The strength of selection against the yeast prion \([PSI^+]\)

Joanna Masel and Cortland K. Griswold\(^1\)

Dpt. Ecology & Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA.

\(^1\)present address: Dpt. Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
Running heading: Selection against the \([PSI^+]\) prion

Keywords: population genetics, readthrough translation, nonsense suppression, inbreeding, indirect selection

Joanna Masel

Dpt. Ecology & Evolutionary Biology

1041 E. Lowell St.

University of Arizona

Tucson, AZ 85721

Phone: 520-626-9888

masel@u.arizona.edu
Abstract

The \([PSI^+]\) prion causes widespread readthrough translation and is rare in natural populations of Saccharomyces, despite the fact that sex is expected to cause it to spread. Using the recently estimated rate of Saccharomyces outcrossing, we calculate the strength of selection necessary to maintain \([PSI^+]\) at levels low enough to be compatible with data. Using the best available parameter estimates, we find selection against \([PSI^+]\) to be significant. Inference regarding selection on modifiers of \([PSI^+]\) appearance depends on obtaining more precise and accurate estimates of the product of yeast effective population size \(N_e\) and the spontaneous rate of \([PSI^+]\) appearance \(m\). The ability to form \([PSI^+]\) has persisted in yeast over a long period of evolutionary time, despite a diversity of modifiers that could abolish it. If \(mN_e < 1\), this may be explained by insufficiently strong selection. If \(mN_e > 1\), then selection should have favored the spread of \([PSI^+]\) resistance modifiers. In this case, rare conditions where \([PSI^+]\) is adaptive may permit its persistence in the face of negative selection.
INTRODUCTION

\[\text{PSI}^+\] is the prion form of the protein Sup35 (WICKNER et al. 1995). Sup35 is involved in stop codon recognition during gene translation (STANSFIELD et al. 1995; ZHOURAVLEVA et al. 1995). In prion form, Sup35 is sequestered in aggregates, depleting the availability of functional Sup35 (WICKNER et al. 1995). This leads to an elevated rate of readthrough error at every stop codon in the Saccharomyces genome (FIROOZAN et al. 1991).

Given the likely cost of these translation readthrough errors, one might expect \[\text{PSI}^+\] to have substantial deleterious effects. Nevertheless, in standard lab conditions \[\text{PSI}^+\] strains containing prions seem to grow just as well as \[\text{psi}^-\] strains that lack them (TRUE and LINDQUIST 2000). While it is difficult to detect small differences in fitness in the lab, wild yeast species have large effective population sizes of around \(10^7\) (TSAI et al. 2008), making natural selection extremely sensitive to tiny differences in fitness.

In Figure 1 we show the logic of all possible scenarios of selection on \[\text{PSI}^+\], including the necessary conditions for them to hold, as derived in this paper, and our assessment of the plausibility of those conditions. \[\text{PSI}^+\] must be either adaptive, neutral or deleterious under the majority of normal conditions found in the wild. A predominantly adaptive role for \[\text{PSI}^+\] is obviously not compatible with its rarity (CHERNOFF et al. 2000; NAKAYASHIKI et al. 2005).

A predominantly deleterious role for \[\text{PSI}^+\] would raise the question as to why the ability to form \[\text{PSI}^+\] has not been eliminated by natural selection, instead being conserved over long
periods of yeast evolution (Chernoff et al. 2000; Kushnirov et al. 2000a; Nakayashiki et al. 2001; Santoso et al. 2000). Consider a modifier locus called prf (prion-forming (Masel and Bergman 2003)) with allele prf$^+$ permitting [psi$^+$] formation and allele prf0 preventing it. When [psi$^+$] is deleterious, then prf$^+$ lineages are also at a disadvantage, as they repeatedly give rise to [psi$^+$] progeny: this is known as indirect selection. If indirect selection is strong enough, this should lead to the fixation of the [psi$^+$]-resistant prf0 allele in the population. Similarly, rare positive selection on [psi$^+$] would lead to indirect positive selection on the prf$^+$ allele that generated the favored [psi$^+$] lineage.

