QIP, a protein that converts duplex siRNA into single strands, is required for Meiotic Silencing by Unpaired DNA

*Division of Biological Sciences, University of Missouri, Columbia, MO 65211
† Department of Biology, University of North Carolina, Chapel Hill, NC 27599
Running head: MSUD requires the QIP exonuclease

Key words: Meiosis; Meiotic Silencing by Unpaired DNA (MSUD); *Neurospora crassa*; post-transcriptional gene silencing; RNA interference (RNAi)

1 These authors contributed equally to this work.

2 Corresponding author:

Patrick K. T. Shiu

Division of Biological Sciences,

University of Missouri,

Columbia, MO 65211

Phone: 573-884-0020

FAX: 573-882-0123

Email: shiup@missouri.edu

Supporting information is available online at http://www.genetics.org/cgi/content/full/genetics...
RNA interference (RNAi) depends on the production of small RNA to regulate gene expression in eukaryotes. Two RNAi systems exist to control repetitive selfish elements in \textit{Neurospora crassa}. Quelling targets transgenes during vegetative growth, whereas Meiotic Silencing by Unpaired DNA (MSUD) silences unpaired genes during meiosis. The two mechanisms require common RNAi proteins, such as RNA-directed RNA polymerases (RdRP), Dicers, and Argonaute slicers. We have previously demonstrated that, while Quelling depends on the redundant dicer activity of DCL-1 and DCL-2, only DCL-1 is required for MSUD. Here, we show that QIP, an exonuclease that is important for the production of single-stranded siRNA during Quelling, is also required for MSUD. QIP is crucial for sexual development and is shown to colocalize with other MSUD proteins in the perinuclear region.
INTRODUCTION

Neurospora crassa is a filamentous fungus that grows by hyphal tip extension and branching (GLASS *et al.* 2000). Since septa (cross walls) between individual cells are normally incomplete, deleterious elements such as viruses or selfish DNA can easily infiltrate the entire network of hyphae (known as a mycelium). To combat these repetitive elements, several genome surveillance systems have evolved and are maintained in *N. crassa*. For example, repeat-induced point mutation (RIP), a premeiotic process operating during the haploid dikaryotic stage, introduces extensive GC to AT mutations to duplicated sequences (CAMBARERI *et al.* 1989). Quelling and Meiotic Silencing by Unpaired DNA (MSUD), on the other hand, target transcripts generated from potential intruders during vegetative growth and meiosis, respectively (ROMANO and MACINO 1992; SHIU *et al.* 2001). These surveillance mechanisms presumably allow *N. crassa* to be virtually free of active transposons and viruses (CATALANOTTO *et al.* 2006).

In the Quelling model, large tandem arrays of a transgene often alert the host defense mechanism, presumably during DNA replication (NOLAN *et al.* 2008). QDE-3, a DNA helicase (COGONI and MACINO 1999b), may play a role in resolving secondary structures of tandem transgenes, enabling the transcription of single-stranded aberrant RNA and their conversion to double strands by QDE-1, a DNA- and RNA-directed RNA polymerase (DdRp and RdRP; LEE *et al.* 2009; COGONI and MACINO 1999a). The double-stranded RNA (dsRNA) molecules are further processed into 21-25 nt small interfering RNA (siRNA) by the redundant dicer activity of DCL-1 and DCL-2 (CATALANOTTO *et al.* 2004). The siRNA duplexes are then loaded into the QDE-2 Argonaute, a component of the RNA-induced silencing complex (RISC)
One of the siRNA strands (the passenger strand) is nicked by the slicer activity of QDE-2 and later degraded by the QIP exonuclease (MAITI et al. 2007). The remaining single-stranded siRNA (the guide strand) can subsequently recognize homologous mRNA by base complementarity and target them for QDE-2-dependent cleavage.

