The chromatin remodeling protein Osa interacts with CyclinE in Drosophila eye imaginal discs

Jawaid Baig*, 1, Francoise Chanut§, 2, Thomas B. Kornberg§§, Ansgar Klebes*,§§, §§§

* Freie Universität Berlin, Institute of Biology - Genetics, 14195 Berlin, Germany
§ University of California San Francisco, George Williams Hooper Foundation, San Francisco, CA 94143-0552;
§§ University of California San Francisco, Department of Biochemistry & Biophysics, San Francisco, CA 94143
§§§ Humboldt University Berlin, Institute of Biology - Cytogenetics, 10115 Berlin, Germany

Microarray data from this article have been deposited with the Gene Expression Omnibus Data Libraries under accession no. GSE12851.

1 present address: Södra Trängallén D, SE 541 46 Skövde, Sweden
2 present address: University of California San Francisco, Office of Career and Professional Development, San Francisco, CA 94143-0404
short running head

Osa function in eye development

keywords

Drosophila eye development, cell cycle, SWI/SNF chromatin remodeling complex, osa, CyclinE, Trithorax and Polycomb groups

Corresponding author

Prof. Dr. Ansgar Klebes
Humboldt University Berlin
Department of Biology - Cytogenetics
Chausseestr. 117
10115 Berlin, Germany
Tel.: ++49-30-20938170
Fax: ++49-30-20938177
Email: ansgar.klebes@staff.hu-berlin.de
ABSTRACT

Coordinating cell proliferation and differentiation is essential during organogenesis. In Drosophila, the photoreceptor, pigment and support cells of the eye are specified in an orchestrated wave as the morphogenetic furrow passes across the eye imaginal disc. Cells anterior of the furrow are not yet differentiated and remain mitotically active, while most cells in the furrow arrest at G1 and adopt specific ommatidial fates. We used microarray expression analysis to monitor changes in transcription at the furrow and identified genes whose expression correlates with either proliferation or fate specification. Some of these are members of the Polycomb and Trithorax families that encode epigenetic regulators. Osa is one; it associates with components of the Drosophila SWI/SNF chromatin remodeling complex. Our studies of this Trithorax factor in eye development implicate Osa as a regulator of the cell cycle: Osa over-expression caused a small eye phenotype, a reduced number of M- and S-phase cells in eye imaginal discs and a delay in morphogenetic furrow progression. In addition, we present evidence that Osa interacts genetically and biochemically with CyclinE. Our results suggest a dual mechanism of Osa function in transcriptional regulation and cell cycle control.
INTRODUCTION

Although much has been learned about the mechanisms that regulate the cell cycle and assign particular fates to cells, little is known about the processes that coordinate cell number and cell type (for review see (ZHÚ and SKOULTCHI 2001). Drosophila eye development offers an attractive system to investigate how these processes are co-regulated. The Drosophila compound eye is formed by a mono-layered epithelium whose cells divide continuously in an undifferentiated state during most of the three larval instars. During late larval and early pupal development, cells that commit to neuronal photoreceptor, pigment and support cell fates permanently exit the cell cycle. The transformation is precisely coordinated in space and time as a wave of differentiation passes across the epithelium. This wave is marked by an indentation called the morphogenetic furrow (MF) that traverses the disc from posterior to anterior. Posterior to the MF, cells that undergo neural differentiation arrest in G1, while uncommitted cells re-enter the cell cycle for one last round of division, forming a band-like second mitotic wave (SMW) (BAKER 2001; BAKER 2007; WOLFF and READY 1993). Grouping these various types of cells into the precisely arranged ommatidia requires that the different cell types be produced in appropriate numbers and ratios. The rapid transition from proliferation to differentiation that occurs at the MF offers an opportunity to investigate the mechanisms that regulate the balance between proliferation and differentiation.
In multicellular animals, the G1-to-S-phase transition is regulated by the G1 cyclins, Cyclin D and Cyclin E (CycE), which activate Cyclin-dependent-kinases (Cdks). In Drosophila the activity of the CycE-Cdk2 complex is both sufficient and rate limiting for the G1-to-S-phase transition (KNOBLICH et al. 1994; RICHARDSON et al. 1995; SAUER and LEHNER 1995; SECOMBE et al. 1998). A critical target of these kinases is the Retinoblastoma (Rb) tumor suppressor protein (reviewed in (EKHOLM and REED 2000). Rb phosphorylation by Cdk causes the activation of the E2F/DP transcription factors that activate expression of S phase promoting genes. While cross-regulation between E2F activity and CycE contributes to the coordination of G1-to-S-phase transition and exit from the cell cycle upon terminal differentiation, genetic analysis has suggested that additional mechanisms contribute to the cell cycle arrest (BUTTITTA et al. 2007).

One of these additional mechanisms is provided by the function of Dacapo (Dap), a member of the CIP/KIP family of Cdk inhibitors. In eye imaginal discs, dap expression is activated by EGFR and Hedgehog (Hh) signaling in post-mitotic cells in and posterior to the MF (ESCUDERO and FREEMAN 2007; FIRTH and BAKER 2005; LANE et al. 1996). Still, Dap is not absolutely essential for cell cycle exit in Drosophila eyes (LANE et al. 1996), suggesting the existence of additional mechanisms. Signaling molecules such as Hh and Decapentaplegic (Dpp) also contribute to the maintenance of the G1 arrest, presumably by repressing CycE function (ESCUDERO and FREEMAN 2007; HORSFIELD et al. 1998). These signaling pathways function together with the EGFR, Notch and Wingless signaling pathways to regulate MF progression and photoreceptor specification (BAKER and YU 1997; HEBERLEIN and MOSES 1995; HEBERLEIN et al. 1993; HSIUNG and
Moses 2002; Jarmann et al. 1994; Ma et al. 1993). Dpp and Hh signaling thus provide additional links between cell cycle control and differentiation.

In the regulation of cell cycle progression during eye morphogenesis, the G1-specific CycE at least in part cooperates with the Drosophila Brahma (BRM) complex (Brumby et al. 2004; Brumby et al. 2002), a SWI/SNF ATP-dependent chromatin remodeling machine. In eukaryotes, two subtypes of SWI/SNF complexes can be distinguished, the yeast SWI/SNF, fly BAP (BRM-Associated Proteins), and mammalian BAF complexes and the RSC/PBAP/PBAF (yeast/fly/mammalian) complexes (Mohrmann and Verrijzer 2005; Wang 2003). Both subtypes share common subunits but contain distinct signature proteins. In Drosophila, the BAP complex is characterized by the presence of the Osa protein, and PBAP includes Polybromo and BAP 170 as signature proteins. The ARID-domain containing Osa subunit has some similarity to the yeast SWI1 protein and is required for embryonic survival (Treisman et al. 1997). In mammals, the Osa orthologs BAF250a and BAF250b are also required for early embryogenesis and display specific functions in mesoderm differentiation. Furthermore, they play a role in proliferation and self-renewal of embryonic stem cells and have an effect on their pluripotency (Gao et al. 2008; Yan et al. 2008). In the fly, BAP and PBAP complexes appear to have similar but also independent and partially antagonistic functions (Carrera et al. 2008; Moshkin et al. 2007). BAP, but not PBAP, also mediates G2/M transition through a direct regulation of string, that encodes the Drosophila homolog of the Cdc25 phosphatase, a key regulator of mitosis in all eukaryotic cells (Edgar and O'Farrell 1989; Russell and Nurse 1986; Sadhu et al.
This regulation is mediated by the Osa subunit, which directs the complex to the *string/cdc25* promoter (Moshkin et al. 2007). However, genetic and physical interactions of BRM complex components with *DmCycE* and *E2F* support additional roles for the BRM complexes in G1/S transition (Brumby et al. 2002; Staeling-Hampton et al. 1999), though the role of Osa in this process has not been investigated further.

