32} or genes encoding other KEOPS components produced phenotypes with short telomeres and failed to synthesize de novo telomeres to DNA double-stranded breaks (DOWNEY \textit{et al.} 2006). The EKC complex contains a homolog of cancer-testis antigens (Pcc1p) and four additional proteins found in the KEOPS complex. Pcc1p is a transcription factor, and its deletion affects the expression of several genes regulated by \(\alpha\)-factor and galactose (KISSELEVA-ROMANOVA \textit{et al.} 2006). Bud32p is phosphorylated by Sch9p kinase, a yeast member of the Akt/PKB subfamily. The phosphorylation of Bud32p positively regulates its ability to interact with Grx4p and to phosphorylate it (PEGGION \textit{et al.} 2008). The signaling pathway from Akt/PKB (homolog of Sch9p) to PRPK (homolog of Bud32p) is evolutionary conserved. Sch9p kinase regulates the nutrient signaling pathway in yeast (ROOSEN \textit{et al.} 2005). The
function of Bud32p in this pathway is independent of the role in the EKC/KEOPS complex (PEGGION et al. 2008).

Genes that are specifically linked to the random budding of diploid cells encode factors important for the localization of bipolar cortical landmarks (CASAMAYOR and SNYDER 2002). Diploid cells select two poles for bipolar budding at the poles proximal or distal to the birth scar, which are determined by two cortical landmarks, Bud8p and Bud9p, respectively. BUD8 and BUD9 were originally identified as specific genes essential for normal bipolar budding. The bud8Δ and bud9Δ mutants bud at the proximal and distal poles, respectively (HARKINS et al. 2001). In addition, Bud8p and Bud9p are localized at the distal and proximal poles, respectively (HARKINS et al. 2001). Bud9p is also localized at the distal pole, whose localization may inhibit the function of Bud8p through an interaction between the two (TAHERI et al. 2000). Previous study suggests that many of the genes that specifically cause random budding, when deleted, are associated with the localization of Bud8p (NI and SNYDER 2001). Rax1p and Rax2p are interdependently related in the maintenance of bipolar budding (KANG et al. 2004). The genes encoding these proteins were identified by screening genes that restored bipolar budding patterns in the haploid axl1Δ mutant (FUJITA et al. 1994). Bud8p and Bud9p interact with and depend on Rax1p and Rax2p, respectively, for their localization (KANG et al. 2004). The delivery of Bud8p and Bud9p to the presumptive bud site and mother-bud neck, respectively, is dependent on actin. The delivery of Bud9p is also dependent on septin (SCHENKMAN et al. 2002).

In this paper, we report that the Sch9p kinase cascade does not associate with bipolar budding, but that the EKC/KEOPS complex is involved in bipolar budding. The deletion mutants of each EKC/KOEPS component displayed a random budding pattern, and the phenotype was suppressed by the deletion of BUD9, suggesting that Bud9p is a cause of random budding in these mutants. Consistent with phenotypic analysis, the asymmetric
localization of GFP-Bud9p was dependent on the EKC/KEOPS complex, but GFP-Bud8p was not. The localization of Bud9p is also regulated interdependently by Rax1p/Rax2p. The phenotype of double mutants of each EKC/KEOPS gene and RAX2 was changed to that similar to the *rax2Δ* mutant, which showed a random budding pattern specifically in diploid cells. The localization of Rax2p was normal even in *bud32Δ* and other mutant cells with deleted EKC/KEOPS components. These results suggest that the EKC/KEOPS complex is required for the localization of Bud9p and acts as a downstream factor of Rax2p.

MATERIALS AND METHODS

Yeast strains, culture medium, plasmids, and recombinant DNA methods:

Homozygous deletion mutants were generated by mating MATα cells with MATα cells or by transformation of the plasmid expressing the HO endonuclease in haploid cells, which is expected to cause mating-type switching of MATα cells to MATα or MATα cells to MATα, and hence subsequent mating between MATα and MATα cells to form a homozygous diploid. Table S1 summarizes the yeast strains used in this study. Yeast cells were grown in yeast extract peptone dextrose (YPD; 2% (w/v) bacto-peptone, 1% (w/v) yeast extract, and 2% (w/v) glucose) or in synthetic defined (SD) medium (0.2% (w/v) yeast nitrogen base without amino acids and ammonium sulfate, 0.5% (w/v) ammonium sulfate and 2% (w/v) glucose), or in synthetic complete (SC) medium (0.2% (w/v) yeast nitrogen base without amino acids and ammonium sulfate, 0.5% (w/v) ammonium sulfate, 2% (w/v) glucose, and complete amino acids) lacking appropriate amino acids to maintain various plasmids. Plasmid preparation was conducted with *Escherichia coli* XL10 GOLD (Stratagene, La Jolla, CA, USA) grown in Luria–Bertani medium (0.5% (w/v) NaCl, 1% (w/v) yeast extract, and 1% (w/v) tryptone) containing 50 µg ml⁻¹ ampicillin. Solid media were made with 2% agar. Table S2 summarizes
the plasmids used in this study. Standard methods of yeast genetics and DNA manipulation (GIETZ et al. 1992; AUSUBEL et al. 1995; LONGTINE et al. 1998) were used, except where noted. Polymerase chain reaction (PCR) was performed using KOD FX DNA polymerase (Nacalai Tesque, Kyoto, Japan). Oligonucleotide primers shown in Table S3 were synthesized and purchased from Invitrogen (Tokyo, Japan).

Plasmids: The pYC01 was created with pRS425 (CHRISTIANSON et al. 1992) by inserting a fragment containing an upstream sequence of 808 bp, an open reading frame of BUD8, and a downstream sequence of 517 bp. PCR was performed to amplify the BUD8 region with the primer set BUD8a/BUD8b and the genomic DNA of the BY4743 yeast strain as a template. The resulting XhoI/SpeI fragment was cloned into XhoI/SpeI-digested pRS425. Detailed procedures for the preparation of pYC03 to insert epitope tags using a MluI cleavable site (5'-ACGCGT-3') just downstream of the start codon of BUD8 have been reported (KATO et al. 2009). For green fluorescent protein (GFP) tagging, PCR was performed using the primer set GFPa/GFPb and pFA6a-GFP^{S65T}-kanMX6 (LONGTINE et al. 1998) as a template. The resulting MluI fragment was incubated with T4 polynucleotide kinase (T4 PNK) (Takara Shuzo Co., Kyoto, Japan), and then ligated with EcoRV-digested pBluescript (SK–) to create pYC05. MluI-digested pYC05 was separated using 1.5% agarose gel electrophoresis and gel-extracted. The resulting insert was ligated with MluI-digested pYC03 to generate pYC14. The GFP-Bud9p fragment was cloned into pRS426 (CHRISTIANSON et al. 1992) using the same procedure to generate the pYC06.