Besides propagation through mycelial growth and dispersal of conidia (asexual spores), *N. crassa* can also enter a sexual cycle. After fertilization and nuclear proliferation, opposite mating-type nuclei, A and a, pair and migrate into a dikaryotic hypha (for review, see SHIU and GLASS 2000). Karyogamy occurs between A and a nuclei in the ascus (spore sac) mother cell, with meiosis and ascospore development following immediately after. Meiosis represents a window of opportunity for the expansion of selfish elements, as the two genomes are aligned intimately during the homologous pairing stage. In *N. crassa*, a mechanism known as MSUD exists to silence unpaired and potentially harmful genes. In MSUD, a gene not paired with a homologous partner generates a signal that silences all copies of that gene during sexual development. The current MSUD model suggests that an unpaired gene is detected and transcribed into aberrant RNA. The aberrant RNA are converted into dsRNA by the SAD-1 RdRP (SHIU and METZENBERG 2002), whose localization is controlled by the SAD-2 protein (SHIU et al. 2006). The dsRNA are in turn diced into siRNA by DCL-1 (ALEXANDER et al. 2008). SMS-2, an Argonaute protein, is responsible for the siRNA-guided destruction of mRNA (LEE et al. 2003). The involvement of DCL-1 in both Quelling and MSUD suggests that a crosstalk exists between the two RNA-silencing mechanisms. In this work, we have set out to determine whether QIP (*QDE-2*-interacting protein), a part of the Quelling machinery, is also required for MSUD.
MATERIALS AND METHODS

Strains, media, and growth: The Neurospora strains used in this study are described in Table 1. Auxotrophic and other mutant strains were acquired from the Fungal Genetics Stock Center (FGSC; MCCLUSKEY 2003). The description of individual genes, including their mapping information, can be obtained from the Neurospora Compendium (PERKINS et al. 2001) and e-Compendium (http://bmbpcu36.leeds.ac.uk/~gen6ar/newgenelist/genes/gene_list.htm). The \(qip\)Δ deletion strain contains the replacement of a sequence encompassing the \(qip\) open-reading frame (positions -206 to 2070; Figure S1) with a hygromycin-resistant gene (\(hph\)) (COLOT et al. 2006). The \(qip^f\) (frameshift) allele was constructed from the wild-type (WT) gene by cleavage at the \(NsiI\) site (positions 149 to 154) followed by a Klenow fill-in reaction. Preparation of culturing and crossing media was as previously described (VOGEL 1964; WESTERGAARD and MITCHELL 1947). Homokaryons were isolated using the method of EBBOLE and SACHS (1990). Standard procedures for growth, crosses, and other Neurospora manipulations were followed throughout (DAVIS and DE SERRES 1970).

Nucleic acid methods and transformation: Standard molecular techniques were used according to SAMBROOK and RUSSELL (2001). Fungal DNA was isolated using the DNeasy Plant Mini Kit (Qiagen, Valencia, CA). Custom oligonucleotide primers, as listed in Table S1, were obtained from Integrated DNA Technologies (Coralville, IA). DNA amplification by Polymerase Chain Reaction (PCR) was conducted in a PTC-100 Peltier Thermal Cycler (MJ Research, Waltham, MA), using either the AccuPrime Pfx system (Invitrogen, Carlsbad, CA) or the Expand Long Range dNTPack (Roche Applied Science, Indianapolis, IN). PCR products, when necessary, were cloned into the pCRII-TOPO vector (Invitrogen). Bacterial plasmid DNA
was purified with the HiSpeed Plasmid Midi Kit (Qiagen). DNA sequencing was performed by
the University of Missouri DNA core (Columbia, MO). For integration at the *his-3* locus, the
qip^{fs} allele and various green and red fluorescent protein (GFP and RFP) constructs were built
using pBM61 (MARGOLIN *et al*. 1997), pMF272 (FREITAG *et al*. 2004), and pMF334
(FREITAG and SELKER 2005), respectively. For GFP integration at native loci, fusion PCR
products from genomic DNA and a *gfp-hph*-containing plasmid (pTH1067.9) were obtained by
double-joint PCR (YU *et al*. 2004; YANG *et al*. 2004) and were used as the transforming DNA.
DNA-mediated gene placement in *Neurospora* was performed according to MARGOLIN *et al*
(1997).

Reverse-transcriptase (RT)-PCR: Total RNA extraction was performed as previously
described (SHIU and GLASS 1999). Poly A⁺ mRNA was enriched using the Oligotex mRNA
kit (Qiagen). Reverse transcription, using the First-strand cDNA synthesis kit (Amersham
Biosciences, Piscataway, NJ), was conducted according to manufacturer's specifications.
Primers used in the PCR-amplification of a region spanning all four introns are listed in Table
S1. The PCR product of the *qip* cDNA is 1414 bp in length, as compared to the 1666 bp from
that of genomic DNA. The identities of RT-PCR products, from vegetative (P3-07) and
perithecial (F1-05 × P3-07) mRNA, were confirmed by DNA sequencing. Our intron 2 sequence
(Figure S1), which is based on cDNA sequencing, is 96 nt shorter than the sequence depicted in
version 3 of the *qip* predicted ORF and is in agreement with the one found in version 4
(http://www.broad.mit.edu/annotation/genome/neurospora/Home.html).
Sample preparation and cytological methods: Perithecia fixation, mounting, and viewing using the Zeiss LSM510 were as described (ALEXANDER et al. 2008). Some samples were imaged using a Zeiss LSM710 confocal laser scanning microscope, equipped with a PlanNeofluar 40x (NA1.3) oil immersion objective and standard Zeiss software (ZEN). Multi-fluorophore images were scanned sequentially. Visualization of the GFP was achieved by use of a 488 nm Argon laser line for excitation with the detector set to collect emission bandwidth at 494-536 nm; RFP visualization was achieved by use of a 560 nm diode laser line for excitation with the detector set to collect emission bandwidth at 565-620 nm; and DAPI visualization was achieved by use of a 405 nm diode laser excitation with the detector set to collect emission bandwidth at 410-470 nm.
RESULTS