A variety of modifiers exist whose mutation could impart resistance to [psi$^+$], including the [pin$^+$] prion (Derkatch et al. 1997) and chaperone molecules (Chernoff et al. 1999; Kushnirov et al. 2000b; Sharma and Masison 2008). One particular modifier is an oligopeptide repeat region within Sup35 that is required for [psi$^+$] formation and propagation (Parham et al. 2001). Although this region (Harrison et al. 2007), together with the ability of the Sup35 protein to form [psi$^+$] (Chernoff et al. 2000; Kushnirov et al. 2000a; Nakayashiki et al. 2001; Santoso et al. 2000), is conserved in yeast evolution, some natural populations of S. cerevisiae carry a deletion within this oligopeptide repeat region of Sup35 that eliminates [psi$^+$]-forming ability (Resende et al. 2003). If this region has some inseparable pleiotropic function apart from promoting [psi$^+$] formation, then this function cannot be essential over short evolutionary timescales.

Although a variety of candidate modifier loci exist, in our analysis we consider an abstract modifier locus in the tradition of theoretical population genetics, rather than a specific,
empirically identified modifier. We assume two alleles at this locus, a \(prf^0 \) allele that completely suppresses \textit{de novo} \([PSI^+] \) formation and a \(prf^+ \) allele that allows for it.

Any specific modifier of \([PSI^+] \), including but not limited to changes in the sequence of Sup35, could of course be subject to pleiotropic constraint, but given the diversity of available modifiers and the long period of evolutionary time, we would expect resistance to \([PSI^+] \) to have fixed were it advantageous. Instead, the relevant pleiotropic constraint may be a single adaptive function of \([PSI^+] \) itself, rather than a series of different pleiotropic functions constraining each and every one of the possible modifier loci. It is possible that \([PSI^+] \)-formation ability has not been lost because \([PSI^+] \) occasionally has advantageous effects by exposing cryptic genetic variation in novel environments (GIACOMELLI \textit{et al.} 2007; GRISWOLD and MASEL in prep; JOSEPH and KIRKPATRICK 2008; KING and MASEL 2007; MASEL 2005; MASEL and BERGMAN 2003; TRUE and LINDQUIST 2000). This relatively rare role in promoting adaptation would explain its persistence over long evolutionary timescales, despite not being essential on short timescales.

An alternative hypothesis states that \([PSI^+] \) is better regarded as a sexually transmitted disease of yeast (NAKAYASHIKI \textit{et al.} 2005). A Mendelian genetic element is inherited by only half the meiotic products, and remains at a constant frequency in the absence of other forces such as selection or drift. In contrast, \([PSI^+] \) is inherited cytoplasmically during both asexual and sexual reproduction. Since \([PSI^+] \) is inherited by all four meiotic products, it will therefore increase in frequency when outcrossing occurs, giving rise to the analogy of a sexually transmitted disease (NAKAYASHIKI \textit{et al.} 2005). \([PSI^+] \) is not found at high frequency in natural populations, so
either negative selection against $[PSI^+]$ or high epigenetic reversion rates must be invoked to counter the fact that outcrossing will increase $[PSI^+]$ frequency. The extent of selection (and/or reversion) needed depends on the amount of outcrossing that spreads $[PSI^+]$. The rate of outcrossed sex in *S. paradoxus* was recently estimated as only 10^{-5} per reproductive event (TSAI et al. 2008), relaxing the conditions needed to keep $[PSI^+]$ at low frequency in the face of sexual spread. Here we will quantify (through Equation 3) the parameter range necessary to keep $[PSI^+]$ at its observed low frequency, given realistic parameters describing wild yeast sex.