By analyzing the transcriptional differences between anterior cycling cells and posterior differentiating cells in eye discs, this study identified transcripts preferentially expressed in posterior and anterior cells. The functions of the proteins these transcripts encode correlate well with the developmental requirements of these cell populations. In addition, a small group of chromatin regulators that include Polycomb group genes and the Trithorax group gene *osa* was found to be differentially expressed. We show that Osa interacts genetically and biochemically with CycE and provide evidence that an Osa-containing SWI/SNF complex and CycE co-operate post-translationally to control cell cycle progression at the MF.
MATERIAL AND METHODS

Fly strains and genetic analysis:

Following strains were used: w1118 (null); dpp-lacZ/TM3; Tfu/CyO, wg-lacZ; ey-GAL4; UAS-osa/CyO or /CKG; UAS-p35; osa²/TM6 (hypomorph); FRT82B, osa³⁰⁸/TM6; FRT82B, FRT 42D, trxB¹¹/TM3 (loss of function); TrlR⁸⁸⁵/TM3 (hypomorph); brm²/TM3, (amorph); Pc³ (amorph); wgCX⁴ (= wG1⁻¹⁷; null); armD³ (null, gift from Alfonso Martinez-Arias); DmCycE¹⁶ (hypomorph) (SECOMBE et al. 1998). Homozygous mutant cell clones were generated by applying a one hour heatshock at 37° to young third instar larvae: hs flp; Ubi-GFP FRT82B/FRT82B, osa³⁰⁸, or hs flp, hs-nGFP FRT2A/FRT2A Pc⁹⁰⁹⁰. Eye size and the number of rows of clusters was measured based on digitalized images of anti-elav stained eye discs (40 discs for each genotype). To determine the eye size more than 500 flies were inspected for each experiment (supplementary Table S8). Since both eyes of a single fly often differed in size only the smaller eye was scored.

Histochemistry and in situ hybridization:

Imaginal discs were dissected and fixed with 4% paraformaldehyde. Immuno-stainings were performed following standard protocols. Primary antibodies: anti-Elav (1:50) (Developmental Studies Hybridoma Bank, University of Iowa), rabbit anti-GFP (1:200; Biomol). Secondary antibodies: anti-mouse Cy3; anti-rabbit Cy2 (Jackson Immuno Research) or HRP based vectastain ABC enhancer kit (Vector laboratories). In situ hybridization was performed as described (KLEBES et al. 2002). The 750 bp (dap) and
768 bp (ato) templates were produced by PCR amplification on genomic DNA and subcloning in pGemTeasy (Promega). Primers were: dap–forward: ATGGTCAGTGCCCCGAGTCCTGAATC, dap–reverse GAGCATTAGTGTGGCGCGGCCG, and ato forward: CATCCGACGACGCTACGTGC, ato reverse: GGGCAGTGCATACCATCGGC. Antisense riboprobes were transcribed using T7 RNA polymerase and digoxigenin-UTP (Roche).

Detection of S phase, mitosis and cell death:

For BrdU detection of S phase young third instar larvae from the stock ey-GAL4, UAS-osa/CKG were genotyped based on GFP expression (CASSO et al. 2000) and starved overnight at 18°. On the next day they were fed 100 μl (10 μg/ml) BrdU (Sigma) mixed in yeast for two hours at 25°. After a two hours chase eye imaginal discs were dissected and subjected to anti-BrdU (Sigma) staining as described in (SECOMBE et al. 1998). Mitotic cells were immuno-labeled with anti-phosphoH3 antibody (Abcam) and anti-rabbit-HRP (Dianova) secondary antibody. Following the staining reaction control and Osa-overexpressing eye-antennal discs were micrographed and BrdU- or antipH3-positive cells were counted in the antennal part and the eye part anterior and posterior of the MF (supplementary Table S9). Cell death was analyzed by acridine orange (Invitrogen) vital staining as described in (KRAMER and STAVELEY 2003).
Preparation of native extracts and immunoprecipitation assays:

Co-immunoprecipitation was essentially performed as described in (KLEBES and KNUST 2000). In brief, 20 μl of embryonic nuclear extract (SHAFFER et al. 1994) was incubated with Ethidium Bromide (100 μg/ml) in the presence of protease inhibitors on ice for 30 minutes to disrupt protein-DNA interaction. Precipitates were removed by 5 minutes centrifugation at 20.200 rcf at 4°. The supernatant was transferred to a fresh tube and incubated with 20 μl protein A-Sepharose beads (GE Healthcare) and 20 μl anti-Osa antibody overnight at 4°. The anti-Osa antibody (G. Rubin, Developmental Studies Hybridoma Bank, University of Iowa) is a mouse monoclonal antibody that has been been tested for specificity previously (COLLINS et al. 1999; TREISMAN et al. 1997). The protein A-Sepharose pellet was washed ten times with 1 ml IPB (25 mM Hepes pH 7.5, 100 mM NaCl, 1 mM CaCl₂, 1 mM MgCl₂, 1% Triton X-100, 1 μM Pefabloc, 5 μM leupeptin, 1 μM pepstatin, 0.3 μM aprotinin). Proteins were eluted by boiling in SDS sample buffer prior to loading on a 10% acrylamide gel. The western blot was probed with anti-DmCycE antibody (1:5000, gift from Helena Richardson) and rabbit-anti-mouse-AP secondary antibody (1:10.000, Jackson Immuno Research) following standard NBT/BCip staining procedure.

RT-PCR:

Total RNA was isolated from 10 eye imaginal discs without antennal part each from Osa over-expressing discs (ey-GAL4, UAS-osla/CKG) or control discs (w¹¹¹⁸) (RNA Mini kit, Bio-Rad Laboratories). Duplex RT-PCR was performed with the OneStep RT-PCR kit (Qiagen). Primers were: ACAACCGCCCCCAGCAACGG (DmCycE-forward),
CACCGCCTGCTGGCTGC (DmCycE-reverse), CAGCTATGGAGTATCAAGTG (stg-sense), GCAGTGGAAGATAATGATGTTGC (stg-rev), GATGGCAACATACATGGCCG (Actin-forward), GTGTGCAGCGGATAACTAG (Actin-reverse). The annealing temperature was 50° C and 10 μl aliquots were removed at cycles 23, 26, 29, 32 and analyzed on ethidium bromide stained agarose gels.

Microarray production and experiments:

Microarray experiments were conducted as previously described (KLEBES et al. 2002; KLEBES et al. 2005; XU et al. 2003). In brief, custom made glass microarrays with 14,151 PCR products of 100-600 bp length that were amplified with specific primer pairs (Incyte Genomics) were hybridized with Cy3 or Cy5 labeled cDNA probes. Each experimental sample was simultaneously hybridized with a common reference sample that was produced from eye-antennal discs from third instar larvae of an isogenized w^{1118} stock. Experimental samples were produced from the dissected eye discs of third instar larvae of the genotypes described in the text. All samples were produced from a few discs using linear RNA amplification (for a detailed protocol: (KLEBES and KORNBERG 2008). Microarray data was processed as relative expression ratios. Only data points that were present in more than 70% (posterior fragments, four arrays) or 80% (posterior fragments and mutant discs) of the analyzed experiments and showed a 0.8-fold difference in at least 3 experiments (posterior fragments) or two-fold difference in at least three experiments (posterior fragments and mutant discs) were further processed. Transcripts with similar behavior were identified using cluster analysis (EISEN et al. 1998). After elimination of duplicates and evaluation of the statistical significance using the
significance analysis of microarrays (SAM) software package (Tusher et al. 2001) 866 genes (posterior fragments) in two sub-clusters or 700 transcripts (posterior fragments and mutant discs) in four sub-clusters (s. text) remained. Microarray data is available under accession number GSE12851 at the NCBI Gene Expression Omnibus (GEO) website www.ncbi.nlm.nih.gov/projects/geo/.
RESULTS

Genome-wide comparison of proliferating and differentiating eye disc cells

To identify genes expressed in eye discs in either anterior proliferating cells or in posterior differentiating cells exiting the mitotic program, RNA was isolated from both whole eye-antennal discs and micro-dissected posterior eye disc fragments. Discs of an isogenized white\(^{1118}\) (\(w^{1118}\)) strain that differentiates unpigmented but otherwise normal eyes were cut along the MF and only the posterior parts that include the differentiating photoreceptor cells were processed further. Microarray hybridization probes were obtained by linear RNA amplification (KLEBES and KORNBERG 2008) and simultaneously hybridized to DNA microarrays with a common reference sample from \(w^{1118}\) eye-antennal discs (Material and Methods).