qip is expressed during both vegetative and sexual stages: qip encodes a 600-amino acid (aa) polypeptide and is located between mus-52 and tim14, on the right arm of Linkage Group III (Figure S1). To determine the expression pattern of qip, we obtained total RNA from mycelia (vegetative cells) and two perithecial (fruiting body) preparations (4 and 6 days after fertilization). cDNA products of qip, whose identities were confirmed by sequencing, could be detected from all conditions tested (Figure 1). The expression of qip in the perithecial tissue suggests that qip may play a role during sexual development.

A cross homozygous for qipΔ is barren: MAITI et al. (2007) did not report any vegetative defect other than a Quelling deficiency in a qip strain. To determine if qip is important for sexual development, we have performed crosses heterozygous and homozygous for qipΔ. While ascospores are produced in a qip+ × qipΔ cross, a cross homozygous for qipΔ is completely barren. Although pigmented perithecia are produced in such a cross, they have just a hint of a beak (Figure 2C). Perithecial contents showed no asci, not even their rudiments (Figure 2D). DAPI staining only showed fluorescent nuclei in the background paraphysal tissue (Figure 2E). Perithecial development was apparently arrested very early. Crosses homozygous for dcl-1Δ have a similar phenotype (ALEXANDER et al. 2008), suggesting that both of these genes are important for early sexual development.
qip\(^\Delta\) does not act as a dominant suppressor of meiotic silencing: QIP is important for the degradation of the passenger siRNA strand in Quelling (MAITI *et al.* 2007). While there are two paralogs for both RdRP and Argonaute in *N. crassa* (one set for Quelling and another for MSUD), only one *qip* gene is present in its genome. These observations suggest that either MSUD utilizes a different method of passenger strand removal, or that QIP is important for both vegetative and meiotic silencing, as is the case for DCL-1 (ALEXANDER *et al.* 2008). Many deletion mutants of genes encoding components of the MSUD machinery, such as *Sad-1*\(^\Delta\) and *Sad-2*\(^\Delta\) (SHIU *et al.* 2001, 2006), act as a dominant suppressor of meiotic silencing in a cross. For example, the unpaired *r*\(^+\) (*Round spore*) gene is silenced in a WT \(\times R^\Delta\) cross (which gives round spores) while it is expressed in a *Sad-1*\(^\Delta\) \(\times R^\Delta\) cross (which gives wild-type spindle-shaped spores resembling an American football) (SHIU *et al.* 2001). The logic behind the dominant suppression in a *Sad-1*\(^\Delta\) \(\times R^\Delta\) cross is that the *sad-1*\(^+\) gene itself is unpaired, allowing the silencer to silence itself and thereby defeating the silencing mechanism (SHIU and METZENBERG 2002). To determine whether *qip* suppresses MSUD in a dominant fashion, we introduced *qip*\(^\Delta\) to crosses containing various unpaired genes, including *actin, ascospore maturation-1, \beta\)-tubulin, and *Round spore*. These unpaired genes, in an MSUD-proficient background, lead to various aberrant ascus/ascospore phenotypes (lollipop asci, white ascospores, elongated asci, and round ascospores, respectively). Our data indicate that the presence of a single *qip*\(^\Delta\) allele does not suppress the meiotic silencing of any unpaired gene tested (Table 2). We reached the same conclusion with a visual *gfp* expression assay using a histone *hH1-gfp* reporter gene (RAJU *et al.* 2007; ALEXANDER *et al.* 2008). In a *qip*\(^\Delta\) \(\times ::hH1-gfp\) cross, the unpaired *hH1-gfp* gene is silenced as usual and does not give rise to fluorescent nuclei in developing asci (Figure 3A-B).
Taken together, these results indicate that \(qip^\Delta \), unlike \(Sad-1^\Delta \) or \(Sad-2^\Delta \), does not act as a dominant MSUD suppressor in a cross.