If $[PSI^+]$ is deleterious, then given the variety of modifiers and the long evolutionary period during which the ability to form $[PSI^+]$ has persisted, one might expect yeast to have evolved resistance to the $[PSI^+]$ “disease” through the evolution of modifiers of $[PSI^+]$ formation. For most transmissible diseases, pathogen coevolution makes this difficult, but the evolution of $[PSI^+]$ resistance needs only adapt to a stationary target, and so should be straightforward. However, indirect selection may be too weak to overcome genetic drift. With direct selection, selective costs are incurred in every generation. With indirect selection, the same cost is incurred only infrequently, and therefore less effective as an evolutionary force, since not all prf^+ individuals incur the cost of a $[PSI^+]$ phenotype. It is therefore possible that although direct selection against the deleterious effects of $[PSI^+]$ is strong enough to overcome genetic drift and keep $[PSI^+]$ at low frequency, indirect selection may not be strong enough to fix modifier or resistance alleles against $[PSI^+]$. In a finite population, arguments concerning the strength of selection amount to an assessment of whether or not $sN_e > 1$, where s is the selection coefficient and N_e is the effective population size.
The focus of this paper is to determine the conditions for the different scenarios described above and in Figure 1 by (1) calculating the strength of direct selection $s_{PSI^+} N_e$ against $[PSI^+]$ and (2) calculating the strength of indirect selection $s_{prf^+} N_e$ against a modifier allele prf^+ that permits $[PSI^+]$ formation. Our inferences are based on the Tsai et al. (2008) data on sexual frequencies in $S. paradoxus$ and a spontaneous rate of epigenetic conversion from $[psi^-]$ to $[PSI^+]$ of around 10^{-7}–10^{-5} in lab strains of $S. cerevisiae$ (Chernoff et al. 1999; Kolotova-Levine et al. pers. comm.; Lund and Cox 1981). The reversion rate from $[PSI^+]$ to $[psi^-]$ is known to be $< 2 \times 10^{-4}$ (Tank et al. 2007), and is widely believed to be similar to the rate of $[PSI^+]$ appearance, although it is less studied: we explore a substantial range for this parameter. The effective population size N_e in $S. paradoxus$ can be estimated as $\theta (1 + F) / (4 \mu)$ where θ is the pairwise sequence divergence estimated as $0.0032 - 0.0038$ (Tsai et al. 2008), the inbreeding coefficient $F = 0.98$ (Tsai et al. 2008), and the genome-wide per-base pair point mutation rate μ is around 3.3×10^{-10} (Lynch et al. 2008) to 5×10^{-10} (Lang and Murray 2008). This yields $N_e \approx 3 \times 10^6 - 6 \times 10^6$. We use $N_e = 5 \times 10^6$ in our figures. We also use an upper bound of 1% on the frequency of $[PSI^+]$ within wild prf^+ populations of a variety of Saccharomyces species (Nakayashiki et al. 2005; see below).

MODEL AND RESULTS

$[PSI^+]$ frequency in the wild: $[PSI^+]$ is rarely found at high frequency within natural populations (Chernoff et al. 2000; Nakayashiki et al. 2005). Nevertheless, in the presence of a second prion $[PIN^+]$ (Derkatch et al. 1997), $[PSI^+]$ forms de novo at a rate of around $m = 10^{-7}$–10^{-5} per generation (Chernoff et al. 1999; Kolotova-Levine et al. pers. comm.; Lund and
Cox 1981). Although it may be subject to both negative selection and reversion to \(\psi \overline{s} i \), \(\Psi S_i^+ \) reappears every generation and is expected to spread by sex. Its frequency within a \(\PIN^+ \) population may therefore be low, but will not be zero.