The pYC09 was constructed to delete GON7. PCR was first performed to amplify the GON7 region with the primer set GON7a/GON7b, with genomic DNA of the BY4743 yeast strain as the template. The resulting fragment containing an upstream 570 bp, an open reading frame of GON7, and a downstream 519 bp was phosphorylated with T4 PNK and then cloned in EcoRV-digested pBluescript (SK–) to create pYC07. Deletion of the open reading frame of
GON7 and creation of a MluI restriction site to generate pYC08 were performed by PCR using the primer set GON7c/GON7d and pYC07 as a template. For cloning the URA3 region as a selective marker, PCR was next performed using the primer set URA3a/URA3b and genomic DNA of B8032 strain as the template. The resulting MluI fragment containing an upstream 871 bp, an open reading frame of URA3; a downstream 1000 bp was digested with MluI and then cloned into MluI-digested pYC08 to create pYC09.

For FLAG tagging, PCR was performed using a primer set, FLAGa/FLAGb, and pTM55 as the template. The resulting fragment was digested with MluI and then ligated with MluI-digested pYC04 to create pYC10.

The pYC11 was created with pBluescript (SK-) by inserting a fragment containing an upstream sequence of 520 bp, an open reading frame of BUD32, and a downstream sequence of 789 bp. PCR was performed to amplify the BUD32 region with the primer set BUD32a/BUD32b and the genomic DNA of the BY4743 yeast strain as a template. The resulting SpeI/XhoI fragment was cloned into SpeI/XhoI-digested pBluescript (SK-) to generate pYC11. Site-directed mutagenesis was performed to insert a MluI cleavable site (5'-ACGCGT-3') just upstream of the stop codon of BUD32 with primer set BUD32c/BUD32d and pYC11 as a template to generate pYC12.

Plasmids, pYC13 and pYC15, were created with pBluescript (SK-) by replacing base pairs of BUD32 to mutate to alanine at Lys52 and Ser258 of Bud32p, respectively. PCR was performed to replace base pairs with primer sets BUD32e/BUD32f, BUD32g/BUD32h and pYC12 as a template to generate pYC13 and pYC15, respectively. The pYC13 was then digested with SpeI/XhoI and transferred the insert to pRS306 to generate pYC16.

MluI-digested pYC05 was separated using 1.5% agarose gel electrophoresis and gel-extracted. The resulting insert was ligated with MluI-digested pYC12, pYC13 and pYC15 to generate pYC17, pYC18 and pYC19, respectively. The resulting plasmids were then digested
with SpeI/XhoI and transferred the inserts to pRS306 to generate pYC20, pYC21 and pYC22, respectively.

All sequences were verified using an ABI 3010 sequencer (Applied Biosystems, Foster City, CA, USA).

Strains: Strains expressing Rax2p-GFP, CCY032, and CCY033 were created by the one-step tagging method using PCR product (LONGTINE et al. 1998). A cassette of GFP^S65T-kanMX6 just upstream of the stop codon of RAX2 using the primer set RAX2-GFPa/RAX2-GFPb and pFA6a-GFP^S65T-kanMX6 as a template was amplified by PCR. The BY4741 and BY4742 strains were transformed with the resulting fragments to create strains CCY032 and CCY033, respectively. The transformants were incubated on YPD plates at 30ºC for 1 day, and then selected to YPD plates with G418 (100 µg ml⁻¹). The correct insertion of GFP^S65T-kanMX6 was verified by PCR using genomic DNA of candidates as the template. The haploid strains CCY032 and CCY033 were mated on YPD plates for 1 day at 30ºC and then selected on SC-Met/-Lys plates for 2 days at 30ºC to obtain the diploid strain expressing Rax2p-GFP (CCY034).

The GON7 deletion strains (CCY015, CCY016, CCY022 and CCY025) were created by homologous recombination with PCR products from pYC09. PCR was performed using the primer set GON7a/GON7b and pYC09 as the template. The resulting fragment was transformed in bud32Δ (CCY001), cgi121Δ (CCY004), bud8Δ (CCY010), and bud9Δ (CCY012) mutants, respectively, and then the transformants were grown on SC-Ura for 3 days at 25ºC. Alternatively, the one-step disruption method using PCR products was used to delete GON7 in RAX2-GFP (CCY034) or rax2Δ (CCY044) strains. PCR was performed using the primer set GON7e/GON7f and pFA6a-His3MX6 as the template. The resulting fragment was transformed in the diploid strains CCY034 and CCY044, and then the transformants were grown in SC-His at 25ºC for 3 days. The resulting heterozygous strains,
CCY039 and CCY049, were then confirmed by PCR using these genomic DNAs as templates to verify disruption of \textit{GON7}. After dissection and selection of spores from these strains, PCR was used to confirm the deletion of \textit{GON7} and \textit{RAX2} using genomic DNA of these segregates as the template to obtain the haploid strains CCY040 and CCY050, respectively.

MAT\textalpha{} or MAT\textalpha{} was identified by mating with reference strains on SD plates for 3 days at 25\degree{}C.

The strain expressing Bud32p-GFP (CCY052) were created by homologous recombination with a linearized fragment of pYC20, respectively. The pYC20 were digested with \textit{SphI} and purified by a gel-extraction. The resulting linearized fragments were transformed in BY4741 strain. Transformants were incubated on YPD plate at 25\degree{}C for 3 days and then transferred to SC plate with 5-FOA (1 mg ml-1) at 25\degree{}C for 3 days. After the single isolation of colonies on YPD plate, the resulting strain (CCY052) was confirmed by PCR using these genomic DNAs as templates to verify the correct insertion of \textit{BUD32-GFP}. Diploid \textit{BUD32-GFP} strain (CCY053) was generated by transformation of the plasmid expressing the HO endonuclease in CCY052 strain. The growth rate of resulting strain (CCY053) was confirmed to be identical to that of BY4743 strain by a spotting assay.

