The use of family relationships and linkage disequilibrium to impute phase and missing genotypes in up to whole genome sequence density genotypic data

Theo Meuwissen¹,* and Mike Goddard²,³

¹Norwegian University of Life Sciences, Box 5003, Ås, Norway

²University of Melbourne and

³Department of Primary Industries, Victoria, Australia

*corresponding author Email: theo.meuwissen@umb.no
Keywords: phase imputation; missing genotype imputation; combining linkage and linkage disequilibrium; whole genome sequence data; use of small SNP panels; haplotype estimation.

Corresponding author:

Theo Meuwissen

Norwegian University of Life Sciences

Box 5003, 1430 Ås, Norway

Theo.meuwissen@umb.no

Tel: +4764965107

Fax: +4764965101
ABSTRACT

A novel method, called LDMIP, for the imputation of phase and missing genotypes is developed. LDMIP performs an iterative peeling step for every locus, which accounts for the family data, and uses a forward-backward algorithm to accumulate information across loci. Marker similarity between haplotype pairs is used to impute possible missing genotypes and phases, which relies on the linkage disequilibrium between closely linked markers. After this imputation step, the combined iterative peeling / forward backward algorithm is applied again, until convergence. The calculations per iteration scale linearly with number of markers and number of individuals in the pedigree, which makes LDMIP well suited to large number of markers and/or large numbers of individuals. Per iteration calculations scale quadratically with the number of alleles, which implies bi-allelic markers are preferred. In a situation with up to 15% randomly missing genotypes, the error rate of the imputed genotypes was <1% and about 99% of the missing genotypes were imputed. In another example, LDMIP was used to impute whole genome sequence data consisting of 17,321 SNPs on a chromosome. Imputation of the sequence was based on the information of 20 (re)sequenced founder individuals and genotyping their descendents for a panel of 3000 SNPs. The error-rate of the imputed SNP genotypes was 10%. However, if the parents of these 20 founders are also sequenced, more than 99% of missing genotypes are imputed correctly.
INTRODUCTION

High-density SNP arrays are currently available for an increasing number of species. QTL mapping, Marker Assisted Selection (MAS), and other genetic analyses often require or benefit greatly from imputing missing genotypes and from knowing the phase of the SNP genotypes. Although, many statistical methods have been developed for phasing in the literature, new methods are needed because of the spectacular improvements in the efficiency of high throughput genotyping. The older phasing methods often use linkage information (e.g. Sobel and Lange, 1996). However, due to the use of increasingly dense marker maps, the use of Linkage Disequilibrium (LD) information has become increasingly attractive. Moreover, the linkage analysis methods became computationally intractable as the number of SNPs and/or the number of individuals increased. Phasing methods that solely rely on LD such as Fastphase (Sheet and Stephens, 2006), tend to mistakenly introduce recombinations when applied to genotypes covering long genetic distances (Kong et al., 2008).

Linkage information and use of LD are not fundamentally different – use of LD may be thought of as linkage analysis based on common ancestors that occur before the known pedigree. Kong et al. suggested a new approach called ‘long-range phasing (LRP)’ that relies on detecting identical-by-descent (IBD) haplotypes in different individuals and can phase large numbers of SNPs. For situations where the pedigree back to the common ancestor is available this may be considered linkage analysis but it can also be used without a pedigree and would use LD information. Long range phasing may be seen as a set of sensible, heuristic rules to determine the phase using linkage analysis information, without attempting to extract all information in an optimal way. The latter is typical for modern linkage based phasing methods: they are less concerned about optimally using all information, since there is a surplus of information, and are more concerned with handling high SNP densities over large genetic distances and for many genotyped individuals. The surplus of information is especially large if whole genome sequence data is used. We will define here whole genome (re)sequence data
as all the SNPs in the genome, which ignores information from copy number variation and other non-
SNP genetic polymorphisms.

Here we will describe a new phasing method, called LDMIP (Linkage Disequilibrium Multilocus
Iterative Peeling), which combines linkage and linkage disequilibrium information, and can handle
10,000s of SNPs per chromosome, and thousands of individuals. It was initially developed for the
common situation where many individuals at the top of the pedigree are ungenotyped, but the
method is general and can be applied in other situations. For instance, we apply it here to the
situation where a few individuals have very dense genetic information (eg from genome sequencing)
while most individuals have sparser or no genotype data. In order to make optimum use of the
known pedigree, family information is used quite extensively in an iterative peeling approach (Elston
and Stewart, 1971; Van Arendonk et al., 1989; Janss et al., 1995). The use of LD information crudely
follows the approach of Meuwissen and Goddard (2001, 2007).

METHODS

Iterative peeling for one locus

The principles of peeling algorithms are described by Elston and Stewart (1971). The iterative peeling
algorithm used here is based on these principles and described in detail by (Kerr et al., 1996), who
extended the exact peeling method of Fernando et al. (1993) towards an iterative process, in order
to be able to handle pedigrees with many loops. For the latter reason we also use iterative peeling
here, although its results are approximate in nature. For each individual i, 4 sorted SNP genotypes
are considered: $u_i = 1, 2, 3$ or 4, which refers to the genotypes ‘aa’, ‘aA’, ‘Aa’ or ‘AA’. The difference
between ‘aA’ and ‘Aa’ heterozygotes is that in the former case the ‘a’ allele is inherited from the
father, and in the latter case from the mother. SNP genotyping only reveals 3 ‘unsorted’ genotypes:
$m_i = 1$, 2 or 3, where $m_i = 1$ denotes homozygous for the ‘a’ allele; $m_i = 2$ denotes heterozygous, and
$m_i = 3$ denotes homozygous for the ‘A’ allele. The SNP genotypes, m_i, are treated as phenotypic
records here. Table 1 summarizes the notation that is used.