Using a combination of cluster analysis and significance analysis (EISEN et al. 1998; TUSHER et al. 2001), we identified 866 transcripts that had a consistent enrichment in the reference sample ("anterior"; 431 transcripts) or in the posterior cells (435 transcripts) in four independent replica experiments (Figure 1 A; supplementary Table S1). In both groups, roughly 20% of the transcripts correspond to annotated genes with no predicted or confirmed function (83 genes anterior; 93 posterior). Of the genes with predicted or established functions, those that play a role in photoreceptor differentiation or neuronal development are over-represented in the posterior group (18%, Figure 1 B, supplementary Tables S1 and S2). Examples are: sevenless, hedgehog, argos, roughoid,
inactivation no afterpotential C, Fasciclin2. The anterior group also includes some genes that function in head and eye development (10%). Some of these genes have been previously shown to be expressed predominantly anterior of the MF (e.g. hairy, wingless). The proportion of anteriorly enriched transcripts that encode functions related to cell proliferation is significantly greater (13% vs. 4% in the posterior group). Examples are genes coding regulators of the cell cycle like the Cdc2 cyclin dependent kinase, translation initiation and elongation factors (eIFs, eEFs), and ribosomal proteins (RpLs, and RpSs) (supplementary Table S2). A number of characterized cell cycle regulators, like string/cdc25, or CyclinB and CyclinE, are not included, presumably due to their concomitant expression in anterior cycling and posterior dividing cells of the SMW (Firth and Baker 2007). Other functions in both groups include transcriptional regulation, signaling processes, cell adhesion, hormone response, as well as metabolic and catabolic functions consistent with the requirements of third instar larval imaginal cells (supplementary Table S1). A small group of differentially expressed genes consists of chromatin regulators (2% anterior, 1% posterior, Table 1 and supplementary Table S2) that include: Suppressor of variegation 3-7 (Su(var)3-7) that functions in heterochromatization, Reptin (rept) that codes for a Polycomb and Trithorax group interacting protein (Diop et al. 2008), enhancer of yellow (3e(y)3), and osa, that both encode components of a SWI/SNF-type Trithorax group chromatin remodeling complex (Chalkley et al. 2008; Mohrmann and Verrijzer 2005) that will be discussed below (Table 1). In sum, the over-representation of transcripts that encode proteins that function in cellular growth and proliferation in the anterior cells and in neuronal
development in the posterior cells (Figure 1) is consistent with the mitotic cycling of anterior cells and the differentiating state of posterior photoreceptor cells.

Comparison to other data sets

We also compared the list of anteriorly and posteriorly enriched transcripts to microarray data that we obtained by comparing different mutant eye imaginal discs that were enriched or depleted for differentiating photoreceptor cells (Figure 2). Samples with an increased number of photoreceptor cells were obtained by dissecting whole eye discs from mutant strains that specify more than the normal number of photoreceptor cells \((\text{rough}^{X63}, \text{ro}^{X63}) \) and \(\text{Su}(\text{ro}^{\text{Dom}})519 \) (Chanut et al. 2000). Samples with a reduced number of photoreceptor cells were obtained from mutants that arrest the morphogenetic furrow prematurely (“stop-furrow” mutants: \(\text{atonal}^{\text{I}} \) (\(\text{ato}^{\text{I}} \)), \(\text{hedgehog}^{\text{I}} \) (\(\text{hh}^{\text{I}} \)), \(\text{rough}^{\text{Dominant}} \) (\(\text{ro}^{\text{Dom}} \), heterozygous and homozygous), and \(\text{Enhancer}(\text{ro}^{\text{Dom}})2033 \) (\(E(\text{ro}^{\text{Dom}})2033 \)), (Chanut et al. 2000), supplementary Table S3). To compare these data-sets, we applied cluster analysis and significance analysis to the complete data set (Eisen et al. 1998; Tusher et al. 2001) and selected four sub-clusters that include 700 genes. One third of these genes were also in the cluster generated from the prior analysis of posterior fragments (Figure 2 and supplementary Tables S4 and S5). The partial overlap of these two clusters was expected, since filtering eliminates some positive genes and the inclusion of 20 additional microarray experiments to the data analysis profoundly changed filtering and cut-off requirements. Two sub-clusters from the combined posterior fragment and mutant disc analysis showed consistent enrichment in either anterior cells (sub-cluster I, 124 genes, Figure 2, supplementary Table S4) or posterior
cells (sub-cluster II, 129 genes) in all 24 independent microarray hybridization experiments. We also expected that a number of transcripts that are enriched in anterior or posterior cells in normal development would show an aberrant behavior in the mutant eye discs. Indeed, two sub-clusters showed such expression properties. The 157 genes in sub-cluster III were enriched in both the posterior portions of w^{1118} discs and in anterior cells of the mutant discs. In contrast, the 290 genes of sub-cluster IV showed the opposite behavior (anterior in w^{1118} discs and posterior in the mutant discs; Figure 2, supplementary Table S4). While this level of analysis cannot distinguish between primary and secondary effects, this observation indicates that a sub-set of anteriorly and posteriorly enriched transcripts are regulated differently in these mutants. This observation suggests that “stop furrow” and “extra R8” mutant conditions are not synonymous with respect to transcriptional regulation.

In addition to the comparison with the mutant eye discs, we compared the list of anteriorly and posteriorly enriched transcripts to four recently published data-sets (supplementary Table S6). Firth and Baker used DNA microarrays to screen for transcripts associated with the SMW (Firth and Baker 2007). Of their list of 96 genes that are either up- or down-regulated in mutant eye discs that do not form a SMW, 27% (26/96) are included in our list (supplementary Table S6). Furthermore, these authors performed RNA in situ hybridization for most of these genes. From the published images, we extracted a list of 40 genes that show expression patterns with clear anterior or posterior enrichment. Of these genes 30% are also included in our list. Michaut and co-workers (Michaut et al. 2003) applied two different microarray platforms to identify
55 genes that were induced in leg discs undergoing ectopic eye development due to ectopic *eyeless* expression. 43% of these genes are included in our list. Another study by Ostrin and colleagues also screened for Eyeless target genes using a combination of *in silico* prediction and microarray analysis (OSTRIN *et al.* 2006). Of their list of 307 putative Eyeless target genes, 21% also revealed differential anterior/posterior expression in our study. Finally, a study that used fluorescence activated cell sorting (FACS) in combination with serial analysis of gene expression (SAGE), identified genes with anterior- or posterior-specific expression in eye discs (JASPER *et al.* 2002). Despite method differences, 21% of our 866 genes were also included in the Jasper et al list of 1,223 genes (supplementary Table S6). Several genes, including *rough*, *Fasciclin2*, and componentes of the Notch signaling pathway: *Delta*, and the *E(spl) region transcript m4* (supplementary Table S6) were identified in studies that applied distinct screening strategies to identify differences in transcript levels in specific mutant conditions or spatial patterns. Thus, despite methodological and biological differences, the extensive overlap with our list of anteriorly or posteriorly enriched transcripts provides further support for the validity of our approach.

Chromatin regulators in eye development

The eye-specific developmental regulators *ey*, *toy*, and *sev* as well as components of all major signaling pathways that control eye development (Wg, Hh, Dpp, EGFR, and Notch signaling) were identified in our screen (supplementary Tables S1 and S4). Unexpectedly, we also observed that several chromatin-associated proteins involved in maintaining stable heritable transcriptional states were also differentially expressed. In
particular, our lists included members of the Polycomb- and Trithorax groups that are expressed ubiquitously throughout development and are thought to be controlled by post-transcriptional mechanisms in segment- or cell-specific contexts. Yet, two recent reports demonstrate that small differences in PcG and TrxG transcript levels have a significant influence on cell fate specification (KLEBES et al. 2005; LEE et al. 2005). In our analysis of the posterior fragments and mutant eye discs, we identified 23 genes with chromatin related functions (Figure 2, Table 1). These include the PcG genes Additional sex combs (Asx), Sex comb on midleg (Scm), and Suppressor of zeste 2 (Su(z)2), the Trithorax group gene osa, the reptin (rept) gene that encodes a factor that interacts with Polycomb- and Trithorax factors, as well as genes that play a role in heterochromatinization, Suppressor of variegation 3-3 (Su(var)3-3, encoding a H3K4 demethylase (RUDOLPH et al. 2007), Dodeca-satellite-binding protein 1 (Dp1), a RNA binding protein (WANG et al. 2005), and CG40351, a predicted histone-lysine N-methyltransferase (ALVAREZ-VENEGAS and AVRAMOVA 2002). This result is consistent with recent reports that PcG and TrxG chromatin regulators play essential roles in Hedgehog (Hh) and Wnt-family Wingless (Wg) signaling during wing and eye development (COLLINS and TREISMAN 2000; HIROSE et al. 2001; JANODY et al. 2004; MAURANGE and PARO 2002). It is also consistent with the study of Jasper and co-workers (JASPER et al. 2002), who noted the differential expression of chromatin factors in anterior and posterior eye disc cells (supplementary Table S7). Their list also includes the heterochromatin factors Heterochromatin protein 1 (HP1/Su(var)2-5) and Dp1, the PcG factor Enhancer of Polycomb (E(Pc)) and the TrxG factor Trithorax-like (Trl/GAGA factor), as well as PcG/TrxG interacting proteins such as Little imaginal discs (Lid). The two genes encoding components of the SWI/SNF
complexes, brm and osa, were also detected in this SAGE analysis, but they showed no predominant anterior or posterior enrichment (supplementary Table S7). Nevertheless, the differential expression of key chromatin regulators suggests that heterochromatization and PcG-/TrxG regulation contribute to regulation of proliferation and differentiation in eye development.