Strains expressing Bud32p (K52A) (CCY064), Bud32p (K52A)-GFP (CCY054 and CCY055) and Bud32p (S258A)-GFP (CCY067) were created by homologous recombination with a linearized fragment of pYC16, pYC21 and pYC22, respectively, using the same procedure to generate CCY052. Diploid \textit{bud32 (K52A)-GFP} strain (CCY056) was generated by mating CCY054 with CCY055 and diploid \textit{bud32 (S258A)-GFP} strain (CCY068) was generated by transformation of the plasmid expressing the HO endonuclease in CCY067.

Strains expressing Bud32p-13myc (CCY062) and Bud32p (K52A)-13myc (CCY065) were created by the one-step tagging method using PCR product (LONGTINE \textit{et al.} 1998). A cassette of 13Myc-kanMX6 just upstream of the stop codon of \textit{BUD32} using the primer set
BUD32i/BUD32j and pFA6a-13Myc-kanMX6 as a template was amplified by PCR. The BY4741 and CCY064 strains were transformed with the resulting fragment to generate strains CCY062 and CCY065, respectively. The transformants were incubated on YPD plates at 30°C for 1 day, and then selected to YPD plates with G418 (100 µg ml\(^{-1}\)). The correct insertion of 13Myc-kanMX6 was verified by PCR using genomic DNA of candidates as the template. Diploid strains (CCY063 and CCY066) were generated by transformation of the plasmid expressing the HO endonuclease in CCY062 and CCY065, respectively. The growth rate of resulting strain (CCY063) was confirmed to be identical to that of BY4743 strain by the spotting assay.

Strains expressing Cdc11p-GFP (CCY071 and CCY072) were created by the one-step tagging method using PCR product (LONGTINE et al. 1998). A cassette of GFP\(^{\text{S65T}}\)-kanMX6 just upstream of the stop codon of CDC11 using the primer set CDC11a/CDC11b and pFA6a-GFP\(^{\text{S65T}}\)-kanMX6 as a template was amplified by PCR. The BY4741 and BY4742 strains were transformed with the resulting fragments to generate strains CCY071 and CCY072, respectively. The transformants were incubated on YPD plates at 30°C for 1 day, and then selected to YPD plates with G418 (100 µg ml\(^{-1}\)). The correct insertion of GFP\(^{\text{S65T}}\)-kanMX6 was verified by PCR using genomic DNA of candidates as the template. Diploid strain (CCY073) was generated by mating CCY071 with CCY072. The growth rate of resulting strain (CCY073) was confirmed to be identical to that of BY4743 strain by the spotting assay.

Analysis of budding patterns: Cells grown to late-log phase were harvested by centrifugation at 3000 \(\times\) g for 5 min, washed twice, and resuspended in water. Cells were fixed with a paraformaldehyde solution to a final concentration of 3.7%, with gentle agitation for 30 min at room temperature. The fixed cells were washed twice and resuspended in water, then incubated with a final concentration of 5 µg ml\(^{-1}\) calcofluor white for 20 min to visualize bud and birth scars. After washing twice with water, the fluorescent image of chitin rings was
observed with an ECLIPSE 80i fluorescence microscope (Nikon Co., Tokyo, Japan) using a UV filter set.

Budding patterns were analyzed according to CHEN et al. (2000). All analyses were performed in homozygous diploids. The bud scar positions of daughter and mother cells were separately counted and analyzed. The daughter cells with the first bud scar were classified in relation to the bud position to the birth scar as proximal when one bud scar was at the proximal pole, distal when one bud scar was at the distal pole, or random when one bud scar was around equatorial region. The mother cells that had more than three bud scars were used (CHANT and PRINGLE 1995) and classified in relation to the bud positions to the birth scar as bipolar when one or more bud scars were at both poles, proximal when all bud scars were at the proximal pole, distal when all bud scars were at the distal pole, axial-like when all bud scars were connected in a chain with at least one touching the birth scar, or random when at least one or more bud scars were in the equatorial region. A representative image of each pattern in both daughter and mother cells is shown in Figure 1A. Over 150 cells of each mother and daughter cell were counted for the classification. For each strain, the average value from two independent experiments is shown.

Fluorescence microscopy: Cells expressing GFP-fused protein were grown for 12–16 h at 25°C and then harvested by centrifugation at 3000 × g for 5 min, stained with calcofluor white, washed twice, and resuspended in water. The fluorescent images of the GFP-fused proteins and bud scars in cells were observed under a fluorescence microscope (BZ-9000; Keyence Co., Osaka, Japan) using GFP and UV filter sets, respectively.

Western blotting: Yeast cell lysates were prepared as previously reported (KRAPPMANN et al. 2007). Briefly, the same OD₆₀₀ units of cells were resuspended in 80 µl extraction buffer (50 mM Tris-HCl (pH 7.5), 50 mM DTT, 1 mM EDTA and inhibitor cocktail; Roche, Basel, Switzerland), vortexed with glass beads for 10 min at 4°C followed by
an additional 20 µl of membrane extraction buffer (50 mM Tris-HCl (pH 7.5), 50 mM DTT, 1 mM EDTA, 10% SDS and 5% Triton X-100) and then vortexed at 4°C for 1 min. The protein concentration of the resulting extracts was determined by the Bradford method (KRUGER 1994). Proteins were subjected to SDS-PAGE with 15% low-bis gels (HIRANO 1989). The separated proteins were electroblotted onto polyvinylidene fluoride (PVDF) membranes as described in (HIRANO 1989). Membrane blocking was performed using the method of KAWASAKI et al. (2008). Monoclonal mouse anti-FLAG (Sigma-Aldrich, St. Louis, MO, USA) and peroxidase-coupled goat anti-mouse immunoglobulin G (Santa Cruz Biotechnology, Santa Cruz, CA, USA) were used as primary and secondary antibodies, respectively.

RESULTS

A complex made with Bud32p, Cgi121p and Gon7p regulates bipolar bud site selection: The EKC/KEOPS complex consists of Kae1p, Bud32p, Cgi121p, Gon7p, and Pcc1p in haploid cells (DOWNEY et al. 2006; KISSELEVA-ROMANOVA et al. 2006). We investigated whether the EKC/KEOPS complex is involved in bipolar bud site selection. By using tandem affinity purification (TAP), we confirmed that the components of the complex pulled down with Bud32p-TAP or Gon7p-TAP from diploid cells are the same as those of the haploid EKC/KEOPS complex (Kato et al. unpublished results). The budding patterns of the deletion mutants of each EKC/KEOPS component were analyzed, except those of **KAE1** and **PCC1**, whose deletion showed a severe growth defect. The budding patterns of diploid cells were classified as shown in Figure 1A. The first buds in daughter diploid cells of these mutants were at the distal pole, as observed in the wild-type diploid cells (Figure 1B). The deletion of each component of the EKC/KEOPS complex did not affect the budding pattern of
daughter diploid cells, while the mother diploid cells of these mutants showed a severe budding defect (Figure 1B and Table 1). About half of the mother cells showed a random budding pattern in these mutants, although the gon7Δ mutant displayed a slightly different phenotype with a higher distal budding ratio. We also examined the phenotype of several double mutants, in which two genes of the complex component were disrupted. The phenotypes of bud32Δcgi121Δ, bud32Δgon7Δ and cgi121Δgon7Δ double mutants were very similar to those of the single mutants. (Figure 1B and Table 1). These results suggest that BUD32, CGI121 and GON7 act in the same process as a complex.