The \(qip \) gene product is required for meiotic silencing: The fact that a \(qip^\Delta \) mutant does not dominantly suppress MSUD suggests that either \(qip \) is not involved in the meiotic silencing pathway, or that one unpaired copy of the \(qip \) gene is not sufficient to silence the silencer. Since \(qip \) is required for early sexual development, we cannot examine the expression of unpaired genes in a \(qip^\Delta \times qip^\Delta \) cross (which is completely barren) and unequivocally determine the role of \(qip \) in meiotic silencing. To circumvent this technical problem, we utilized a "two unpaired copy knockdown" scheme that was proven successful previously (ALEXANDER et al. 2008).

Basically, we constructed a cross heterozygous for \(qip^\Delta \), heterozygous for an insertion of \(qip^{fs} \) (a frameshift null allele), and heterozygous for an insertion of \(hH1-gfp \) (an unpaired reporter gene), i.e. \(\text{his-3}^+:qip^{fs} \times \text{his-3}^+:hH1-gfp \ qip^\Delta \). In this cross, the presence of a single \(qip^+ \) gene allows the perithecia to go through early ascus development. However, the single wild-type \(qip \) gene is inactivated by meiotic silencing at later stages due to two unpairing events (\(qip^+ \) unpaired with \(qip^\Delta::hph \) at the native \(qip \) locus and \(qip^{fs} \) unpaired with \(hH1-gfp \) at the \(\text{his-3} \) locus). Results from our cytological examination indicate that the unpaired \(hH1-gfp \) reporter gene is expressed throughout meiosis, suggesting that meiotic silencing is indeed deficient in a low QIP background (Figure 3C). We repeated the experiment using \(r^+ \) as the reporter gene (in a \(\text{his-3}^+:qip^{fs} \times \text{his-3}^+:r^+ \ qip^\Delta \) cross). Our results indicate that the unpaired \(r^+ \) gene is expressed and that the progeny are of wild-type spindle-shape in the \(qip \) knockdown cross (Figure 4). These results indicate that QIP is a necessary component of the MSUD machinery.
qip is localized in the perinuclear region: QIP interacts with the QDE-2 Argonaute during the Quelling process (MAITI et al. 2007). If Quelling and MSUD function in a similar manner, at least for the RNA-degradation portion of the pathway, one would expect QIP also to associate with the MSUD Argonaute protein (SMS-2). Previously, we have shown that components of the MSUD machinery, including SAD-1, SAD-2, DCL-1 and SMS-2, are localized in the perinuclear region (ALEXANDER et al. 2008). To determine the subcellular localization of QIP as well as its possible association with other MSUD proteins, we have constructed vectors expressing various green and red fluorescent fusion proteins. Our results indicate that QIP colocalizes with the other MSUD proteins, including the SMS-2 Argonaute, in the perinuclear region (Figure 5). The colocalization pattern is in agreement with the notion that these MSUD proteins are related functionally and spatially, and that they may form an RNA-processing complex.
DISCUSSION

Quelling, a vegetative silencing mechanism in *N. crassa*, is important for the preservation of genome integrity (CHICAS *et al.* 2004; NOLAN *et al.* 2005), the maintenance of rDNA copies (CECERE and COGONI 2009), and DNA damage response (LEE *et al.* 2009). The QIP exonuclease, first identified as a QDE-2-interacting protein, functions to degrade the passenger strand of an siRNA duplex and activate the RISC during Quelling (MAITI *et al.* 2007). QIP is of special importance to the delineation of the RNAi pathway, as the mechanism for passenger strand removal was not obvious before its identification. In this work, we have demonstrated that QIP is also required for MSUD. Thus far, we have shown that at least two proteins, DCL-1 and QIP, have dual functions in the genome surveillance of *N. crassa*. These results suggest that the crosstalk between the vegetative and meiotic silencing mechanisms is more prevalent than once thought.