Following Fernando et al. (1993), the information about the genotype of individual i, u_i, is split in
three parts: the anterior probability, $a_i(u_i)$, which is the information that comes from the parents (i.e.
the genotype probability if i had no own phenotypic record nor progeny); the penetrance, $f(m_i|u_i)$,
which is the information that comes from its own record (see Table 2); and the posterior probability, $p_{ij}(u_i)$, which is the information that comes from the offspring that individual i has with mate j. In a
pedigree with loops, there are dependencies between the anterior and posterior information, but
these dependencies will be assumed negligible here, such that the combined genotype probability
given the marker information is:

$$P(u_i|m) = a_i(u_i)f(m_i|u_i)\prod_{j\in M_i} p_{ij}(u_i)/\text{Lik}$$

(1)

where m is the vector of all marker genotypes (which are treated as phenotypes here); M_i is the set
of mates of i; and Lik is the likelihood of the marker data:

$$\text{Lik} = \sum_{u_i} a_i(u_i)f(m_i|u_i)\prod_{j\in M_i} p_{ij}(u_i).$$

If i is an offspring of s and d, the anterior probability is (Fernando et al., 1993):

$$a_i(u_i) = \sum_{u_s} \{a_s(u_s)f(m_s|u_s)\prod_{j\in M_s} p_{sj}(u_s)$$

* $\sum_{u_d} \{a_d(u_d)f(m_d|u_d)\prod_{j\in M_d} p_{dj}(u_d)$$

* $tr(u_j|u_s, u_d)$$

* $\prod_{j\in C_{sd}} \left[\sum_{u_j} tr(u_j|u_s, u_d)f(m_j|u_j)\prod_{k\in M_j} p_{kj}(u_j)\right]\}$$

= \sum_{u_s} \{a_s(u_s)f(m_s|u_s)\prod_{j\in M_s} p_{sj}(u_s) * a_i(u_i|u_s)$$

(2)

where C_{sd} denotes the set of offspring from the mating pair s and d; the transmission probability
$tr(u_j|u_s, u_d)$ is the probability that offspring j has genotype u_j given that its parents have genotypes u_s
and u_s. The latter way of writing Equation (2) defines $a_i(u_i | u_s)$, i.e. the anterior probability of genotype u_i given that the sire has genotype u_s, and will be needed to calculate probabilities of maternal or paternal inheritance using the peeling algorithm.

The posterior probability coming from offspring of i with mate j is (Fernando et al., 1993):

$$p_{ij}(u_i) = \sum_{u_j} \left\{ a_j(u_j) f(m_j | u_j) \prod_{k \in M_k} p_{jk}(u_j) \right\}$$

$$\quad \times \prod_{k \in C_i} \left\{ \sum_{u_k} tr(u_k | u_i, u_j) f(m_k | u_k) \prod_{l \in M_k} p_{lk}(u_l) \right\}$$

The calculation of $a_i(u_i)$ involves $p_i(u_i)$, and vice versa. In pedigrees without loops the calculations can be ordered such that all $a_i(u_i)$ and $p_i(u_i)$ terms are calculated before they are needed. But in complex pedigrees with many loops, the calculations need to be performed iteratively. At the start all $a_i(u_i)$ and $p_i(u_i)$ are set equal to 1. First the posterior probabilities are calculated working from the youngest to the oldest individual in the pedigree. Next the anterior probabilities are calculated starting from the oldest and working through to the youngest individual. After this the posterior probabilities are updated again, etcetera until the sum of squares of the changes of the $Pr(u_i | m)$ probabilities is smaller than 10^{-8} times the sum of squares of the $Pr(u_i | m)$ values.

Multilocus iterative peeling:

In multilocus iterative peeling we adjust the transmission probabilities for the information from neighboring loci. E.g., if at a neighboring locus the paternal allele is transmitted from parent to offspring, then the current locus will also most likely inherit the paternal allele. For this we express the transmission probability in terms of segregation indicators $S_{i(k)}$. $S_{i(k)}$ equals 1 (0) if individual i inherits the paternal (maternal) allele of its sire at locus k. Similarly, $S_{d(k)}$ equals 1 (0) if individual i inherits the paternal (maternal) allele of its dam at locus k. First we factor the transmission probability $tr(u_i | u_s, u_d)$ into probabilities for the paternal and maternal allele of i.
where \(tr_p(u_i|u_s) = \) probability the sire of genotype \(u_i \) transmits the paternal allele of genotype \(u_i \).