Random budding of bud32Δ, cgi121Δ and gon7Δ is suppressed by deletion of BUD9 but not BUD8: Bud8p and Bud9p are cortical landmarks in diploid cells for the distal and proximal poles, respectively (HARKINS et al. 2001), because each deletion of these landmarks displays unipolar budding at the distal or the proximal pole, respectively. The first buds of daughter cells in bud32Δ, cgi121Δ or gon7Δ mutants formed at the distal pole as in wild-type cells (Figure 1B and Table 1). This indicates that Bud32p, Cgi121p and Gon7p may not be related to marking of the distal pole with Bud8p. We observed the effect of deletion of BUD8 or BUD9 in the bud32Δ, cgi121Δ and gon7Δ mutant cells. In the daughter cells of the bud32Δbud8Δ double mutant, the buds were observed largely at the proximal pole (~60%), but some were at the distal pole (20%) and at the equatorial sites (~20%) (Figure 2A and Table 1). The budding pattern of daughter cells in cgi121Δbud8Δ double mutant was similar to that of the bud32Δbud8Δ double mutant. In contrast, that of daughter cells in the gon7Δbud8Δ double mutant was similar to that of the bud8Δ mutant that the first bud of over 90% cells shows the proximal budding. Because the proximal budding observed in the bud8Δ mutant would be dependent on Bud9p, Bud9p seems to act as the proximal marker in daughter cells of these double mutants. However, approximately 30–50% of cells in
$bud32\Delta bud8\Delta$ and $cgi121\Delta bud8\Delta$ mutants budded at the distal pole or the equatorial site. Thus, the proximal marker may be somewhat impaired in these mutants.

In the $bud32\Delta bud9\Delta$ double mutant, the first and subsequent buds were formed at the distal pole, as in the $bud9\Delta$ mutant (Figure 2A and Table 1). Similar results were obtained for the $cgi121\Delta bud9\Delta$ and $gon7\Delta bud9\Delta$ double mutants. Because distal budding of the $bud9\Delta$ mutant would be dependent on Bud8p, these observations suggest that Bud8p in daughter cells of these mutants still acts as the distal landmark.

As shown in Figure 1B, about 45–60% of $bud32\Delta$, $cgi121\Delta$ and $gon7\Delta$ mutant mother cells showed a random budding pattern. Similarly, approximately 40–60% of $bud32\Delta bud8\Delta$ and $cgi121\Delta bud8\Delta$ double mutant mother cells showed a random budding pattern (Figure 2B). A distal budding pattern, which was observed in approximately 15% of $bud32\Delta$, $cgi121\Delta$ and $gon7\Delta$ mutant cells, was almost completely suppressed and replaced with a proximal budding pattern (Figures 1B and 2B). However, the majority of the double mutants showed a random budding pattern, although the ratio of proximal budding pattern increased slightly.

In mother cells of $bud32\Delta bud9\Delta$ double mutants, the random budding pattern was replaced by a distal budding pattern, although bipolar budding observed in the $bud32\Delta$ mutant was still seen in the double mutant (Figure 2B and Table 1). The random budding of mother cells of $cgi121\Delta$ and $gon7\Delta$ mutants was also suppressed by $BUD9$ deletion. In the absence of Bud9p, a random budding pattern clearly replaced the distal budding pattern, in which Bud8p was marked at the distal pole. These results suggest that the proximal marking by Bud9p is regulated by Bud32p and other components of the EKC/KEOPS complex.

Localization of the bipolar landmarks Bud8p and Bud9p: We showed that $BUD9$, but not $BUD8$, is required for random budding of $bud32\Delta$, $cgi121\Delta$ and $gon7\Delta$ mutants. Therefore, we observed the localization of these bipolar landmarks in the wild type, and these mutant cells in GFP-tagged Bud8p or Bud9p expressed with a high-copy vector with fluorescence
microscopy. The expression of GFP-Bud8p or GFP-Bud9p in diploid *bud8Δ* or *bud9Δ* mutant cells complemented the budding defects, suggesting that these tagged proteins provide a normal function. In the wild-type cells, GFP-Bud8p was localized at the distal pole in 36% of unbudded cells (*n* = 439) and at the proximal pole in 17% of such cells (Figure 3A cells 1 and 2, and Table 2). The GFP-Bud8p signal in mother cells appeared to be weaker than that in daughter cells. It was localized at the bud tip in 17% of small-/large-budded cells (*n* = 529) and at the bud tip/neck in 22% of such cells (Figure 3A cells 3–7, and Table 2). Localization only to the bud neck was also observed in 7% of such cells (Figure 3A cell 8, and Table 2). GFP-Bud9p was localized at the proximal pole in 17% of unbudded cells (*n* = 200), and the signal at the distal pole was observed in only 5% of such wild-type mother cells (Figure 3B cells 1 and 2, and Table 3). In addition, it was also localized at the proximal pole (10%), bud neck (7%), and bud neck/proximal pole (9%) in small-/large-budded cells (*n* = 254, Figure 3B cells 3–8, and Table 3).

In the *bud32Δ, cgi121Δ* and *gon7Δ* mutants, the localization patterns of GFP-Bud8p were essentially identical to that of the wild type, but its GFP signal appeared to be very diffused around the poles, tips, and bud necks (Figure 3C cells 1–5, and Table 2; GFP-Bud8p localization patterns in the *cgi121Δ* mutant are shown as those of the representative mutant). In addition, it was also observed at the bud tip and bud neck in cells that had bud scars at the equatorial position (Figure 3C cells 5–8).