The mutant phenotypes of the PcG and TrxG proteins Polycomb (Pc) and osa is additional evidence. Loss of Pc function causes defects in photoreceptor differentiation (Figure 3 and (JANODY et al. 2004). Loss of osa function blocks neuronal differentiation and most clones homozygous mutant for strong osa alleles remain small in comparison to their twin spots, suggesting a function in cell proliferation and/or survival (TREISMAN et al. 1997). Weaker alleles have milder effects that result in the disordered arrangement of photoreceptor pre-clusters (Figure 3). When large osa mutant cell clones were generated in the Minute mutant background to slow the growth of the surrounding wildtype cells, most affected cells failed to differentiate as photoreceptor cells supporting its role in cellular differentiation (TREISMAN et al. 1997).

Osa overexpression causes a small eye phenotype:

We examined osa function in eye development by following an over-expression approach. Previous studies showed that osa is expressed in all cells of the eye disc with elevated expression levels in a narrow column anterior of the MF (TREISMAN et al. 1997). This up-regulation in anterior cells is consistent with the presence in our list of anteriorly enriched transcripts (supplementary Tables S1 and S5). Genetic and biochemical studies
suggest that Osa activates *string/cdc25* transcription by recruiting the BAP chromatin remodeling complex to *cis*-regulatory elements that control expression of this gene (Moshkin *et al.* 2007). Since String/Cdc25 function is required for the G2- to M-phase progression, this regulatory relationship may explain the growth disadvantage of *osa* mutant cells. However, ectopic expression of *osa* also caused a small eye phenotype (Treisman *et al.* 1997); we investigated the basis for this phenotype.

Over-expression of Osa did not affect the pattern of differentiating photoreceptor cells in Osa discs (Figure 4), but did reduce the size of the eye field in third instar discs and caused a variable small eye phenotype (Figure 4 and supplementary Table S8). The average number of posterior rows of photoreceptor clusters parallel to the MF was 18 ± 2 in control discs and 9 ± 3 after Osa over-expression (Figure 4, supplementary Table S8). This effect is specific to the *osa* function and not an artifact of transgene over-expression, because reducing the dosage of *osa* suppressed the over-expression small eye phenotype (Figure 5). Despite the small eyes, the ommatidia and bristles appeared to be arranged normally in *osa* over-expressing animals (not shown).

We examined the progression and appearance of the MF in several ways. The expression of *dap*, *ato*, *dpp*, and *wg* was monitored (Figure 6) and cells in S-phase or G2/M-phase were identified by incorporation of BrdU, and by immuno-labelling with -phospho-histone3 (α-pH3) antibody (Figure 7). These studies revealed that the MF was positioned posteriorly compared to control discs. In addition, the MF was not straight as is characteristic of normal development, but was bent, in a half-moon shape.
Both the posterior position and half-moon shape appear to be a consequence of retarded progression, which was most pronounced in the dorsal and ventral regions.

Atonal (Ato) is a pro-neural basic helix-loop-helix transcription factor that is expressed in the MF and is required to initiate specification of R8 photoreceptor cells (JARMAN et al. 1994). In situ hybridization detected a stripe of ato expression in and posterior of the MF in both control and Osa-overexpressing discs (Figure 6 C and D). This indicates that the signaling processes that regulate ato activation in a spatially localized region are not disrupted by Osa over-expression. *dpp* expression is also an output of signaling at the MF, and *dpp* expression in the MF was weaker in Osa-overexpressing discs, as indicated by a *dpp-lacZ* reporter (Figure 6 E and F). Osa-overexpressing discs had reduced expression in the MF as well as occasional gaps. These abnormalities were most pronounced in the smallest discs, suggesting that the most severe reduction in size, (presumably caused by highest Osa levels), correlates with strongest reduction in *dpp* expression in the MF. Expression of *wg-lacZ* at the dorsal and ventral margins was not affected in Osa over-expressing discs (Figure 6 G and H). In summary, *ato* or *wg* transcription was not perturbed by increased Osa levels, whereas *dpp* transcription was reduced.

We next evaluated the relative roles of apoptosis and decreased cell proliferation in the small eye phenotype. To monitor cell death, we stained eye discs with the vital dye acridine orange, but we did not detect a difference in number of stained cells between control and experimental discs (not shown). Since co-expression of the inhibitor of
apoptosis (IAP, (HAY et al. 1995) did not alter the Osa small eye phenotype (supplementary Figure S1), we conclude that apoptosis is not a major contributor to the mutant phenotype.

To analyze cell cycle arrest of MF cells, we identified S-phase cells by BrdU incorporation, and identified G2/M-phase cells with the α-tubulin-pH3 antibody. Additionally, we examined the expression of the Cdk2 inhibitor Dap, which is up-regulated in eye disc cells that exit the cell cycle (LANE et al. 1996). BrdU incorporation was observed in both control and experimental discs anterior and posterior to the MF, but not in the MF (Figure 7). Quantification of the BrdU positive cells in the eye field of Osa over-expressing discs and control discs revealed a noticeable deficit in the number of S-phase cells in the anterior and posterior portions of Osa over-expressing discs. Anterior of the MF we detected a 50% reduction (average number of BrdU-positive cells anterior to the MF in control discs 113 ± 20, and Osa discs 57 ± 14; Figure 7 and supplementary Table S9), while a less severe effect was observed posterior of the MF (59 ± 13 control; 37 ± 7 in Osa discs). The proportion of cells that stained with the α-tubulin-pH3 antibody in the anterior and posterior eye field was also decreased by 25% in Osa over-expressing discs (anterior control: 41 ± 10, anterior Osa discs: 31 ± 7; posterior control: 45 ± 11, posterior Osa discs: 31 ± 7; Figure 7 and supplementary Table S9). dap expression was not affected by Osa over-expression (Figure 6 A and B). Together, these findings indicate that neither cell death nor the signaling processes that control dap expression significantly contribute to the Osa small eye phenotype. The small eye size appears to
result instead from a suppression of cell cycle progression that is caused by an increase in Osa protein levels.

In normal eye development Osa protein seems to promote cell cycle progression by acting as a co-activator of *string/cdc25*. Thus, we expected that *osa* over-expression would stimulate cell proliferation rather than cause attenuation of the cell cycle and impaired growth. To investigate if over-expression has an inhibitory effect on *string/cdc25* transcription, we performed semi-quantitative RT-PCR and found no obvious differences in *string/cdc25* transcript levels between control and *osa* over-expressing eye imaginal discs (Figure 8A). These observations suggest that elevated levels of Osa retard MF progression, reduce the area of photoreceptor differentiation posterior to the MF and result in small eyes independent of Osa’s function as a co-activator of *string/cdc25*.

Osa interacts with CyclinE:

Although several components of the Drosophila SWI/SNF complexes have been shown to interact genetically and biochemically with CyclinE (Brumby et al. 2004; Brumby et al. 2002), biochemical interaction between Osa and CycE has not been tested. We investigated whether Osa and CycE interact in order to determine if the *osa* over-expression small eye phenotype might be due to mis-regulation of CycE activity.

CycE drives cell cycle progression anterior of the MF (De Nooij et al. 1996), and *DmCycE* transcription is down-regulated when cells arrest in G1 (Knoblich et al. 1994;
Richardson et al. 1993). Brumby and co-workers (Brumby et al. 2004; Brumby et al. 2002) reported genetic interactions of DmCycE\textsuperscript{\textit{ip}} with components of the SWI/SNF complex, but detected no changes in the levels of CycE transcripts in a \textit{brm} mutant background. Likewise, Moshkin and co-workers found no changes in CycE transcript levels after RNAi knockdown of BAP or PBAP subunits in Drosophila S2 tissue culture cells (Moshkin et al. 2007). To test for transcriptional changes in CycE expression in the Osa over-expression discs, we applied semi-quantitative RT-PCR, and found no apparent difference in transcript levels (Figure 8). Together these observations suggest that transcription of CycE is not regulated by the Osa-containing SWI/SNF complex.