Similarly, \(tr_m(u_i|u_d) = \) probability that dam of genotype \(u_d \) transmits the maternal allele of genotype \(u_i \). Now we calculate these transmission probabilities at locus \(k \) conditional on all marker genotypes except those at locus \(k \).

\[
tr(u_i|u_s, u_d) = tr_p(u_i|u_s) \times tr_m(u_i|u_d)
\]

(3a),

Where \(tr_p(u_i|u_s, m_{(-k)}) \) \((tr_m(u_i|u_d, m_{(-k)}) \) denotes the probability that the sire (dam) transmits the allele that is paternally (maternally) inherited in the \(u_i \) genotype. \(m_{(-k)} \) indicates the marker genotypes of all loci and all individuals except locus \(k \). The paternal and maternal transmission probabilities are:

\[
tr_p(u_i|u_s, m_{(-k)}) = P(S_{1(k)}|m_{(-k)}) \times I_p(u_i|u_s) + (1 - P(S_{1(k)}|m_{(-k)})) \times I_m(u_i|u_s)
\]

\[
tr_m(u_i|u_d, m_{(-k)}) = P(S_{2(k)}|m_{(-k)}) \times I_p(u_i|u_d) + (1 - P(S_{2(k)}|m_{(-k)})) \times I_m(u_i|u_d)
\]

(3b)

where \(I_p(u_i|u_s) \) is an indicator variable which is 1 (0) if the inheritance of the paternal allele of the sire can (cannot) give genotype \(u_i \) given the sire’s genotype \(u_s \), and \(P(S_{1(k)}|m_{(-k)}) \) is the probability that \(S_{1(k)} = 1 \) conditional on the marker genotypes at all loci except \(k \). Similarly, \(I_m(u_i|u_s) \) indicates that the inheritance of the maternal allele of the sire could give genotype \(u_i \). Also, \(I_p(u_i|u_d) \) \(I_m(u_i|u_d) \) indicates whether inheritance of the paternal [maternal] allele of the dam could give genotype \(u_i \).

In order to calculate Equation (3b), we need to derive the probabilities of the segregation indicators conditional on the information of all other marker loci. For this we will use the approach of the Lander-Green algorithm (Lander and Green, 1987), which is an implementation of the forward-
backward algorithm (Russel and Norvig, 2003). Let $S_{[k]}$ denote all segregation indicators of all individuals at locus k, then Appendix A shows that:

$$P(S_{[k]} | m_{(-k)}) = P(S_{(k)} | m_{(1..k-1)}) P(S_{(k)} | m_{(k+1..L)}) / \text{const}_1 \quad (4)$$

where const_1 is a constant, and $m_{(i..j)}$ denotes the markers at loci $i, i+1, ..., j$. Equation (4) writes $P(S_{[k]} | m_{(k)})$ in terms of $P(S_{[k]} | m_{(L..k)})$, which will be calculated by the forward cycle of the following Lander-Green type of algorithm and $P(S_{[k]} | m_{(k+1..L)})$, which will be calculated by the backward cycle of the algorithm.

For the forward cycle of the algorithm, we start with noting that $P(S_{[1]}) = 0.5$ for all segregation indicators. Next we calculate $P(S_{[2]} | m_{(1)})$ using a slightly modified peeling algorithm, which is adapted to calculate the segregation indicator probabilities next to the genotype probabilities (see Appendix B for details).

In the absence of a recombination between locus $(k-1)$ and (k), we have $S_{ij(k)} = S_{ij(k-1)}$, and if there is a recombination we have $S_{ij(k)} = 1 - S_{ij(k-1)}$, which gives the general equation:

$$P(S_{ij(k)} | m_{(1..k-1)}) = (1 - \rho_{(k-1,k)}) P(S_{ij(k-1)} | m_{(1..k-1)}) + \rho_{(k-1,k)} (1 - P(S_{ij(k-1)} | m_{(1..k-1)})) \quad (5)$$

where $\rho_{(k-1,k)}$ is the recombination rate between locus $k-1$ and k. Using Equation (5) we calculate $P(S_{ij(2)} | m_{(1)})$, which is of the same form as $P(S_{ij(k)} | m_{(1..k-1)})$ for $k=2$. Next we calculate $P(S_{ij(2)} | m_{(1..2)})$ by peeling and applying equation (B1) from Appendix B to locus 2, but using transmission probabilities $tr(u_i | u_s, u_d, m_{(1)})$, which are obtained from Equation (3) and $P(S_{ij(2)} | m_{(1)})$.
Given \(P(S_{ij|2} | m_{(1)}, m_{(2)}) \) we calculate \(P(S_{ij|3} | m_{(1)}, m_{(2)}) \) using Equation (5), which is of the form

\[
P(S_{ij|k} | m_{(1:L-1)})
\]

for \(k=3 \), as needed in Equation (4). This cycle of calculations is repeated until all markers are included and until \(P(S_{ij|L} | m_{(1:L-1)}) \) is reached, which concludes the forward cycle of the algorithm.

Next the algorithm is applied in the same way but by starting at the rightmost position \(L \) and including markers from the left of the current position, i.e. the backward cycle of the forward-backward algorithm. In the algorithm, this is simply obtained by swapping the indices of the loci, i.e. counting loci from right-to-left instead of from left-to-right.

The algorithm concludes by using Equation (2) to calculate \(P(S_{ij|k} | m_{(-k)}) \) for every locus \(k \), and using these results to calculate the transmission probabilities of Equation (3) followed by an iterative peeling step at each locus \(k \) to obtain \(P(u_i | m_{[1:L]}) \), i.e. the probability of the four genotypes for each individual \(i \) at each locus \(k \), conditional on the marker genotypes at locus \(k \) and all other loci.

Phasing

The genotype probabilities for the four genotypes \(aa, aA, Aa \) and \(AA \) do not provide direct estimates of the phase between the markers (which would require estimates of multilocus genotype probabilities). However, the probabilities distinguish between the paternal or maternal inheritance of the alleles, i.e. the heterozygote \(Aa \) differs from \(aA \). If the genotypes probabilities are close to certain this also provides us with the haplotypes, e.g. if at two loci genotypes \(Aa \) and \(bB \) are almost certain, the phased genotype is almost certainly \((Ab)/(aB) \). However, if \(Aa \) and \(bB \) are the most probable genotypes at the ‘A’ and ‘B’ loci, respectively, this does not imply that \((Ab)/(aB) \) is also the most probable haplotype. Therefore, we require that the genotype probability is \(>0.95 \) for both the
genotypes before we deduce the haplotype. If genotype-probabilities are <0.95, the phased genotype is assumed missing.