However, the localization to both poles and the bud neck of the GFP-Bud9p signal dramatically decreased compared to those of the wild-type cells (~3% of all cells, and Table 3); no GFP signal was observed in most cells (Figure 3D cells 1–4; localization patterns of GFP-Bud9p in the *cgi121Δ* mutant are shown as those of the representative mutant), but a few cells were also present with the GFP signal in which normal Bud9p localization was observed (Figure 3D cells 5–8, and Table 3). Another visible GFP signal was observed
primarily as a dot-like structure along the cell periphery of both daughter and mother cells (Figure 3D cells 9–15). Because no obvious difference was seen at the BUD9 expression levels of mRNA and protein between the wild-type and mutant cells, we concluded that mislocalization of the GFP signal in these mutants was not due to a difference in Bud9p expression (Figure 3E and our real-time PCR; Kato et al. unpublished data). These results also suggest that Bud32p, Cgi121p and Gon7p are specifically related in the localization of Bud9p, but not Bud8p.

Bud32p kinase activity is required for Bud9p localization: We generated a kinase dead mutant (bud32-K52A) by replacing the 52nd lysine residue with alanine in Bud32p, which is the binding site for the α and β phosphates of ATP (MAO et al. 2008), to investigate whether kinase activity is required for the regulation of bipolar bud site selection. The mutant displayed a random budding pattern, as observed in the bud32Δ mutant (Figure S1A and Table 1). These results suggest that kinase activity is also required for regulation of bipolar bud site selection. We observed the effect of deleting BUD8 or BUD9 in the kinase dead mutant (bud32-K52A); the deletion of BUD9 suppressed random budding in the kinase dead mutant, but deletion of BUD8 did not (Figure S1B, S1C and Table 1). Finally, we examined the localization of GFP-Bud8p and GFP-Bud9p in the mutant (Figure S1D). In the kinase dead mutant, the GFP-Bud8p localization pattern was similar to that of wild-type cells, whereas, the GFP-Bud9p signal was not observed in the kinase dead mutant, as in the bud32Δ mutant (Figure S1D). These results indicate that kinase activity is required for proper localization of Bud9p, but not Bud8p.

Mutation at Ser258 of Bud32p did not affect bipolar bud site selection: Recent report has suggested that Bud32p is involved in the Sch9p signaling pathway (PEGGION et al. 2008). We investigated whether this signaling pathway is involved in bipolar bud site selection. Sch9p, a homolog of yeast Akt, phosphorylates Bud32p at Ser258. This
phosphorylation of Bud32p positively regulates its ability to interact with Grx4p and to phosphorylate it. We constructed a mutant bud32-S258A, in which Ser258 on Bud32p was replaced with Ala. We observed the budding patterns of sch9Δ and bud32-S258A. The budding patterns of these two mutants were similar to those of wild-type daughter and mother cells (Figure S2 and Table 1). This result suggests that the Sch9p signaling cascade is not related to bipolar bud site selection.

Genetic interaction between RAX2 and EKC/KEOPS genes: Rax1p and Rax2p are interdependently localized and also involved in Bud9p localization via interactions (KANG et al. 2004). In daughter cells of the rax2Δ mutant, about half of the first buds were at the distal pole, and the rest were at the proximal pole. Mother cells of rax2Δ mutants largely showed random budding pattern, as in the bud32Δ, cgi121Δ and gon7Δ mutants. However, the phenotype differed between rax2Δ and EKC/KEOPS mutants, although the ratio of random budding in both mutants was almost the same. A small number of rax2Δ mutant cells showed axial-like budding, while a few bud32Δ mutant cells showed distal budding (Figure 4A). We deleted RAX2 in the bud32Δ, cgi121Δ and gon7Δ mutant cells and observed the budding pattern of these mutants (Figure 4A). In both daughter and mother cells of the double mutants, the phenotype was changed to one similar to the rax2Δ mutant (Figure 4A and Table 1). The distal budding pattern of the bud32Δ mutant disappeared following RAX2 deletion and was replaced with an axial-like budding pattern. The axial budding pattern was never observed in the single mutants, bud32Δ, cgi121Δ and gon7Δ.

We observed Rax2p-GFP in the wild type and mutant cells (Figure 4B, C and Figure S3). Cells chromosomally expressing Rax2p-GFP also displayed a bipolar budding pattern, as in the wild-type cells, suggesting that Rax2p-GFP is functional. In wild-type cells, Rax2p-GFP localized mainly to bud scars and birth scars in unbudded cells, and sometimes to bud tips in budded cells. Similar results were obtained from bud32Δ, cgi121Δ and gon7Δ single mutants.
(Figure 4B and Figure S3A). In addition, the localization of Rax2p at bud scars could be observed even in equatorial bud scars, suggesting that the regulation for localization of Rax2p is normal in the mutants (Figure 4C and Figure S3B).

DISCUSSION

The EKC/KEOPS complex is required for bipolar bud site selection: BUD32 was originally found as a gene encoding an atypical protein kinase found in virtually all eukaryotic and archaeal organisms (STOCCHETTO et al. 1997). It was also identified as a gene that regulates bud site selection of diploid cells through a genome-wide analysis (NI and SNYDER 2001). Bud32p is involved in the signaling pathway of Sch9p kinase (PEGGION et al. 2008) and is also involved in telomere or transcriptional regulation as a component of the EKC/KEOPS complex (DOWNEY et al. 2006; KISSELEVA-ROMANOVA et al. 2006). In an analysis with gel filtration chromatography in haploid cells, the subcomplex containing only Kae1p and Bud32p was observed in yeast cells, although it could have been a preparation artifact (KISSELEVA-ROMANOVA et al. 2006). No other subcomplex has been reported. We purified the EKC/KEOPS complex from diploid cells using TAP pull-down. The diploid EKC/KEOPS complex was composed of Bud32p, Cgi121p, Kae1p, Gon7p and Pcc1p, which is identical to the haploid complex. Of the genes encoding these components, *CGI121* and *GON7*, were identified as new genes required for bipolar bud site selection (Figure 1B). The EKC/KEOPS complex regulates bipolar bud site selection, as deletion of the components showed a very similar phenotype with random budding. We also revealed that the kinase activity of Bud32p is required for bipolar bud site selection (Figure S1). This activity is essential for the functions of the EKC/KEOPS complex, such as transcriptional regulation and telomere maintenance, and it is also contributed, but not absolutely essential for the Sch9p
signaling cascade (PEGGION et al. 2008). In addition, we observed that phosphorylation at Ser258 on Bud32p by Sch9p, the modification of which is not altered its kinase activity, was not necessary for bipolar bud site selection (Figure S2). Therefore, we concluded that the EKC/KEOPS complex is involved in bipolar bud site selection with a different signaling pathway from the Sch9p kinase.