All the MSUD proteins reported previously, including SAD-1, SAD-2, SMS-2, and DCL-1, are important for sexual development (SHIU *et al.* 2001, 2006; LEE *et al.* 2003; ALEXANDER *et al.* 2008). Homozygous crosses for *sad-1* or *sad-2* are arrested in prophase, suggesting that some degree of meiotic silencing may be a required checkpoint for cell cycle progression (SHIU *et al.* 2001, 2006). Unlike *sad-1* and *sad-2*, a cross homozygous for *qip* does not produce any asci. This observation suggests that *qip* is important for early ascus development, much like *dcl-1* (ALEXANDER *et al.* 2008). Although it is tempting to hypothesize that the processing of microRNA (BARTEL 2009) may play a role in the barrenness of *dcl-1* and *qip*, efforts to detect such RNA in fungi have been unsuccessful (MCGUIRE and
Alternatively, the Quelling machinery could regulate endogenous genes that are naturally transcribed in both sense and antisense orientations (FULCI and MACINO 2007).

All known components of the MSUD machinery (SAD-1, SAD-2, SMS-2, DCL-1, and QIP), with the exception of Sk-2 and Sk-3 (which have not been molecularly characterized; RAJU et al. 2007), are localized in the perinuclear region (SHIU et al. 2001; ALEXANDER et al. 2008). This observation is in contrast with the one made in the Quelling mechanism, in which QDE-1 (and hypothetically, QDE-3) has affinity for the transgenic locus (NOLAN 2008).

In mammalian cells, siRNA have been shown to accumulate in the perinuclear region and that their proper localization is correlated with the efficiency of RNAi (GRÜNWELLER et al. 2003; CHIU et al. 2004). Furthermore, some RNAi proteins have been shown to localize to this region in Drosophila and mouse germ cells (LIM and KAI 2007; PANE et al. 2007; KOTAJA and SASSONE-CORSI 2007). These observations suggest that the perinuclear region may be an RNAi center for meiotic silencing. It is possible the MSUD machinery examines each RNA molecule as it exits the nucleus, processing any aberrant RNA before it has a chance to reach the exonucleases or the translational machinery. Colocalization of related MSUD proteins may allow the coupling of consecutive reactions and therefore increase the efficiency of the silencing process.

Meiotic silencing can be a useful tool in determining gene functions during meiosis and sexual development. A wide variety of genes, including those encoding actin and β-tubulin, have been silenced using MSUD (SHIU et al. 2001). Although some MSUD mutants, such as Sad-1\(^{\Lambda}\), Sad-2\(^{\Lambda}\), Sk-2, and Sk-3, behave as strong dominant MSUD suppressors via the "silencing
the silencer” negative feedback system (SHIU et al. 2001, 2006; RAJU et al. 2007), others may have difficulties in achieving similar effectiveness. Our use of two unpaired copies in a cross may prove to be useful in silencing genes that are especially hard to do so via the standard “WT × Δ” scheme, such as those that are highly expressed or those that need few transcripts for normal operation. Other tools employed in this work, such as GFP/RFP colocalization, may also be useful in studies of other Neurospora mechanisms.

The silencing of unpaired chromosomal regions during meiosis is not restricted to fungi. Some form of meiotic silencing is also found in worms, mice, and humans (BEAN et al. 2004; TURNER et al. 2005; FERGUSON et al. 2008). In mammals, the phenomenon is known as meiotic silencing of unsynapsed chromatin (MSUC) and it is responsible for meiotic sex chromosome inactivation (MSCI) (BURGOYNE et al. 2009). Further identification of the genetic factors controlling these phenomena should shed light on the mechanisms involved in targeting unpaired DNA and whatever similarity or difference there might be among various eukaryotes.

The authors wish to thank Namboori Raju for the cytological examination of some of the crosses, the members of the Shiu Laboratory for their technical assistance, and Michael Freitag and Eric Selker for various plasmids. T.M.H. was supported by a University of Missouri Life Sciences Fellowship and a National Institutes of Health fellowship. W.G.A. was supported by a Graduate Assistance in Areas of National Need (GAANN) fellowship. This work was supported by National Science Foundation grants EF0412016 (to P.J.P.) and MCB0544237/0918937 (to P.K.T.S.).
LITERATURE CITED

CECERE, G., and C. COGONI, 2009 Quelling targets the rDNA locus and functions in rDNA copy number control. BMC Microbiol. **9**: 44.

COLOT, H. V., G. PARK, G. E. TURNER, C. RINGELBERG, C. M. CREW, L.

MAITI, M., H. C. LEE and Y. LIU, 2007 QIP, a putative exonuclease, interacts with the *Neurospora* Argonaute protein and facilitates conversion of duplex siRNA into single strands. Genes Dev. **21**: 590-600.

ROMANO, N., and G. MACINO, 1992 Quelling: transient inactivation of gene expression in
Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6: 3343-
3353.