We probed for physical association between Osa and CycE by co-immunoprecipitation. As shown in Figure 8, these two proteins co-precipitate from extracts of embryos (supplementary Figure S2). We assume that this result is an indication of interaction between CycE and an Osa-containing SWI/SNF complex, as CycE-SWI/SNF interactions have been previously reported (Brumby et al. 2002). In order to establish whether the interaction of CycE with the Osa-containing complex is a functional one, we probed for genetic interactions. We first established that a heterozygous \textit{osa}2 or \textit{osa}308 genotype partially rescues the small eye over-expression phenotype (Figure 5), indicating that the over-expression phenotype is dosage sensitive. Taking advantage of this dosage-sensitivity, we tested several PcG and TrxG mutant alleles, as well as components of the \textit{wg} signaling pathway and a CycE mutant allele, for their ability to modify the Osa over-expression phenotype in a heterozygous mutant condition. Moderate suppression was observed with \textit{brm}2, consistent with the idea that Osa and Brm proteins function together
in a complex. A $trxB^{B11}$ mutant allele also gave moderate suppression, suggesting that Drosophila BAP interacts with TrxG proteins as has previously been shown for human BAF and MLL, which is similar to the Drosophila Trx protein (MARENDA et al. 2003; ROZENBLATT-ROSEN et al. 1998). Although no change in the phenotype was observed with Pc^3 or with an allele of GAGA factor (Trithorax-like, Trl^{85}), a pronounced enhancement was observed with the $DmCycE^{hp}$ allele, suggestive of cooperation between Osa and CycE in the control of eye size (Figure 5, supplementary Table S10). The correlation of genetic and physical interaction of Osa and CycE in the absence of transcriptional repression of CycE supports the model that the Osa-containing version of the SWI/SNF chromatin remodeling complex cooperates with CycE to promote cell cycle progression.
DISCUSSION

This work applied DNA microarray hybridization to investigate the differences between mitotically active anterior and differentiating posterior eye disc cells. We took advantage of the program of ommatidial differentiation to identify genes with essential roles at the stage of eye development when logarithmic growth transitions to mitotic arrest and adoption of specific cell types. Several recent studies catalogued transcripts in whole eye discs with SAGE or DNA microarray hybridization (Firth and Baker 2005; Jasper et al. 2002; Klebes et al. 2002; Michaaut et al. 2003; Ostrin et al. 2006), but to our knowledge this is the first genomic analysis that combines an analysis of purified posterior eye disc fragments with mutant conditions that alter the program of photoreceptor differentiation. We identified 866 transcripts with differential anterior or posterior expression. Supporting the validity of this approach, functions that correlate with the mitotic activity of committed, but still undifferentiated, anterior cells segregate to the "anterior" group, while neuronal functions are over-represented in the "posterior" group. Our analysis and a recent SAGE-based investigation of regional differences in expression levels in eye imaginal discs (Jasper et al. 2002) identified several chromatin factors including PcG-, and TrxG members and proteins involved in heterochromatization, suggesting that chromatin-based transcriptional regulation plays a role in regional specific cell functions in eye development.
We investigated the role of the BAP chromatin remodeling complex subunit Osa at the MF. Several observations link the TrxG factor Osa to cell cycle control. Firstly, the BAP components *osa* and *moira* have been implicated in a regulatory network of cell proliferation and cell cycle progression by evidence that they are transcriptional targets of the DNA replication-related element binding factor (DREF) (NAKAMURA et al. 2008). Secondly, phenotypes of *osa* mutant cells suggest that Osa is required for both differentiation and proliferation (TREISMAN et al. 1997). Lastly, by analyzing the *osa* over-expression phenotype, we found evidence for genetic and biochemical interaction of Osa with DmCycE. Interestingly, whereas expression of cell cycle regulators such as *string/cdc25* is dependent on Osa’s chromatin remodeling function (MOSHKIN et al. 2007), the reduction in cell cycle progression that results from over-expression of Osa appears to be independent of *string/cdc25* and *CycE* transcription rates. These results support a dual mechanism to link chromatin remodeling with cell cycle control.

CycE function appears to be modulated by BAP, the Osa-containing form of the SWI/SNF complex. Genetic interactions of *CycE* with several core components of both the BAP and PBAP forms of the SWI/SNF complex have been described previously (BRUMBY et al. 2004; BRUMBY et al. 2002). Consistent with our observations, these studies also detected a genetic interaction between *osa* and *CycE*. Furthermore, a direct or indirect physical association between CycE and SWI/SNF components was detected by co-immunoprecipitation with Brm or Snr1 (BRUMBY et al. 2002). Our results now show that CycE also immunoprecipitates with the BAP signature protein Osa. While the PBAP signature proteins Polybromo or BAP170 were not tested here, the Osa over-
expression small eye phenotype and lack of cell cycle defects in single and double mutants for Polybromo and BAP170 (CARRERA et al. 2008) suggest that the cell cycle function is specific to the BAP version of the Drosophila SWI/SNF complexes.

CycE - SWI/SNF complex interactions appear to be evolutionary conserved since BRG1 (Brahma Related Gene 1, one of two mammalian orthologs of Drosophila Brm) and BAF155 (orthologous to Moira) co-purify with CycE from human cells (SHANAHAN et al. 1999). In addition, expression of the SWI/SNF complex components BRG1 or INI/hSNF5 (orthologous to Snf1) causes G1 cell cycle arrest in human tissue culture cells (SHANAHAN et al. 1999; ZHANG et al. 2002). Interestingly, the cell cycle arrest can be rescued by co-expression of hCycE or hCycD1, respectively. These data are therefore consistent the idea that the Drosophila BAP and human SWI/SNF-like complexes function as cell cycle regulators. Furthermore, the genetic and biochemical interaction data suggest that this function requires Cyclin activity.

Chromatin remodeling activity and the function of SWI/SNF in cell cycle regulation must be tightly controlled to assure proper development and to prevent the transition of normal cells into cancer cells. Our findings are consistent with a function of Osa in negatively controlling cell cycle progression. A fine-tuned balance of repressive and activating signals seems to coordinate cell cycle progression by controlling Osa protein levels and downstream events such as CycE interaction or string/cdc25 expression. The elevated Osa protein levels anterior to the MF that are observed in normal development might reflect the contribution of Osa in the transition of these cells into a G1 arrested state. As
mentioned in the introduction the G1 arrest of these cells requires the function of several signaling pathways, Hh, Dpp, Wg, Egfr, and Notch. By down-regulating CycE activity the increased Osa protein levels in these cells might contribute to counteracting the mitogenic activity of these signaling pathways that is observed in other developmental contexts.

We also detected genetic interactions between osa and components of the Wg signal transduction pathway. These interactions could be a consequence of the small size of the eye field in Osa over-expressing discs, since the signaling molecule Wg is normally expressed in lateral positions and has a locally restricted negative effect on Dpp-mediated MF progression (BAONZA and FREEMAN 2002; LEE and TREISMAN 2001). If relative Wg signaling increased in the abnormally small eye, repression of Dpp function in medial cells should increase. This model is supported by the weak dpp expression in the small discs (Figure 2 G and H), and by the half-moon shape of the MF in Osa discs. The MF bends posteriorly in the Osa over-expressing discs (indicating that the retarding effect is strongest in lateral positions), whereas the MF points anteriorly in wg mutant discs (presumably due to the missing repressive Wg effects in lateral positions) (TREISMAN and RUBIN 1995). Partial rescue of Osa-overexpression by impaired Wg signaling is consistent with this model. Based on these findings we speculate that the posterior position of the MF that is caused by Osa over-expression is a manifestation of a developmental delay in eye development due to inhibition of cell proliferation and the resulting relative increase of the repressive Wg signal on dpp expression.
However, there are alternative regulatory possibilities in which the interplay of Osa and Wg signalling involves mutual transcriptional regulation and/or co-regulation of common target genes at the transcriptional level. In Drosophila, expression of an activated form of the Wg signaling component *armadillo* causes a small eye phenotype that is suppressed by lowering the dosage of functional *brm* (Barker et al. 2001). Furthermore, Osa has been characterized as an antagonist of Wg signaling in wing development by inhibiting the expression of Wg target genes (Collins and Treisman 2000). We detected a suppression of the Osa small eye phenotype by Wg pathway mutants suggesting that Wg signaling acts synergistically with Osa in this system. These findings point at context dependent features that appear to differ between wing and eye development. Such context dependent functions have been reported earlier even between different cell populations of wing imaginal discs. For example, Wg signaling represses Drosophila *Myc* (*DMyc*) expression in the presumptive wing margin (Duman-Scheel et al. 2004). In this area of the disc repression of *DMyc* promotes G1 arrest via the regulation of the Drosophila retinoblastoma family (Rbf) protein, while forced expression of *DMyc* promotes cell cycle progression by inducing *CycE* expression. On the other hand, Wg signaling in the hinge region of the wing imaginal disc has the opposite effect on cell proliferation (Neumann and Cohen, 1996). As these examples illustrate it is difficult to generalize the relationship between Osa, Wg signaling and Myc function. However, a possible contribution of *DMyc* regulation for the Osa over-expression small eye phenotype provides an interesting possibility. Observations in other systems support a role of SWI/SNF function in transcriptional regulation of cell cycle genes. In vertebrates, direct transcriptional regulation of Cyclins by SWI/SNF complex components has been
implicated, and mammalian BRG1 and β-Catenin (the vertebrate ortholog of Armadillo) interact with each other to activate Wnt target genes (BARKER et al. 2001; COISY et al. 2004; KADAM and EMERSON 2003; ZHANG et al. 2002). In Drosophila, only a single osa gene exists, and it is involved in both activation and repression of target genes (MILAN et al. 2004). In mammals the two Osa orthologs BAF250a/b seem to have antagonistic functions in activating or repressing cell-cycle-specific genes such as cdc2, cyclin E and c-Myc and this regulation involves binding to the promoter sequences (NAGL et al. 2007).