For founders, i.e. individuals with unknown parents, the two heterozygous genotypes ('Aa' and 'aA') have equal genotype probabilities, \(P(u_2|m_{(1..L)}) = P(u_3|m_{(1..L)}) = \frac{1}{2} \), since it cannot be assessed whether the ‘A’ was inherited from the father or mother. However, the phases of the markers may still be estimated based on progeny information. In order to extract the information on the marker phases, one heterozygous marker locus close to the middle of the chromosome segment was arbitrarily set to genotype \(u_2 \), i.e. the penetrance \(f(m_i|u_i=2) = 1 \). An arbitrary heterozygous genotype, close to the middle of the segment, was set to \(u_i=2 \) for every genotyped founder. The set genotype served as an anchor for the other markers, such that their heterozygous genotype probabilities could deviate from \(P(u_2|m_{(1..L)}) = P(u_3|m_{(1..L)}) = \frac{1}{2} \).

Use of LD information

The algorithm described above uses only linkage analysis information and may result in a lot of missing phased genotypes. Here we will use LD information to fill-in the missing genotypes, i.e. loci where the algorithm could not achieve a 95% certainty in favor of one of the four possible phased genotypes. For this we crudely approximate the IBD probability estimation methods of Meuwissen and Goddard (2001, 2007). These authors use the number of marker alleles equal to the left (right) of a focal position, before a break occurs (i.e. alleles are not equal), as data for the calculation of the IBD probability of two haplotypes at the focal position. E.g. when \(F \) denotes the focal position, the haplotypes ‘111F111’ and ‘110F110’ have 2 markers equal to the right before a break occurs and 0 markers equal to the left. Such IBD probability calculations, show that IBD probabilities are usually >0.99 if the number of markers equal to the left plus that equal to the right is 20 or more, and the
focal point is not next to a break. In such a situation, it is thus quite safe to assume that the marker alleles at the focal point are the same, and if the marker allele is missing at the focal point at the first haplotype, we can simply assume it is a copy of the allele of the second haplotype. If a missing allele at a haplotype could be copied from several alternative haplotypes (since there are many haplotype pairs), it will only be copied if all alternative haplotypes yield the same allele. However, if the number of alternative haplotypes for filling in the missing allele is large (>20), one of the alternative suggestions is allowed to deviate from all the other alternatives. In the latter case, the allele suggested by the majority of the haplotypes is copied, unless it does not agree with the known genotype. If, when comparing two haplotype pairs, one or both alleles are missing (unknown phase) at a SNP next to the focal position, simply the next SNP is taken, but still the requirement of >20 equal SNP alleles is maintained by extending the chromosomal region. Thus, if missing phased genotypes occur, the number of SNPs considered to the left and right of F is extended.

This imputation of missing genotypes means that effectively more marker genotypes become available, and it thus makes sense to rerun the multilocus iterative peeling algorithm. After this more marker loci can be imputed, etcetera. These two steps are iterated until convergence. The information of an imputed marker genotype, say Aa, is conveyed to the peeling algorithm by setting the penetrance probability of genotype Aa to 0.99, and the setting the penetrance probability of the remaining genotypes, aa, aA, and AA, to 0.01/3. This allows for errors of genotype imputation. The algorithm is considered converged if the number of missing genotypes was not reduced during two iterations. The algorithm is implemented in a software package which is available from the authors upon request.

Testing the algorithm by computer simulation
Case I: First, we simulated genome sequence data by forward simulation of a population of \(N_e=100\) and a chromosome of length 50cM for 1000 generations. The assumptions about the population model followed those of coalescence theory (Hudson, 2002), i.e. the Fisher-Wright idealised population model (Falconer and Mackay, 1996) and the infinite-sites mutation model was assumed (Kimura, 1969), with a mutation frequency of \(2 \times 10^{-8}\) per nucleotide per generation. Recombinations were sampled according to the Haldane mapping function, assuming a recombination frequency of \(10^{-8}\) per nucleotide.

Second, the 500 SNPs with the highest MAF (Minor Allele Frequency) were selected for genotyping, which resulted in MAFs ranging from 0.245 to 0.5. Genotyping was only performed in the last 3 generations, whilst pedigree was recorded for the last 5 generations (i.e. generations 996-1000), which will be called G1,...,G5, respectively. The parents of the individuals of generation G1 were assumed unknown. Thus, the LDMIP algorithm was using 500 individuals (5 generations times 100), of which the youngest 300 were genotyped. At random some of the marker genotypes within the genotyped individuals were set missing at a rate of 5, 10 or 15%. LDMIP was used to estimate the phase of the markers and to impute the missing genotypes. These estimates were compared to the true values which are known in the simulations, and to estimates obtained from FastPhase (Sheet and Stephens, 2006) and from LRP. LRP was applied as described by Kong et al. (2008) to the 100cM region, with an additional step at the end of the LRP algorithm where the surrogate parents were used to impute missing genotypes instead of phase (which had already been imputed). Un genotyped individuals of generations G1 and G2 were not considered, although some of their genotypes were also imputed by the algorithms.