SAMBROOK, J., and D. W. RUSSELL, 2001 Molecular Cloning: A Laboratory Manual (third
ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

SHIU, P. K. T., and N. L. GLASS, 2000 Cell and nuclear recognition mechanisms mediated by

SHIU, P. K. T., and R. L. METZENBERG, 2002 Meiotic silencing by unpaired DNA:

by unpaired DNA. Cell 107: 905-916.

SHIU, P. K. T., D. ZICKLER, N. B. RAJU, G. RUPRICH-ROBERT and R. L. METZENBERG,
2006 SAD-2 is required for Meiotic Silencing by Unpaired DNA and perinuclear localization of
TURNER, J. M. A., S. K. MAHADEVAIAH, O. FERNANDEZ-CAPETILLO, A.

YU, J.H., Z. HAMARI, K. H. HAN, J. A. SEO, Y. REYES-DOMÍNGUEZ, C.
FIGURE AND TABLE LEGENDS

FIGURE 1. - *qip* is expressed in both asexual and sexual tissues. RT-PCR products for *qip* and *actin* (control) are shown (1414 bp and 227 bp, respectively). RNA from vegetative (V) and perithecial (P; 4 and 6 days) preparations were used for the amplification reactions.

FIGURE 2. - Perithecial examination of various crosses demonstrates the requirement of *qip* in early sexual development. (A-B) *qip*+ × *qip*+ (F2-01 × P3-08). Normal perithecia and rosettes of 8-spored asci can be seen from the control cross. (C-D) *qip*∆ × *qip*∆ (F2-06 × P9-39). Undersized beaks (arrow in C) and the absence of asci (perithecial cross section in D) in a cross homozygous for *qip*∆. Bars, 500 μm. (E) Only paraphysal tissue is found in perithecia from a *qip*∆ × *qip*∆ (F2-06 × P9-39) cross, suggesting a severe defect in perithecial development in a *qip*-null background. DAPI stain. Bar, 10 μm.

FIGURE 3. - Meiotic silencing of the unpaired *histone H1-gfp* (*his-3*::*hH1-gfp*) gene is suppressed in a QIP-deficient cross. (A) *qip*+ × ::*hH1-gfp* (P6-07 × P10-16). Since the unpaired *hH1-gfp* gene is silenced during meiosis in a developing ascus, no fluorescence is observed. (B) *qip*∆ × ::*hH1-gfp* (P12-28 × P10-16). *qip*∆ does not dominantly suppress the meiotic silencing of unpaired *hH1-gfp*. The nuclei remain nonfluorescent. (C) ::*qip*∆ × ::*hH1-gfp* *qip*∆ (P11-38 × P12-13). Silencing of the unpaired *hH1-gfp* gene is suppressed in a *qip* knockdown cross, resulting in the presence of nuclear fluorescence. Bar, 10 μm.
FIGURE 4. - Meiotic silencing of the unpaired *Round spore* (*r}* gene is suppressed in a QIP-deficient cross. (A) *r} × *r} (P3-07 × P3-08). Normal spindle-shaped (American football-like) ascospores are observed when the *r} gene is expressed. (B) *r} × ::*r} (P6-08 × P11-36). Meiotic silencing of the *r} gene leads to the production of round ascospores. (C) *Sad-1}* × ::*r} (P5-52 × P11-36). *Sad-1}* suppresses the meiotic silencing of *r}, resulting in the presence of spindle-shaped ascospores. (D) *qip}* × ::*r} (P11-21 × P11-36). *qip}* does not act as a dominant suppressor of MSUD, resulting in predominantly round ascospores. (E) ::*qip}* × ::*r} *qip}* (P11-38 × P11-41). The silencing of the unpaired *r} gene is suppressed in a *qip* knockdown cross, resulting in the presence of spindle-shaped ascospores. Bar, 100 μm.

FIGURE 5. - Colocalization of MSUD proteins in the perinuclear region. Micrographs illustrate prophase asci expressing (A-D) *qip-gfp* and *sms-2-rfp* (P15-02 × P15-03), (E-H) *qip-gfp* and *sad-2-rfp* (P14-05 × P6-62), (I-L) *dcl-1-gfp* and *sad-2-rfp* (P10-18 × P6-62), and (M-P) *sad-1-gfp* and *sad-2-rfp* (P13-15 × P6-62). The chromatin was stained with DAPI. Bar, 5 μm.