Neither we nor others (BRUMBY et al. 2002; MOSHKIN et al. 2007) could detect significant changes in DmCycE transcript or protein levels in osa and other BAP component mutants; instead we detected biochemical interaction between Osa and DmCycE. To-date the functional consequence surrounding the association of Cyclin/Cdk complexes with chromatin remodeling complexes remain unclear. Although different Cyclins possess distinct functions and tissue specificities, several reports describe roles for different CDK/cyclin complexes in transcription and RNA splicing (reviewed in LOYER et al. 2005). In many cases CDK/cyclin complexes regulate the activity of components of the transcription machinery or other factors in a cell cycle dependent manner. Along these lines, CycE/CDK2 phosphorylates NPAT (nuclear protein mapped to the AT locus), which in turn activates replication-dependent transcription of histones. This function is stimulated by CycE binding to the histone genes in human tissue culture cells (ZHAO et al. 2000). It is conceivable that the kinase activity of CycE/Cdk2 modulates the activity of the BAP chromatin remodeling complexes in a cell cycle dependent manner as
has been demonstrated for human Brm, BRG1, and BAF155 (Muchardt et al. 1996; Shanahan et al. 1999).

ACKNOWLEDGEMENTS

We thank Sybille Maletz, Heidi Leßmann, (both FU Berlin) and Michael Bishop (UCSF) for their support. Our gratitude to Helena Richardson, Juerg Müller, Dereji Negeri, Harald Saumweber, Alfonso Martinez-Arias, Thomas Klein, the Bloomington stock center and the Developmental Studies Hybridoma Bank for stocks and reagents and Eli Knust, Stefan Sigrist and Gerold Schubiger for critical comments. This work was supported by a NIH grant to T.B.K., a DFG fellowship to J.B. (GRK 813) and a pilot project grant of the Freie Universität Berlin to A.K.
FIGURE 1.- Microarray identification of transcripts enriched in the anterior or posterior region of the eye imaginal discs.

A. Cluster analysis of four replica experiments comparing micro-dissected posterior eye imaginal disc fragments to a common reference sample made from intact eye-antennal discs (columns). The two sub-clusters represent 431 transcripts (rows) with a predominant anterior (blue) and 435 transcripts with a posterior (yellow) expression that passed the significance of microarray analysis (SAM). The complete list of the 866 differentially expressed genes is available as supplementary Table S1. The legend provides the color-coded expression ratios.

B. Genes that are annotated to function in eye
development and neuronal development are more abundant in the posterior group (hatched, yellow, 18% posterior vs. 10% anterior), whereas genes that play a role in cellular growth and proliferation are over-represented in the anterior group (blue, 13% anterior vs. 4% posterior). Genes were grouped based on gene ontology (GO) terms (www.flybase.org, annotation release 5.16). A list is available as supplementary Tables S2.

FIGURE 2.- Comparison to transcript levels in mutant eye imaginal discs.

A. Schematic representation of the different experimental conditions that were compared to \(w^{1118} \) eye-antennal imaginal discs (reference sample, center). Mutants that produce an increased (extra R8 mutants, right) or decreased number of photoreceptor cells (stop
furrow mutants, left. The numbers in parentheses refer to the different genotypes listed in supplementary Table S3 and text) were analyzed. B. Transcripts that were up- or down-regulated in posterior fragments were compared to different mutant conditions using cluster analysis. Four sub-clusters with predominant anterior (sub-cluster I), or posterior enrichment (II), or a mixed behavior with anterior enrichment in the comparisons of mutant discs and posterior enrichment in the \(w^{1118} \) eye disc fragment (III) or the complementary behavior (IV) (a list of these genes is available as supplementary Table S4). The columns correspond to the 24 array hybridizations of three categories: stop furrow mutants (1-5), extra photoreceptor cell mutants (6-7) and posterior fragments (8). The numbers indicate the different genotypes of the replicate experiments (1 – \(\text{rough}^{\text{Dominant}}(\text{ro}^{\text{Dom}}) \), 2 – heterozygous \(\text{rough}^{\text{Dominant}}(\text{ro}^{\text{Dom}}) \), 3 - Enhancer(\(\text{ro}^{\text{Dom}})2033 \) (\(E(\text{ro}^{\text{Dom}})2033 \)), 4 - \(\text{atonal}^{l}(\text{ato}^{l}) \), 5 - \(\text{hedgehog}^{l}(\text{hh}^{l}) \); 6 - \(\text{rough}^{X63}(\text{ro}^{X63}) \), 7 - \(\text{Su}(\text{ro}^{\text{Dom}})519 \) (CHANUT et al. 2000; DOKUCU et al. 1996); all homozygous except no. 2), and 8 – microdissected posterior fragments (P) of \(w^{1118} \) eye imaginal discs, supplementary Table S3). The shades of blue and yellow color-code the expression ratios. C. Expression profiles of selected genes from the four sub-clusters. The twin of eyeless (toy) gene shows enrichment in anterior cells (sub-cluster I) as it has been described (CZERNY et al. 1999). sevenless (sev) and hedgehog (hh) are expressed in differentiating photoreceptor cells in the posterior part (sub-cluster II). The Ribosomal protein L13 (Rpl13) is a representative of sub-cluster III with functions in cell proliferation, translation, and mitotic spindle assembly (GOSHIMA et al. 2007). In the comparisons of the posterior fragments eyeless (ey) shows expression in anterior cells as it has been reported previously (PARKS et al. 1995). The chromatin regulators (Asx, Scm,
Su(z)2, osa, compare text) that segregate to sub-cluster IV show the same expression properties as ey, i.e. up in posterior cell in all mutant discs (nos. 1-7) and down in the posterior fragments (no. 8).

FIGURE 3.- Loss of Polycomb and osa function disrupt eye development

A. Wildtype eye-antennal imaginal disc labeled with anti-Elav. Differentiating photoreceptor cells (brown) are confined to the posterior half of the eye disc, behind the morphogenetic furrow (indicated by arrowheads).

B - C. Eye imaginal discs with mutant osa^{308} and P_{c}^{XT109} cell clones were stained with anti-GFP to identify the position of the clones (absence of green GFP signal, outlined by the dotted lines) and anti-Elav (red) to mark differentiating photoreceptor cells.

B. No photoreceptor cells are specified within a
large Pc clone. C. A large osa clone causes disruption of the regular spacing of the photoreceptor clusters even outside the clone (arrowheads) indicating a cell non-autonomous function.