Case II: In case II we wanted to test whether the algorithm could be used to impute full genome sequence data. This case considers the situation where a few founder individuals are re-sequenced such that their full genome sequence is available, and where later generation descendants are relatively sparsely genotyped for 3000 SNPs. Genome structure and 1000 generations were
simulated the same as before, except that generation G1 contained only 10 males and 10 females. Thus, later generations descended from few founders in generation G1. In Case IIa, these 20 founders were re-sequenced and their whole genome sequence was available, and contained 16,722 SNPs. In Case IIb, in addition to the 20 founders their parents (40 sires and dams) were re-sequenced, in order to facilitate the estimation of the phases of the founders. Generations G4 and G5, but not G2 and G3, were (sparsely) genotyped for a panel of 3000 SNPs, which were randomly selected from amongst the SNPs with MAF > 0.1. Generations G2 and G3 were not genotyped. The aim here is to reconstruct the genome sequence for the individuals in generations G4 and G5. The simulated data are available as supplementary material (FILE S1).

RESULTS

Case I

Table 3 shows the number of phased genotypes and the number of erroneously inferred phases in the genotyped generations G3, G4 and G5. The fraction of erroneously inferred phases varied from 1.4 – 1.8%. It is also apparent from Table 3 that almost all the erroneously inferred phases occurred in generation 3, which was the first genotyped generation. Hence, knowing the genotypes of the sires and dams greatly improved the accuracy of phasing, even in a situation where the pedigree of the generation 3 individuals is known and thus some of the generation 2 genotypes could be inferred. The missing genotype rate hardly affected the accuracy of the phase estimates.

Table 4 shows the error rate of the imputed genotypes is less than 1%, and nearly all errors occurred in generation 3. Thus, knowledge about the genotypes of the parents greatly improves the
imputation of missing genotypes. The fraction of missing genotypes that were imputed by the
algorithm was about 98.6%. Table 5 shows that the number erroneously imputed genotypes and
phases by FastPhase is approximately 5 times larger than that of LDMIP (Tables 1 and 2), which
demonstrates that the use of pedigree information greatly improves the imputation accuracy.
FastPhase imputed all missing genotypes and phases. LRP imputed only a limited number of phases
and genotypes. The phase imputation error rate of LRP was lower than that of FastPhase, but higher
than that of LDMIP. The genotype imputation error rate of LRP was similar error rate to that of
LDMIP but about 6 times fewer genotypes were imputed.

Case II

Table 6 shows the results on the imputation of missing genome sequence data of generations G4 and
G5, using the genome sequence of the generation G1 individuals. Without resequencing the parents
of the founders, about 96% of the missing SNP genotypes were imputed, and 10.5% of the missing
SNP genotypes were erroneously imputed. For the missing phases, these figures were 97% and 3.3%,
respectively. When, in addition to the founders, their parents were resequenced, 99.7% of the
missing genotypes were imputed and 0.3% of the missing genotypes were erroneously imputed. For
the missing phases these figures were ~100% and 0.09%, respectively. Hence, the resequencing of
the parents of the founders improved the imputation of the genome sequence of generation G4 and
G5 animals dramatically.

The analysis of Case I, with 500 individuals and 500 SNPs, ran within a few minutes on a PC type of
computer. Case II, which comprised 16,722 SNPs and 520 or 560 individuals took about 4 hours on a
PC without parallel processing. It is possible to parallelize the computations by splitting the
chromosome into e.g. 4 large, equally sized segments with, say, 100 SNPs overlap between the
segments. This would reduce the time required to perform this analysis to about 1 hour on a computer that can handle 4 simultaneous jobs.

DISCUSSION

A novel method, LDMIP, for the phasing of genotype data and the imputation of missing genotypes was developed that combined linkage and linkage disequilibrium information and could handle 10,000s of SNPs per chromosome. LDMIP was especially developed for situations where extensive pedigree is available, as well as the LD information which can always be used. The use of pedigree as well as the LD information (i) helps to impute missing genotypes and marker phases, which became particularly evident when comparing LDMIP results to those of FastPhase; (ii) detects genotyping errors that are inconsistent with the pedigree (this was found when analyzing real data using LDMIP); and (iii) ensures that the imputed genotypes and phases are consistent with the pedigree. The method was tested in two cases where the total number of individuals was about 500 and there were up to 16,722 SNPs, but we have also used the method in situations where the pedigree consisted of up to 20,000 individuals. It has been demonstrated before that iterative peeling can handle large complex pedigrees (e.g. Szydlowski and Gengler, 2008). In a situation with randomly missing genotypes, the error rate of the imputed genotypes was <1%, and ~99% of the missing genotypes were imputed. For the phase estimates these figures were 1-2% and >99%, respectively. Thus, LDMIP seems to yield accurate and quite completely phased genotypes, even in situations where up to 15% of the SNP genotypes are missing.

In Case II, LDMIP was used for whole genome sequence imputation. Here, some founder individuals had complete genome sequence data available, whilst later generation descendants were only relatively sparsely genotyped. In this case, LDMIP imputed the missing sequence data of the sparsely genotyped individuals with an error rate of about 10%. This error-rate was reduced to 0.3% when
the parents of the founders were also resequenced. The resequencing of the parents greatly improves the estimation of the phases and thus haplotypes of the founder individuals, which then greatly improves the imputation of the whole genome sequence of sparsely genotyped descendants. The error rate of the genome sequence imputation is similar to that of the re-sequencing technology, so there is no need to re-sequence the descendants. Few populations will have gone through such a severe bottle-neck as the population in Case II, which may imply that many more founder individuals need to be re-sequenced to obtain similar accuracies of sequence imputation. More research is needed on the effects of population structure and experimental designs for whole genome sequence imputation. However, Table 6 clearly shows that it is highly advisable to also resequence the parents of the founders in addition to the founder individuals. More generally, the individuals to be sequenced must be chosen so that the sequence data can be phased, and it is preferred to have the densest genotypes on the ancestors instead of the descendants, because the ancestors are less related and thus their genotypes provide more information.