FIGURE S1. - The nucleotide and amino-acid sequence of *qip* (NCU00076). Sequences matching or similar to the consensus for the CAAT box, the transciptional start site, and the polyadenylation signal are underlined. The intron sequences are italicized. The DNA sequence listed here corresponds to the reverse complement of nucleotides 2528149-2531948 of *N. crassa* supercontig 3 (http://www.broadinstitute.org/annotation/genome/neurospora/MultiHome.html).
TABLE 1. - *Neurospora* strains used in this study.

TABLE 2. - *qip*\(^\Lambda\), unlike *Sad-1*\(^\Lambda\), does not act as a dominant suppressor of MSUD. Meiotic silencing of meiotically important genes, such as *act*\(^+\), *asm-1*\(^+\), *Bml*\(^R\), and *r*\(^+\), leads to the reduced production of black (mature) American football (spindle)-shaped ascospores. Crosses carrying *Sad-1*\(^\Lambda\), not *qip*\(^\Lambda\), can improve the production of normal ascospores. Strains used in this experiment include F2-29, F2-35, F2-36, F3-23, P3-08, P3-25, and P9-39.

TABLE S1. - Primers used in this study. Restriction sites, including *Not*\(^I\) (GCGGCCGC), *Spe*\(^I\) (ACTAGT), *Pac*\(^I\) (TTAATTAA), and *Xba*\(^I\) (TCTAGA) are underlined. Nucleotide positions for *qip* are numbered according to Figure S1. \(^1\)his-3 integration. \(^2\)Native integration.
Table 1. *Neurospora* strains used in this study.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1-05</td>
<td>$fl\ a$</td>
</tr>
<tr>
<td>F2-01</td>
<td>$fl\ A$</td>
</tr>
<tr>
<td>F2-06</td>
<td>$fl;\ qip^{\Delta}::hph\ A$</td>
</tr>
<tr>
<td>F2-29</td>
<td>$rid\ R^{\Delta}::hph;\ fl\ A$</td>
</tr>
<tr>
<td>F2-35</td>
<td>$his-3^{\Delta}::act^{\Delta};\ fl\ A$</td>
</tr>
<tr>
<td>F2-36</td>
<td>$his-3^{\Delta}::Bml^{R};\ fl\ A$</td>
</tr>
<tr>
<td>F3-23</td>
<td>$rid\ his-3^{\Delta}::asm-1^{\Delta};\ fl;\ Asm-1^{\Delta}::hph\ A$</td>
</tr>
<tr>
<td>P3-07</td>
<td>Oak Ridge wild-type A (FGSC 2489)</td>
</tr>
<tr>
<td>P3-08</td>
<td>Oak Ridge wild-type a (FGSC 2490)</td>
</tr>
<tr>
<td>P3-25</td>
<td>$mep\ Sad-1^{\Delta}::hph\ a$</td>
</tr>
<tr>
<td>P5-52</td>
<td>$Sad-1^{\Delta}::hph\ rid\ his-3\ a$</td>
</tr>
<tr>
<td>P6-07</td>
<td>$rid\ A$</td>
</tr>
<tr>
<td>P6-08</td>
<td>$rid\ a$</td>
</tr>
<tr>
<td>P6-62</td>
<td>$rid\ his-3^{\Delta}::sad-2-rfp;\ inv\ Sad-2^{\text{Rip}}\ a$</td>
</tr>
<tr>
<td>P9-39</td>
<td>$qip^{\Delta}::hph\ a$ (FGSC 12130)</td>
</tr>
<tr>
<td>P10-16</td>
<td>$rid\ his-3^{\Delta}::hH1-gfp\ a$</td>
</tr>
<tr>
<td>P10-18</td>
<td>$rid\ his-3^{\Delta}::dcl-1-gfp;\ dcl-1^{\Delta}::hph\ mus-52^{\Delta}::bar\ A$</td>
</tr>
<tr>
<td>P11-21</td>
<td>$rid\ his-3;\ qip^{\Delta}::hph;\ mus-51^{\Delta}::bar\ a$</td>
</tr>
<tr>
<td>P11-36</td>
<td>$rid\ his-3^{\Delta}::r^{\Delta};\ mus-52^{\Delta}::bar\ A$</td>
</tr>
<tr>
<td>P11-38</td>
<td>$rid\ his-3^{\Delta}::qip^{\Delta};\ mus-52^{\Delta}::bar\ A$</td>
</tr>
<tr>
<td>P11-41</td>
<td>$rid\ his-3^{\Delta}::r^{\Delta};\ qip^{\Delta}::hph;\ mus-51^{\Delta}::bar\ a$</td>
</tr>
<tr>
<td>P12-13</td>
<td>$rid\ his-3^{\Delta}::hH1-gfp;\ mus-51^{\Delta}::Bar;\ qip^{\Delta}::hph\ a$</td>
</tr>
<tr>
<td>P12-28</td>
<td>$rid\ his-3;\ qip^{\Delta}::hph;\ mus-51^{\Delta}::bar\ A$</td>
</tr>
<tr>
<td>P13-15</td>
<td>$sad-1^{\Delta}::gfp::hph\ A$</td>
</tr>
<tr>
<td>P14-05</td>
<td>$rid\ his-3^{\Delta}::qip-gfp;\ qip^{\Delta}::hph;\ mus-51^{\Delta}::bar\ A$</td>
</tr>
<tr>
<td>P15-02</td>
<td>$rid\ his-3^{\Delta}::sms-2-rfp;\ mus-52^{\Delta}::bar;\ qip-gfp::hph\ A$</td>
</tr>
<tr>
<td>P15-03</td>
<td>$rid\ his-3^{\Delta}::sms-2-rfp;\ mus-52^{\Delta}::bar;\ qip-gfp::hph\ a$</td>
</tr>
</tbody>
</table>
TABLE 2. - *qip*Δ, unlike *Sad-1*Δ, does not act as a dominant suppressor of MSUD.