FIGURE 4.- Osa over-expression causes a small eye phenotype

A. Adult eyes of the parental eyeless-GAL4 line (control) and three different examples of Osa over-expressing flies. Mutant eyes were grouped into three categories: large (close to normal), medium, and small. B. Anti-Elav labeling of control eye discs and Osa over-expressing discs shows a reduced number of photoreceptor cells in the mutant. The spacing and size of the clusters is only slightly disordered. Anterior is to the left. The bar
corresponds to 100 μm in both images. **C.** Quantification of the anterior posterior (A-P) and dorso-ventral (D-V) dimension of control and Osa over-expressing antennal (hatched bars) and eye imaginal discs (dotted bars) of 40 animals in arbitrary units (Material and Methods). The ey-GAL4 driver recapitulates expression in the eye field. The antennal part of the joint eye-antennal disc is not affected (HALDER et al. 1998; NIIMI et al. 2002). **D.** The grey columns indicate counts of dorso-ventral rows of photoreceptor clusters that were labeled with anti-Elav in the same 40 eye discs. Standard deviations are indicated (supplementary Table S8).
FIGURE 5.- Suppressors and enhancers of the Osa over-expression small eye phenotype.

Differences in the proportions of flies with small, medium and close to normal size eyes are indicated by bars of different shadings. Each experiment compares the eyes from Osa over-expressing flies that are heterozygous for the indicated mutant allele to eyes of their siblings (control) that carry a balancer or marked chromosome (%mutant - %control). Alleles are indicated in brackets. The two *osa* mutations and mutant alleles of *trx*, *brm*, *wg*, and *arm* act as suppressors, and *DmCycE*^{JP} enhances the mutant phenotype. Mutations in *Trl* and *Pc* show only weak effects. Note that the *DmCycE*^{JP} mutant caused a rough eye phenotype when homozygous, while heterozygotes had normal eyes (SECOMBE et al. 1998). More than 500 flies were scored for each experiment (supplementary Table S10).
FIGURE 6.- Eye discs remain small after Osa over-expression and morphogenetic furrow progression is retarded

A, C, E, G. Control eye-antennal imaginal discs, B, D, F, H. osa over-expressing discs.

A, B. Expression of dacapo, C, D. or atonal was detected by in situ hybridization. Following over-expression the eye part remains smaller than in control discs, the MF is positioned further posterior and shows a characteristic half-moon shape. E, F. X-GAL reactions visualized dpp-lacZ. The inset in E shows dpp-lacZ expression in a young third instar control disc. F. The dpp-lacZ pattern along the MF is partially disrupted. G, H. The wg-lacZ expression domain is comparable to the control. Pairwise comparisons of control and mutant discs are to scale. Anterior is to the left, dorsal up.
FIGURE 7.- The proportion of cycling cells in S-phase and M-phase is reduced after Osa over-expression.

A, D. Control and B, E. Osa over-expressing discs. A, B. BrdU incorporation marks cells in S-phase. Osa over-expressing eye discs reveal a reduced signal intensity in the mutant eye discs (arrowhead), while the number of S-phase nuclei in the antennal part was comparable because ey-GAL4 does not drive expression in the antenna (HALDER et al. 1998; NIIMI et al. 2002). Two representative discs are shown. C. Quantification of 15 control and 12 Osa over-expressing discs. The proportion of BrdU positive cells in the antennal part is unaffected while fewer cells are labeled in the eye field anterior or posterior of the MF. D, E. Immunolabeling with anti-phospho histone H3 antibody marks cells in G2 and M-phase. Fewer cells were stained in the eye part of Osa over-
expressing discs. F. Quantification of the reduced number of pH3-positive cells. In the antennal parts an average of 34 and 35 cells were in G2/M-phase in 20 control discs (grey) and 20 Osa over-expressing discs (hatched, yellow). In contrast, a reduction in the number of cycling cells occurred anterior as well as posterior of the morphogenetic furrow. A student’s t-test revealed a confidence level of >99% (asterisks, supplementary Table S9).

FIGURE 8.- Osa is physically associated with CycE and does not regulate string/cdc25 or CycE transcript levels.

A. Semi-quantitative duplex RT-PCR on RNA from control and Osa over-expressing eye discs with primer pairs that recognize the stg/cdc25 and Actin 42B (Act42B, standard)
transcripts. Aliquots were removed from the PCR reaction after 23, 26, 29, and 32 cycles and analyzed on an agarose gel. stg/cdc25 levels are not different between the two genotypes relative to the Act42B levels. B. Semi-quantitative duplex RT-PCR for CyclinE (DmCycE) and Actin 42B. No obvious difference of CycE transcript levels could be detected between control and Osa over-expressing discs. The slightly fainter signal in the Osa discs that also occurs in the Actin 42B reaction (compare lane 3 and 4) might be due to reduced RNA levels of the mutant sample due to the smaller size of these discs. C. Co-immunoprecipitation with anti-Osa (lanes 1-3) and anti-Engrailed (mock control) antibodies from embryonic nuclear extract. A prominent CycE band that migrates at app. 80 kDa as expected is detected in the lysate (lane 1, input). The wash solution contains no detectable CycE (lane 2). CycE protein is detected in the anti-Osa (lane 3, eluate) but not the anti-Engrailed (lane 4, mock) precipitate indicating that the co-precipitation is specific to the Osa-CycE interaction. The photographs from lanes 1-3 originate from the same western blot, empty lanes and additional wash steps were removed (the original image and additional western blots are available as supplementary Figure S2).
TABLES

TABLE 1. – Anteriorly or posteriorly enriched transcripts with a function in chromatin regulation.

The analysis of posterior eye disc fragments and the comparison with different mutant eye imaginal discs (compare text) identified genes involved in the regulation of chromatin structure and chromatin-based transcriptional regulation. The genes in bold type were also identified in the study by Jasper et al. (2002) (supplementary Table S7).

<table>
<thead>
<tr>
<th>study</th>
<th>name (symbol)</th>
<th>sub-cluster</th>
<th>function, location, interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>posterior eye disc fragments vs. reference sample</td>
<td>anti-silencing factor (asf1)</td>
<td>anterior</td>
<td>chromatin architecture</td>
</tr>
<tr>
<td></td>
<td>cup (cup)</td>
<td>anterior</td>
<td>chromosome organization, negative regulation of translation</td>
</tr>
<tr>
<td></td>
<td>Dodeca-satellite-binding protein 1 (Dp1)</td>
<td>anterior</td>
<td>heterochromatin formation, chromatin remodeling</td>
</tr>
<tr>
<td></td>
<td>High mobility group protein D (HmgD)</td>
<td>anterior</td>
<td>chromatin architecture</td>
</tr>
<tr>
<td></td>
<td>Heterogeneous nuclear ribonucleoprotein at 87F (Hrb87F)</td>
<td>anterior</td>
<td>chromatin, ribonucleoprotein complex</td>
</tr>
<tr>
<td></td>
<td>osa (osa)</td>
<td>anterior</td>
<td>chromatin remodeling, Trithorax group</td>
</tr>
<tr>
<td></td>
<td>Poly-(ADP-ribose) polymerase (Parp)</td>
<td>anterior</td>
<td>chromosome organization, regulation of transcription</td>
</tr>
<tr>
<td></td>
<td>reptin (rept)</td>
<td>anterior</td>
<td>chromatin remodeling, Ino80 complex, DNA helicase activity</td>
</tr>
<tr>
<td>Gene/Description</td>
<td>Region/Molecule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppressor of variegation 3-7 (Su(var)3-7)</td>
<td>anterior heterochromatin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG3371</td>
<td>posterior chromosome, centromeric region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enhancer of yellow 3 (e(y)3)</td>
<td>posterior chromatin remodeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enhanced adult sensory threshold (east)</td>
<td>posterior chromosome segregation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein on ecdysone puffs (Pep)</td>
<td>posterior chromosome puff, spliceosome, ribonucleoprotein complex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tonalli (tna)</td>
<td>posterior tna chromatin-mediated maintenance of transcription, genetic interaction with osa (Gutierrez et al. 2003)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enhancer of yellow 3 (e(y)3)</td>
<td>sub-cluster III chromatin remodeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lolli like (lola)</td>
<td>sub-cluster III chromatin silencing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minichromosome maintenance 5 (Mcm5)</td>
<td>sub-cluster III DNA replication, chromosome condensation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSIF (spt4)</td>
<td>sub-cluster III non-covalent chromatin modification; positive regulation of transcription chromatin silencing, Polycomb group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additional sex combs (Asx)</td>
<td>sub-cluster IV histone-lysine N-methyltransferase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG40351</td>
<td>sub-cluster IV heterochromatin formation, chromatin remodeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodeca-satellite-binding protein 1 (Dp1)</td>
<td>sub-cluster IV chromatin architecture, transcription factor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>jumeau (jumu)</td>
<td>sub-cluster IV chromatin remodeling, Trithorax group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>osa (osa)</td>
<td>sub-cluster IV chromatin silencing, Polycomb group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sex comb on midleg (Scm)</td>
<td>sub-cluster IV heterochromatin formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppressor of variegation 3-3 (Su(var)3-3)</td>
<td>sub-cluster IV chromatin silencing, Polycomb group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suppressor of zeste 2 (Su(z)2)</td>
<td>sub-cluster IV chromatin silencing, Polycomb group</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Posterior fragments + stop furrow mutants + extra R8 mutants vs. reference sample
SUPPLEMENTARY FIGURES

Supplementary FIGURE S1

FIGURE S1.- Apoptosis does not contribute to the *osa* small eye phenotype.