Kong et al. (2008) recently described a phasing method called long-range phasing (LRP). It outperformed local phasing methods such as PHASE (Stephens and Sheet, 2005) and fastPHASE (Sheet and Stephens, 2006) both in speed and accuracy, because the local phasing methods use only the strong correlations between alleles within LD blocks. Across LD blocks, over long distances, the accuracy of local phasing reduced quickly. LRP was found accurate for regions of about 10 Mb. If larger regions need to be processed, as was the case here, it is more difficult to find ‘surrogate parents’ for the LRP algorithm that are IBS > 1 for the entire region, which are then considered IBD for the entire region. For many marker positions the algorithm failed to find informative surrogate parents for the entire 100 cM region due to the large region and the smaller number of genotyped individuals, which explains the low imputation rates of LRP (Table 5). Also the region may not be entirely IBD despite being IBS > 1 because our marker density was more than one order of magnitude
lower than that considered by Kong et al. (2008). The latter may explain the higher imputation error rate in Table 5 than that found by Kong et al. Thus, the LRP algorithm requires more genotyped individuals, a higher marker density than LDMIP and that the regions considered should not be too long. Otherwise the region needs to be broken down into sub-regions that are treated by LRP separately, which leaves the problem of deciding where the boundaries are. The multilocus peeling algorithm of LDMIP naturally models the boundaries between IBD regions, i.e. the boundary between a region that is IBD with one ‘surrogate parent’ and a region that is IBD with another. A detailed comparison of these and other methods is needed to guide the choice between alternative methods for genotype imputation under various circumstances.

Within the category of family based haplotyping methods, SIMWALK2 (Sobel and Lange, 1996) is probably the most used and well known. SIMWALK2 uses an MCMC (Monte Carlo Markov Chain) algorithm that in principle considers all possible haplotypes, although the markov chain will concentrate on the most likely haplotypes. The algorithm becomes however computationally too demanding with more than a few hundred individuals in the pedigree. In comparison to SIMWALK2, LDMIP (i) can handle larger pedigrees, and (ii) uses LD information next to linkage analysis.

The computational costs per iteration of the multilocus peeling increase approximately linearly with the number of SNPs and the number of individuals in the pedigree. However, the use of LD information requires the comparison of every haplotype of every genotyped individual with every other haplotype of a genotyped individual and computations increase thus quadratically with the number of genotyped individuals. The latter computation is however relatively fast and computation time thus increases generally linearly with the number of individuals in the pedigree, although the number of iterations may also increase. The number of iterations of the algorithm, i.e. number of
cycles of using LD and linkage analysis, is usually below 10. Whether LD information is used or not is optional, and if LD is not used no iteration is needed to obtain the final solution. The algorithm can be extended to multi-allelic markers such as microsatellites in a straightforward manner. However, computational costs per iteration and storage requirements increase quadratically with the number of alleles.

The presented methodology can easily account for genotyping errors by adjusting the penetrance probabilities \(f(m_i/u_i) \) (Gorjanc et al., 2010). Table 2 shows how to adjust penetrance probabilities if a genotyping error rate of 1% is assumed, and other error rates can be accommodated in a similar way. If the true genotype is ‘AA’, an erroneous call of ‘Aa’ may be more likely than ‘aa’, which may also be reflected in the penetrance probabilities, although this was not done in Table 2. Genotyping errors can be detected by scanning the results for discrepancies between the ultimate genotype probabilities \(P(u_i|m_1^{(1)},..,m_L^{(1)},..,m_L^{(1)}) \) and the marker genotype data \(m_i^{(1)} \). The penetrance probabilities allow for a quite flexible modeling of the observed information, and can for instance also be used to model dominant genetic markers.

LDMIP relies heavily on extensive family data to accurately phase over long regions. Family structure seems to be important to achieve accurate long-range phase estimates. In data without strong family structures, the long-range phases need to rely on many small phased, LD blocks coupled together, with the inherent problem that errors accumulate across the blocks. Many of the applications of dense SNP genotyping such as QTL (fine) mapping, haplotype based genomic selection, the estimation of effective population sizes (Tenesa et al., 2007), population admixture and the estimation of signatures of selection (Voight et al., 2006) rely on accurate estimates of phase and
missing genotypes and their utility is thus greatly improved by phase and genotype imputation methods such as LDMIP.

REFERENCES:

Meuwissen, T. H. E., and M. E. Goddard, 2007 Multipoint identity-by-descent prediction using dense markers to map quantitative trait loci and estimate effective population size. Genetics 176: 2551-60

Recent human effective population size estimated from linkage disequilibrium. Genome Res. 17: 520-6.