<table>
<thead>
<tr>
<th>Unpaired gene</th>
<th>Parent 1 (mat A)</th>
<th>Parent 2 (mat a)</th>
<th>Ascospore count/phenotype</th>
<th>Predominant Ascus Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ectopic insertion at his-3 (::) and/or deletion (Δ)</td>
<td>Mutation at sad-1 or qip</td>
<td></td>
<td></td>
</tr>
<tr>
<td>actin</td>
<td>::act+</td>
<td>Wild type</td>
<td>208 × 10³</td>
<td>Lollipop asci</td>
</tr>
<tr>
<td></td>
<td>::actΔ</td>
<td>qipΔ</td>
<td>320 × 10³</td>
<td>Lollipop asci</td>
</tr>
<tr>
<td></td>
<td>::actΔ</td>
<td>Sad-1Δ</td>
<td>2.408 × 10³</td>
<td>Normal</td>
</tr>
<tr>
<td>Ascospore maturation-I</td>
<td>::asm-1*+; Asm-1*Δ</td>
<td>Wild type</td>
<td>1.6 % black</td>
<td>White ascospores</td>
</tr>
<tr>
<td></td>
<td>::asm-1*+; Asm-1*Δ</td>
<td>qipΔ</td>
<td>1.4 % black</td>
<td>White ascospores</td>
</tr>
<tr>
<td></td>
<td>::asm-1*+; Asm-1*Δ</td>
<td>Sad-1Δ</td>
<td>86 % black</td>
<td>Black ascospores</td>
</tr>
<tr>
<td>β-tubulin</td>
<td>::BmlR</td>
<td>Wild type</td>
<td>2.9 × 10³</td>
<td>Arrests before metaphase</td>
</tr>
<tr>
<td></td>
<td>::BmlΔ</td>
<td>qipΔ</td>
<td>2.4 × 10³</td>
<td>Arrests before metaphase</td>
</tr>
<tr>
<td></td>
<td>::BmlΔ</td>
<td>Sad-1Δ</td>
<td>4.008 × 10³</td>
<td>Normal</td>
</tr>
<tr>
<td>Round spore</td>
<td>RΔ</td>
<td>Wild type</td>
<td>0 % football</td>
<td>Round ascospores</td>
</tr>
<tr>
<td></td>
<td>RΔ</td>
<td>qipΔ</td>
<td>0 % football</td>
<td>Round ascospores</td>
</tr>
<tr>
<td></td>
<td>RΔ</td>
<td>Sad-1Δ</td>
<td>100% football</td>
<td>Football-shaped ascospores</td>
</tr>
</tbody>
</table>

TABLE 2. - *qip*Δ, unlike *Sad-1*Δ, does not act as a dominant suppressor of MSUD. Meiotic silencing of meiotically important genes, such as *act*, *asm-1*+, *Bml*, and *r*+, leads to the reduced production of black (mature) American football (spindle)-shaped ascospores. Crosses carrying *Sad-1*Δ, not *qip*Δ, can improve the production of normal ascospores. Strains used in this experiment include F2-29, F2-35, F2-36, F3-23, P3-08, P3-25, and P9-39.