The EKC/KEOPS complex is involved in the regulation of Bud9p localization: We showed that BUD9 deletion in the bud32Δ, cgi121Δ and gon7Δ mutants suppressed random budding and increased budding at the distal pole. In concordance with these results, Bud9p localization was affected by deletion of BUD32, CGI121 and GON7 (Figure 3D and Table 3). The deletion of BUD8 did not suppress random budding of bud32Δ, cgi121Δ and gon7Δ mutants, although proximal budding increased in the double mutants in place of the distal budding observed in the single mutants (Figure 2B). The proximal budding in the mutants might be due to the accidental localization of Bud9p at the proximal pole, since Bud9p is expressed at a normal amount in these cells (Figure 3E).

Our data suggest that mislocalization of Bud9p by loss of the EKC/KEOPS components caused random budding. Proper localization of Bud9p is also dependent on the timing of BUD9 expression that was observed in the G1 phase (SCHENKMAN et al. 2002). A possibility exists that the EKC/KEOPS complex might be related to the timing of BUD9 expression because the complex controls transcription of several genes (KISSELEVA-ROMANOVA et al. 2006). In a promoter swapping assay, GFP-Bud9p expression from the BUD8 or CLB2 promoter specifically at the G2/M phase failed to rescue unipolar proximal budding in a bud9Δ-1 mutant, indicating inefficient delivery or poor stability of Bud9p, or both (SCHENKMAN et al. 2002). Furthermore, virtually no random budding was seen in these cases. Localization of GFP-Bud9p in bud32Δ, cgi121Δ and gon7Δ mutants was observed in a dot-like structure at cell periphery, as shown in Figure 3D. We confirmed that
the stability and expression level of Bud9p were the same as that of the wild type (Figure 3E). GFP-Bud9p from the BUD8 promoter in the bud9Δ-1 mutant appeared to localize in internal vesicles, and the mutant largely showed unipolar distal budding (SCHENKMAN et al. 2002). If the time lag for BUD9 expression occurs in the bud32Δ, cgi121Δ and gon7Δ, it should largely be unipolar distal budding not random budding. Therefore, we conclude that random budding in the mutants is caused by mislocalization at the cell periphery after delivery of Bud9p to the plasma membrane, but not through a time lag in BUD9 expression. Support for this conclusion was also provided by our observation that GFP-Bud8p localization patterns in the mutant deleted of each EKC/KEOPS component were similar to those of the wild type because the delivery of both Bud8p and Bud9p to the presumptive bud site is dependent on actin (SCHENKMAN et al. 2002).

The deletion of RAX2 in diploid cells induced random budding and axial-like budding, although about 20% of cells showed a bipolar budding pattern. Axial budding was suppressed in diploid cells, as Ax11p, on which axial budding is dependent, is transcriptionally repressed in diploid cells (FUJITA et al. 1994). However, the allele mutant of both BUD8 and BUD9 uses axial budding cues (ZAHNER et al. 1996). Several components of the axial budding system, such as Ax12p and Bud3p, are also expressed in diploid cells. Indeed, BUD3 deletion in the bud8Δbud9Δ double mutant essentially induces a random budding pattern (HARKINS et al. 2001). Axial budding cues can be recognized with less efficiency in diploid cells when both bipolar markers are impaired. However, we never observed an axial-like budding pattern in the deletion mutant of EKC/KEOPS components (Figures 1 and 2). This indicates that the axial budding system is essentially inactive in these cells, although a very small part of the bud at the proximal pole might use such a cue.

We observed that deletion of RAX2 in bud32Δ, cgi121Δ and gon7Δ mutants changed the phenotype to one identical with rax2Δ (Figure 4A). In concordance with this observation,
Rax2p distribution did not differ between the wild type and \textit{bud32\Delta, cgi121\Delta} or \textit{gon7\Delta} (Figure 4B, C and Figure S3). We also confirmed that regulation of Bud9p localization by the EKC/KEOPS complex is independent of septin by observing the localization of Cdc11p-GFP, one of septin subunits, in the deletion mutant of the EKC/KEOPS component (Figure S4). These results suggest that the EKC/KEOPS complex acts to regulate Bud9p localization as a downstream factor of Rax2p and septin.

Regulation of bipolar bud site selection by the EKC/KEOPS complex: We concluded that the EKC/KEOPS complex in diploid cells acts as a Rax2p downstream factor and that the complex maintains bipolar budding through regulation of Bud9p localization (Figure 5). The localization of cortical markers, Bud8p and Bud9p, is regulated by several proteins as shown in Figure 5. The EKC/KEOPS complex is the factor regulating the localization of only Bud9p, downstream of Rax2p and septins. Recent reports suggest that the complex function on telomere maintenance, transcriptional regulation and t\(^6\)A modification (DOWNEY \textit{et al.} 2006; KISSELEVA-ROMANOVA \textit{et al.} 2006; SRINIVASAN \textit{et al.} 2011; DAUGERON \textit{et al.} 2011), although direct target of the complex is still elusive. The complex localized mainly to the nucleus and the minor portion of EKC/KEOPS complex localizes to cytosol (Kato \textit{et al.} unpublished data), whereas Bud9p localized to the cell surface. Although the complex in the cytosol might be directly linked to Bud9p, we could not observe a physical interaction between these proteins. These results suggest that the regulation of Bud9p localization by the complex may not occur at the cell surface and that the localization of Bud9p might be regulated by factor(s) under the transcriptional control by the EKC/KEOPS complex. Further experiments, such as suppressor screening that can rescue Bud9p localization in the deletion mutants of each EKC/KEOPS component, might be able to identify the factors important for establishing and maintaining spatial cues in cells.
Our results suggest that the correct localization of Bud9p is essential for bipolar budding. Although many of the genes that specifically caused random budding when deleted are associated with the localization of Bud8p, so far, no genes have been reported that specifically regulate only Bud9p, except for the septins (NI and SNYDER 2001; SCHENKMAN et al. 2002). Our findings revealed that the EKC/KEOPS complex is specifically involved in the regulation of Bud9p localization. Further analysis of this regulation system will be an important step to understanding asymmetric development from spatial cues in diploid cells.
Figure Legends

Figure 1.—Budding pattern of the deletion mutants of each EKC/KEOPS component in diploid cells.