VanArendonk, J. A. M., C. Smith and B. W. Kennedy, 1989 Method to estimate genotype probabilities at individual loci in farm livestock. Theoretical and Applied Genetics 78: 735-740

Table 1. Summary of the notation.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i,s,d</td>
<td>individual i, its sire and its dam</td>
</tr>
<tr>
<td>u_i</td>
<td>genotype of individual i ($u_i=1, 2, 3, \text{and} 4$ denote genotypes ‘aa’, ‘aA’, ‘Aa’, and ‘AA’, respectively)</td>
</tr>
<tr>
<td>$m_i, \ m_{(1...k)}$, $m_{(k)}$</td>
<td>vector of observed marker genotypes for all L loci, respectively, loci $1,2,...,k$, and all loci except locus k.</td>
</tr>
<tr>
<td>$a_i(u_i)$</td>
<td>anterior probability: probability of genotype u_i using only ancestral information</td>
</tr>
<tr>
<td>$a_i(u_i/u_s)$</td>
<td>anterior probability: probability of genotype u_i using only ancestral information and conditional on the sire having genotype u_s.</td>
</tr>
<tr>
<td>$f(m_i/u_i)$</td>
<td>penetrance: probability of observing marker genotype m_i given genotype u_i.</td>
</tr>
<tr>
<td>$p_{ij}(u)$</td>
<td>posterior probability: probability of u_i using only offspring information with mate j.</td>
</tr>
<tr>
<td>$tr(u_i/u_s,u_d,m_{(-k)})$</td>
<td>transmission probability: probability of genotype u_i at locus k given the sire and dams genotype are u_s and u_d, resp., and $m_{(-k)}$.</td>
</tr>
<tr>
<td>$tr_p(u_i/u_s,m_{(-k)})$</td>
<td>paternal transmission probability: probability that the sire with genotype u_s has transmitted the paternal allele of u_i given $m_{(-k)}$.</td>
</tr>
<tr>
<td>$tr_m(u_i/u_d,m_{(-k)})$</td>
<td>maternal transmission probability: similar to paternal probability but for the maternally derived allele.</td>
</tr>
<tr>
<td>$S_i^{(k)}$</td>
<td>Segregation indicator: $S_i^{(k)}=1$ (0) if i inherits the paternal (maternal) allele of its sire at locus k.</td>
</tr>
<tr>
<td>$S_i^{(d)}$</td>
<td>Segregation indicator: $S_i^{(d)}=1$ (0) if i inherits the paternal (maternal) allele of its dam at locus k.</td>
</tr>
<tr>
<td>$\rho_{(k-1,k)}$</td>
<td>Recombination rate between loci $k-1$ and k.</td>
</tr>
</tbody>
</table>
Table 2. Penetrance probabilities \(f(m_i|u_i) \): probabilities of observed marker genotypes \(m_i \) conditional on the true genotype \(u_i \) (\(--\) denotes missing genotype). Two different genotyping error rates are assumed.

<table>
<thead>
<tr>
<th>(u_i) (m_i)</th>
<th>aa</th>
<th>Aa</th>
<th>AA</th>
<th>--</th>
<th>Genot. error rate 0%</th>
<th>aa</th>
<th>Aa</th>
<th>AA</th>
<th>Genot. error rate 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>aa</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>.99</td>
<td>.005</td>
<td>.005</td>
<td>.005</td>
<td>.005</td>
</tr>
<tr>
<td>aA</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>.005</td>
<td>.99</td>
<td>.005</td>
<td>.005</td>
<td>.005</td>
</tr>
<tr>
<td>Aa</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>.005</td>
<td>.99</td>
<td>.005</td>
<td>.005</td>
<td>.005</td>
</tr>
<tr>
<td>AA</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>.005</td>
<td>.005</td>
<td>.005</td>
<td>.99</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. The number of phased genotypes and erroneously estimated phases for Case I.

<table>
<thead>
<tr>
<th>Missing genotype rate</th>
<th>Unknown phases(^1)</th>
<th>Number phased</th>
<th>No of errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generations G3, G4 and G5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>64882</td>
<td>64656</td>
<td>1171</td>
</tr>
<tr>
<td>10%</td>
<td>61394</td>
<td>61154</td>
<td>1095</td>
</tr>
<tr>
<td>15%</td>
<td>57923</td>
<td>57758</td>
<td>823</td>
</tr>
<tr>
<td>Generation G3 only</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>22200</td>
<td>21974</td>
<td>1171</td>
</tr>
<tr>
<td>10%</td>
<td>21020</td>
<td>20781</td>
<td>1094</td>
</tr>
<tr>
<td>15%</td>
<td>19802</td>
<td>19638</td>
<td>823</td>
</tr>
</tbody>
</table>

1) This equals the number of heterozygous genotypes in generations G3, G4 and G5.
Table 4. The number of imputed genotypes and erroneously imputed genotypes for Case I.

<table>
<thead>
<tr>
<th>Missing genotype rate</th>
<th>Total missing</th>
<th>Number imputed</th>
<th>No of errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generations G3, G4 and G5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>7442</td>
<td>7349</td>
<td>69</td>
</tr>
<tr>
<td>10%</td>
<td>14938</td>
<td>14734</td>
<td>143</td>
</tr>
<tr>
<td>15%</td>
<td>22391</td>
<td>22080</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>Generation G3 only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>2520</td>
<td>2438</td>
<td>68</td>
</tr>
<tr>
<td>10%</td>
<td>4986</td>
<td>4818</td>
<td>132</td>
</tr>
<tr>
<td>15%</td>
<td>7550</td>
<td>7294</td>
<td>151</td>
</tr>
</tbody>
</table>

1) The expected number of missing genotypes is 5, 10 and 15% of 50,000 (100 animals * 500 SNPs) genotypes per generation.
Table 5. Results from genotype and phase imputation by FastPhase (FP) and Long Range Phasing (LRP) for generations G3, G4 and G5 in Case I.