Over-expression of *osa* (ey-GAL4, UAS-osa) in the presence of a transgene (UAS-p35) that encodes the baculovirus p35 protein, a caspase inhibitor of apoptosis (IAP). More than 200 flies for each genotype were counted in a blinded setup and grouped into flies with small, medium, and normal eye size as described in Material and Methods. The small eye phenotype occurs in the absence or presence of p35 in comparable proportions indicating that apoptosis does not significantly contribute to the *osa*-mediated small eye phenotype.
FIGURE S2.- Western blots of CyclinE and Osa immuno-precipitations.

A. Anti-CyclinE antibody was used for immuno-precipitation (IP) from embryo lysate. The lysate was treated with ethidium bromide to disrupt protein-DNA aggregates prior to the precipitation reaction (s. Material and Methods). The western blot (WB) was probed with anti-CyclinE (top) or anti-Osa antibody (bottom). In each case a band migrating at the approximate calculated size for the two proteins (Osa – 280kDa, CycE – 77kDa) could be detected in the embryo lysate (lane 1, “input” and the eluate from the sepharose beads (lane 5, “eluate”). The two last wash steps were also probed (lanes 3 and 4) but produced no Osa or CycE signal.

B. A control experiment was performed with a mock antibody (anti-Engrailed, 4D9), but revealed no purification of CycE (top, lane 5,
asterisk) or Osa (bottom, lane 5, asterisk). This mock experiment indicates that precipitation and co-precipitation with the anti-Osa antibody is specific.

SUPPLEMENTARY TABLES

Due to size these tables are provided as separate files.

TABLE S1. - Genes with anteriorly and posteriorly enriched transcripts in eye imaginal discs.

A total number of 866 genes were identified by cluster analysis and significance of microarray analysis (SAM, compare Figure 1). The columns contain the name or symbol, flybase identification number, and the GO terms describing the biological process, cellular component, and molecular function as annotated on www.flybase.org for A. the 431 anteriorly and B. the 435 posteriorly enriched transcripts.

TABLE S2. - Functional categories of the differentially expressed genes.

A. Anteriorly and B. posteriorly enriched genes with functions related to neuronal-(neuro), or compound eye development (eye), cell cycle regulation and cell growth (cell cycle), or chromatin architecture and regulation (chromatin) as illustrated in Figure 1. Functional categories are based on the flybase annotation (compare Table S1).
TABLE S3.- Experimental design.

Three kinds of experimental samples were generated in a total of 24 independent preparations. 1. The posterior part of wildtype eye imaginal discs was manually dissected by cutting along the MF (Fig. 2 A). Experimental samples for the second and third group were generated from dissected mutant eye-antennal discs. 2. Discs of the indicated genotypes display an extra R8 phenotype. 3. The indicated genotypes of this category result in a stop furrow phenotype with decreased numbers of differentiating photoreceptor cells. Discs were homozygous mutant, unless indicated otherwise. The numbers in parantheses refer to the genotypes in Figure 2 A.

TABLE S4.- Anteriorly and posteriorly enriched transcripts of sub-clusters I – IV (Figure 2)

List of the 700 genes with elevated transcript levels in anterior or posterior cells that group into the four sub-clusters and passed the “significance analysis of microarrays” evaluation (compare text). Indicated are the gene ontology-based descriptions of molecular and biological functions. The color-code indicates the following functional categories: eye- and photoreceptor development - brown; neuronal requirements - pink, cell growth and proliferation - green, chromatin regulation -yellow.

TABLE S5.- Overlap of genes with differential expression in the posterior fragments and mutant eye discs.

Genes that are common to the the list of anteriorly or posteriorly enriched transcripts in the posterior wildtype eye disc fragments and one of the four sub-clusters from the
common analysis of these fragments with different mutant eye imaginal discs are listed. For the genotypes see text and supplementary Table S3. A full lists of the genes with differential anterior/posterior expression in wildtype discs and the mutant discs are provided as supplementary Tables S1 and S4.

TABLE S6.- Overlap of the 866 anteriorly or posteriorly up-regulated genes with four other studies.

Comparison of our list of 866 anteriorly or posteriorly up-regulated genes with four other studies. The genes highlighted in bold type are common to our list and at least two other studies.

TABLE S7.- Genes involved in chromatin architecture or regulation that were identified by SAGE analysis of FACS-sorted eye disc cell populations by Jasper and co-workers (2002).

A total of 1123 genes were extracted from Supplementary Table S1 (Jasper et al. 2002) that also include sequences that do not show clear anterior or posterior expression differences. This list includes at least 14 genes with clear anterior or posterior expression preference. The six genes: Pep, lola, HmgD, jumu, as well as the two Trithorax group genes osa and brahma, that both encode components of the BAP SWI/SNF-type chromatin remodeling complex, were equally represented in anterior and posterior cell populations. The genes in bold type are common to our analysis of anteriorly or posteriorly up-regulated genes (Table 1, supplementary Tables S1, S2, and S4).
TABLE S8.- Raw data of imaginal disc measurements of control and osa over-expressing eye and antennal discs (Figure 4)

For each genotype (control – white or ey-GAL4/UAS-osa) eye-antennal imaginal discs of 40 third instar larvae (first column “animal”) were dissected, immunolabeled with anti-elav antibody, mounted and photographed with an Axioplan (Zeiss) microscope and a digital camera (Prog.Ress. 3012, Kontron Elektronik). Anterior-posterior (A-P) and dorso-ventral (DV) dimensions of the eye or antennal part were measured with a ruler on the computer monitor, and the rows of elav-positive photoreceptor clusters posterior to the MF were counted.

TABLE S9.- Raw data of BrdU and phospho-histone H3 stainings (Figure 7)

Cell counts of BrdU labeled cells and phospho-histone H3 immuno-positive cells in control and eyeless-GAL4, UAS-osa over-expressing eye imaginal discs and antennal parts. For the BrdU experiment 15 control and 12 Osa discs, and the α-pH3 experiment 20 control and 20 Osa discs were counted. Labelings are: “eye posterior” - area posterior of the MF; “eye anterior” - area anterior of the MF in the eye part; “antenna” - area of the antennal part. Standard deviations and p-values of a one-tailed t-test are indicated and support the reduction in both, BrdU- and phospho-H3 immuno-positive cells in the eye part of osa over-expressing discs.

TABLE S10.- Raw data of genetic interaction (Figure 5)

Flies carrying an eyeless-GAL4, UAS-osa (balanced over CyO) recombinant chromosome were crossed to flies that were heterozygous for the indicated mutant
alleles. The offspring was sorted and sibling flies with both the recombinant chromosome and the mutant allele were separated from flies carrying the recombinant chromosome and the balancer (TM3 or TM6) or marked (Scutoid, Sco; or w) chromosome. For each population the number of flies with very small eyes, medium size eyes and close to normal size eyes (as indicated in Figure 4) and the total number of scored flies are listed.
REFERENCES

CARRERA, I., J. ZAVADIL and J. E. TREISMAN, 2008 Two subunits specific to the PBAP chromatin remodeling complex have distinct and redundant functions during Drosophila development. Mol Cell Biol.

COLLINS, R. T., T. FURUKAWA, N. TANSE and J. E. TREISMAN, 1999 Osa associates with the Brahma chromatin remodeling complex and promotes the activation of some target genes. Embo J 18: 7029-7040.

ROZENBLATT-ROSEN, O., T. ROZOVSKAIA, D. BURAKOV, Y. SEDKOV, S. TILLIB et al., 1998 The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc Natl Acad Sci U S A 95: 4152-4157.

RUDOLPH, T., M. YONEZAWA, S. LEIN, K. HEIDRICH, S. KUBICEK et al., 2007 Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol Cell 26: 103-115.

YAN, Z., Z. WANG, L. SHAROVA, A. A. SHAROV, C. LING et al., 2008 BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells 26: 1155-1165.