(A) Representative image of budding patterns in both diploid daughter and mother cells. Daughter cells showed three budding patterns in the wild type and mutants. The positions of the first buds on diploid daughter cells were scored as being at the pole proximal to the birth scar (a), at the pole distal to the birth scar (b), or at a random site (c) on the cell. Mother cells showed five budding patterns in the wild type and mutants. Each diploid mother cell budding pattern was determined by counting cells with more than three bud scars. Bud scars were concentrated at the two poles (d, as bipolar), only at the pole proximal ((e) and (g, as chain-like bud)) or distal (f) to the birth scar, and at the random sites (h). (B) Budding patterns of the diploid deletion mutants. Strains used were diploid wild type (BY4743) and *bud32*Δ (CCY003), *cgi121*Δ (CCY006), *gon7*Δ (CCY009), *bud32Δcgi121*Δ (CCY017), *bud32Δgon7*Δ (CCY018) and *cgi121Δgon7*Δ (CCY019). Budding positions are classified as in the budding patterns of diploid cells in Figure 1A. At least 150 cells were scored for each bud scar pattern from both daughter and mother cells; the percentages are indicated. In daughter cells, the black, white, and dotted boxes indicate cells with buds at only the proximal pole, only the distal pole, and at random site, respectively. In mother cells, the gray, black, white, slashed, and dotted boxes indicate cells with buds at two poles, only the proximal pole, only the distal pole, axial-like, and at random sites, respectively.

Figure 2.—Genetic interaction between *BUD8* or *BUD9* and EKC/KEOPS genes.

(A and B) Budding pattern of daughter (A) and mother (B) cells with *BUD8* or *BUD9* deletion in the *bud32*Δ, *cgi121*Δ and *gon7*Δ mutant backgrounds. Strains used were the
diploid wild type (BY4743), bud8Δ (CCY011), bud9Δ (CCY013), bud32Δ (CCY003), bud32Δbud8Δ (CCY026), cgi121Δbud8Δ (CCY027), gon7Δbud8Δ (CCY028). bud32Δbud9Δ (CCY029), cgi121Δbud9Δ (CCY030) and gon7Δbud9Δ (CCY031). Budding positions are classified as in the budding pattern of diploid cells in Figure 1A. At least 150 cells were scored for each bud scar pattern from both daughter and mother cells; the percentages are indicated. The black, white and dotted boxes in (A) indicate daughter cells budded at proximal, distal and equatorial site, respectively. The gray, black, white and dotted boxes in (B) indicate mother cells with buds at two poles, only the proximal pole, only the distal pole and the random site, respectively.

Figure 3.—Effect on the localization of GFP-Bud8p and GFP-Bud9p due to loss of EKC/KEOPS components.

(A and B) Localization patterns of GFP-Bud8p and GFP-Bud9p in the wild type. Wild type (BY4743) expressing the full-length GFP-Bud8p or GFP-Bud9p from its own promoter in pYC14 or pYC06, respectively, was grown for 12–16 h at 25°C in synthetic complete (SC)-Leu or -Ura liquid medium, stained with calcofluor white, and then suspended in water for observation. GFP-Bud8p or GFP-Bud9p and bud scars were observed with a fluorescence microscope with GFP and UV filter sets, respectively.

(C and D) Localization of GFP-Bud8p and GFP-Bud9p in the cgi121Δ mutant. The cgi121Δ (CCY006) expressing full-length GFP-Bud8p or GFP-Bud9p from their own promoters in pYC14 or pYC06 was grown for 12–16 h at 25°C in SC-Leu or -Ura liquid medium, stained with calcofluor white, and then suspended in water for observation. GFP-Bud8p or GFP-Bud9p and bud scars were observed with a fluorescence microscope with GFP and UV filter sets, respectively.
(E) Expression level of Bud9p in the absence of Cgi121p. Diploid wild type (BY4743) and cgi121Δ mutant (CCY006), both expressing the FLAG$_6$-Bud9p in pYC10, were analyzed by Western blotting. The wild type (BY4743) was considered the control, which carried the empty pRS426. Cells were grown overnight to log phase in SC medium lacking uracil. The total cell extract from the same OD$_{600}$ units of cells was analyzed by immunoblotting using an anti-FLAG antibody (top panel) and stained with Ponceau-S as a loading control (bottom panel).

Figure 4.—Genetic interaction between RAX2 and EKC/KEOPS genes.

(A) Budding pattern of cells with deletion of RAX2 in the bud32Δ, cgi121Δ and gon7Δ mutant backgrounds. Strains used were the diploid wild type (BY4743), rax2Δ (CCY044), bud32Δrax2Δ (CCY046), cgi121Δrax2Δ (CCY048), gon7Δrax2Δ (CCY051) and bud32Δ (CCY003). Budding positions are classified as in the budding pattern of diploid cells in Figure 1A. At least 150 cells were scored for each bud scar pattern from both daughter and mother cells; the percentages are indicated. In daughter cells, the black, white and dotted boxes indicate cells with buds at only the proximal pole, only the distal pole and at random site, respectively. In mother cells, the gray, black, white, slashed and dotted boxes indicate cells with buds at two poles, only the proximal pole, only the distal pole, axial-like and at random sites, respectively.

(B) Diploid wild type (CCY034) and cgi121Δ (CCY038) expressing Rax2p-GFP from their own promoter at their chromosomal locus were grown overnight to log phase in YPD liquid medium, stained with calcofluor white, and then suspended in water for observation. Rax2p-GFP and bud scars were observed with a fluorescence microscope with GFP and UV filter sets, respectively. Scale bar indicates 5 μm.
(C) Bud scars at the equatorial position of random budding sites were also marked by Rax2p-GFP. The arrows indicate Rax2p-GFP localization at random positions. Scale bar indicates 5 µm.