<table>
<thead>
<tr>
<th>Missing genotype rate</th>
<th>Number imputed</th>
<th>No of errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FP</td>
<td>LRP</td>
</tr>
<tr>
<td>Phase imputation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>64882</td>
<td>56435</td>
</tr>
<tr>
<td>10%</td>
<td>61394</td>
<td>52603</td>
</tr>
<tr>
<td>15%</td>
<td>57923</td>
<td>49284</td>
</tr>
<tr>
<td>Genotype imputation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5%</td>
<td>7442</td>
<td>1325</td>
</tr>
<tr>
<td>10%</td>
<td>14938</td>
<td>2222</td>
</tr>
<tr>
<td>15%</td>
<td>22391</td>
<td>1962</td>
</tr>
</tbody>
</table>

1) FastPhase imputes all genotypes (phases), i.e. the number of imputed genotypes equals the number of missing genotypes (phases).
Table 6. Numbers of imputed genotypes and phases for Case IIa and IIb.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Number imputed</th>
<th>No of errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case IIa: generations G1, G4 and G5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing genotypes(^1)</td>
<td>2,744,400</td>
<td>2,630,051</td>
<td>287,287</td>
</tr>
<tr>
<td>Phases</td>
<td>307,345</td>
<td>297,195</td>
<td>10,150</td>
</tr>
<tr>
<td>Case IIb: generation G1, G4, G5 and the parents of G1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Missing genotypes(^1)</td>
<td>2,744,400</td>
<td>2,736,016</td>
<td>8,384</td>
</tr>
<tr>
<td>Phases</td>
<td>464,223</td>
<td>464,132</td>
<td>432</td>
</tr>
</tbody>
</table>

\(^1\) There are only missing genotypes in generations G4 and G5. Their number equals (16,722-3000)*100*2 genotypes.
Appendix A

The segregation indicator probabilities at locus \(k \) conditional on all other loci.

In the main text, Equation (3b) requires the probabilities of the segregation indicators at locus \(k \) conditional on the information of all other marker loci, e.g. \(P(S_{1(k)}|m_{-k}) \). If \(S_{(k)} \) denotes all segregation indicators of all individuals at locus \(k \), and using an approach similar to that of the Lander-Green algorithm:

\[
P(S_{(k)}|m_{(-k)}) = P(S_{(k)}, m_{(-k)})/\text{const}_0
\]
\[
= P(m_{(-k)}, S_{(k)})P(S_{(k)})/\text{const}_0
\]
\[
= P(m_{(1..k-1)}|S_{(k)})P(m_{(k+1..L)}|S_{(k)})P(S_{(k)})/\text{const}_0
\]
\[
= P(S_{(k)}|m_{(1..k-1)})P(S_{(k)}|m_{(k+1..L)})/\text{const}_1
\] (A1)

where \(m_{(i..j)} \) denotes the markers at loci \(i, i+1, ..., j \), \(\text{const}_0 \) and \(\text{const}_1 \) are different constants, and \(P(S_{(k)}) \) is constant since, a priori, all segregation indicators have probability 0.5. The third line in Equation (A1) follows, because conditional on the segregation indicators at locus \(k \), the markers to the left and to the right of locus \(k \) are independent. Equation (A1) writes \(P(S_{(k)}|m_{(-k)}) \) in terms of which \(P(S_{(k)}|m_{(k+1..L)}) \) will be calculated by the forward cycle of the following Lander-Green type of algorithm, and \(P(S_{(k)}|m_{(1..k-1)}) \) will be calculated by the backward cycle of the algorithm.
Appendix B

Calculation of segregation indicator probabilities using the peeling algorithm

Here we need to calculate the segregation indicator probabilities given the marker data at a locus, i.e. $P(S|m)$ (the locus subscript is omitted). For the paternal allele of individual i, this can be written as:

$$P(S_{i1}|m) = \sum_{u_i} \sum_{u_s} P(u_i, u_s|m) \ast P(S_{i1}|u_i, u_s)$$

where $P(S_{i1}|u_i, u_s)$ is the probability that $S_{i1}=1$ given the genotypes of the sire s and offspring i, $P(S_{i1}|u_i, u_s) = 0, 1$ or 0.5, where the latter occurs if the sire is homozygous and thus paternal or maternal inheritance are equally likely. $P(S|m)$ can be approximated from the peeling results by:

$$P(S_{i1}|m) \approx \sum_{u_s} P(u_s|m) \sum_{u_i} a_i(u_i|u_s) \ast f(m_i|u_i) \prod_{i \in M_i} p_{ij}(u_i) \ast P(S_{i1}|u_i, u_s)/Lik2$$

(B1)

where $a_i(u_i|u_s)$ is from Equation (2) in the main text, and the approximation is due to the fact that $P(u_i|m)$ also contains information about i, which is thus double counted in determining the segregation indicator probabilities. The approximation is needed because otherwise the summations could not be factored in the efficient peeling way. Due to this approximation, $Lik2 \neq Lik$, but equals: $Lik2 = \sum_{u_s} P(u_s|m) \sum_{u_i} a_i(u_i|u_s) \ast f(m_i|u_i) \prod_{i \in M_i} p_{ij}(u_i)$. Similarly, $P(S_{i2}|m)$ is calculated by the above Equation (B1), but with the sire, s, being replaced by the dam, d, of individual i.