FIGURE 5.—Regulation of the localization of the bipolar markers Bud8p and Bud9p by the EKC/KEOPS complex and Rax1p/Rax2p. The schematic illustration is based on Figure 3 in CASAMAYOR and SNYDER (2002). For details, see the Discussion.
<table>
<thead>
<tr>
<th></th>
<th>budding=1</th>
<th>budding>3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>proximal</td>
<td>distal</td>
</tr>
<tr>
<td>BY4743</td>
<td>1</td>
<td>99</td>
</tr>
<tr>
<td>bud32Δ</td>
<td>6</td>
<td>94</td>
</tr>
<tr>
<td>cgi121Δ</td>
<td>6</td>
<td>94</td>
</tr>
<tr>
<td>gon7Δ</td>
<td>3</td>
<td>94</td>
</tr>
<tr>
<td>bud32Δ cgi121Δ</td>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>bud32Δ gon7Δ</td>
<td>1</td>
<td>98</td>
</tr>
<tr>
<td>cgi121Δ gon7Δ</td>
<td>4</td>
<td>96</td>
</tr>
<tr>
<td>bud8Δ</td>
<td>95</td>
<td>0</td>
</tr>
<tr>
<td>bud9Δ</td>
<td>0</td>
<td>99</td>
</tr>
<tr>
<td>bud32Δ bud8Δ</td>
<td>67</td>
<td>18</td>
</tr>
<tr>
<td>cgi121Δ bud8Δ</td>
<td>53</td>
<td>30</td>
</tr>
<tr>
<td>gon7Δ bud8Δ</td>
<td>96</td>
<td>2</td>
</tr>
<tr>
<td>bud32Δ bud9Δ</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>cgi121Δ bud9Δ</td>
<td><1</td>
<td>99</td>
</tr>
<tr>
<td>gon7Δ bud9Δ</td>
<td><1</td>
<td>99</td>
</tr>
<tr>
<td>rax2Δ</td>
<td>52</td>
<td>33</td>
</tr>
<tr>
<td>bud32Δ rax2Δ</td>
<td>51</td>
<td>35</td>
</tr>
<tr>
<td>cgi121Δ rax2Δ</td>
<td>50</td>
<td>37</td>
</tr>
<tr>
<td>gon7Δ rax2Δ</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td>K52A</td>
<td>2</td>
<td>96</td>
</tr>
<tr>
<td>K52A bud8Δ</td>
<td>76</td>
<td>6</td>
</tr>
<tr>
<td>K52A bud9Δ</td>
<td>8</td>
<td>92</td>
</tr>
<tr>
<td>sch9Δ</td>
<td>3</td>
<td>97</td>
</tr>
<tr>
<td>S258A</td>
<td>3</td>
<td>96</td>
</tr>
</tbody>
</table>

* Each value indicates percentage of total cells.
Table 2 Localization patterns of GFP-Bud8p

<table>
<thead>
<tr>
<th></th>
<th>unbudded cells</th>
<th></th>
<th>budded cells</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>distal</td>
<td>both poles</td>
<td>no signal</td>
<td>bud tip</td>
</tr>
<tr>
<td>BY4743</td>
<td>19</td>
<td>17</td>
<td>64</td>
<td>17</td>
</tr>
<tr>
<td>bud32Δ</td>
<td>20</td>
<td>10</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>cgi121Δ</td>
<td>15</td>
<td>14</td>
<td>71</td>
<td>15</td>
</tr>
<tr>
<td>gon7Δ</td>
<td>17</td>
<td>19</td>
<td>64</td>
<td>19</td>
</tr>
</tbody>
</table>

aEach value indicates percentage of total cells

Table 3 Localization patterns of GFP-Bud9p

<table>
<thead>
<tr>
<th></th>
<th>unbudded cells</th>
<th></th>
<th>budded cells</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>proximal</td>
<td>both poles</td>
<td>no signal</td>
<td>proximal</td>
</tr>
<tr>
<td>BY4743</td>
<td>12</td>
<td>5</td>
<td>83</td>
<td>10</td>
</tr>
<tr>
<td>bud32Δ</td>
<td>3</td>
<td>0</td>
<td>97</td>
<td><1</td>
</tr>
<tr>
<td>cgi121Δ</td>
<td>2</td>
<td>0</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td>gon7Δ</td>
<td>1</td>
<td>0</td>
<td>99</td>
<td>3</td>
</tr>
</tbody>
</table>

aEach value indicates percentage of total cells
LITERATURE CITED

DAUGERON, M.C., LENSTRA, T.L., FRIZZARIN, M., EL YACOUBI, B., LIU, X. et al., 2011 Gcn4 misregulation reveals a direct role for the evolutionary conserved EKC/KEOPS in the t6A modification of tRNAs. Nucleic Acids Res.

STOCCHETTO, S., MARIN, O., CARIGNANI, G. and PINNA, L.A., 1997 Biochemical
evidence that Saccharomyces cerevisiae YGR262c gene, required for normal growth,
TAHERI, N., KOHLER, T., BRAUS, G.H. and MOSCH, H.U., 2000 Asymmetrically
localized Bud8p and Bud9p proteins control yeast cell polarity and development. EMBO J.
19: 6686-6696.
ZAHNER, J.E., HARKINS, H.A. and PRINGLE, J.R., 1996 Genetic analysis of the bipolar
pattern of bud site selection in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 16:
1857-1870.
Acknowledgments

We thank Nobuyuki Endo (Keyence Corporation) for technical advice on the BIOREVO BZ-9000 fluorescence microscope. We are also extremely grateful to Katsuaki Asano for his assistance with the TAP purification. This work was partly supported by the 21st Century COE Program at Yokohama City University and by Grants-in-Aid for Scientific Research from KAKENHI (C).
Figure 1

A

homozygous diploid

daughter cell

proximal
distal
random

mother cell

bipolar
proximal
distal
axial like
random

(a) (b) (c) (d) (e) (f) (g) (h)

B

homozygous diploid

daughter

budding patterns (%)

0 20 40 60 80 100

wild type buc2AΔ gji21Δ gat1Δ
buc2AΔgji21Δ gat1Δ gji21Δgon7Δ

mother

0 20 40 60 80 100

wild type buc2AΔ gji21Δ gat1Δ
buc2AΔgji21Δ gat1Δ gji21Δgon7Δ

random
distal
proximal
bipolar
Figure 2

A

daughter

budding patterns (%)

B

mother

budding patterns (%)

random

distal

proximal

bipolar
Figure 3

A
GFP-Bud8p
bud scars

B
GFP-Bud9p
bud scars

C
GFP-Bud8p
bud scars

D
GFP-Bud9p
bud scars

E
Western blot analysis of wild type, wild type (vector), and cgl121Δ.
Figure 4

A

Bud patterns (%)

- equatorial
- distal
- proximal

ra2Δ
bud23Δ ra2Δ
cgi121Δ ra2Δ
gpp73Δ ra2Δ
bud23Δ

B

Rax2-GFP
bud scars

WT

cgi121Δ

C

cgi121Δ

Rax2-GFP
bud scars
Figure 5

Factors important for localization of tag proteins

Specific bud-site selection signals

General bud-site selection complex

Factors important for maintenance of localization of tag proteins

Polarisome complex
- Actin
- Cdc42
- Bni1

Bud8 Bud9

Bud2 Bud5

Bud1 activation

Rax1/Rax2

Septin

EKC/KEOPS