Prion presence was assessed by the visible presence of GFP-fusion protein aggregates, and eleven out of 70 natural populations of various Saccharomyces species were positive for \(\PIN^+ \) and competent to form \(\PSI^+ \) following Sup35 overexpression (NaKayashiKi et al. 2005). Although none were comprised primarily of \(\PSI^+ \) cells, four of these eleven \(\PIN^+ \) populations had a low but detectable frequency (<5%) of cells positive for Sup35 aggregates almost immediately after transformation with a Sup35-GFP fusion product (NaKayashiKi et al. 2005). This may (Zhou et al. 2001) or may not (Salnikova et al. 2005) be a reliable indicator of the pre-existing presence of \(\PSI^+ \). What is clear is that this sets an upper bound on the \(\PSI^+ \) frequency within these populations. Taking into account likely limits of detection in the other 7 \(\PIN^+ \) populations, we estimate a maximum frequency of 1% of \(\PSI^+ \) in \(\PIN^+ \) populations, and use this value of \(\varepsilon = 0.01 \) to illustrate our calculations. To determine the sensitivity of our calculations to \(\PSI^+ \) false positives, we also consider the implications of a frequency of 0.01%.

Selection against \(\PSI^+ \): Consider a \(\PIN^+ \) population that can form \(\PSI^+ \). We assume the population is fixed for \(\PIN^+ \) together with any other modifiers necessary for \(\PSI^+ \) formation. Fixation is consistent with the finding of NaKayashiKi et al. (2005) that \(\PIN^+ \) was either completely absent or strongly present for any given population.
We model discrete generations of reproduction followed by selection. We approximate the haploid life stage as instantaneous, so that a sexual generation takes no longer than an asexual one. We assume that $[\text{PSI}^+]$ loss occurs with probability m' during cell division when a daughter cell fails to inherit any prion aggregates. We assume *de novo* $[\text{PSI}^+]$ appearance occurs with probability m during cell growth in diploids. These assumptions mean that $[\text{PSI}^+]$ loss can be followed by $[\text{PSI}^+]$ gain within a single generation, but not vice versa.

Let z be the frequency of $[\text{PSI}^+]$ individuals. In each generation, yeast undergo meiosis with probability p_{sex}, otherwise they reproduce clonally. Following meiosis, yeast reproduction may involve within-tetrad fertilization with probability p_{auto}, random mating with probability p_{amphi}, or haplo-selfing (haploid mother-daughter mating enabled by mating-type switching) with probability p_{haplo}. Note that $p_{\text{auto}} + p_{\text{amphi}} + p_{\text{haplo}} = 1$. Taking into account reproductive strategy and spontaneous $[\text{PSI}^+]$ appearance and disappearance as described above, the frequency of $[\text{PSI}^+]$ after reproduction (z') is

\[
\begin{align*}
z' = (1 - p_{\text{sex}}) & \left(z(1-m'+m'm) + (1-z)m \right) + \\
p_{\text{auto}} & \left(z(1-m'^2+m'^2m) + (1-z)m \right) + \\
p_{\text{sex}} & \left[p_{\text{amphi}} \left(z^2(1-m'^2+m'^2m) + 2z(1-z)(1-m'+m'm) + (1-z)^2 m \right) + \\
& + p_{\text{haplo}} \left(z(1-m'+m'm) + (1-z)m \right) \right]
\end{align*}
\]

Equation 1 captures the increase in $[\text{PSI}^+]$ frequency during sex, as well as its appearance and disappearance by epimutation. Note that the rate of outcrossing $p_{\text{sex}}p_{\text{amphi}}$ is the most important
sexual parameter in Equation 1, with the other forms of sex having more subtle quantitative effects on the effective epimutation rates.

If the relative fitness of \([PSI^+]\) individuals is \((1-s_{PSI+})\), then after selection the frequency of \([PSI^+]\) \((z^\prime)\) is

\[
z^\prime = \frac{z^\prime (1-s_{PSI+})}{z^\prime (1-s_{PSI+}) + (1-z^\prime)}. \tag{2}
\]

The equilibrium frequency of \([PSI^+]\) \((\hat{z})\), satisfies \(z^\prime - z = 0\). Given an observed equilibrium frequency of \([PSI^+]\) \(\hat{z} = \varepsilon\), we estimate \(s_{PSI+}\) as

\[
s_{PSI+} = \frac{m(1-\varepsilon + \varepsilon m') + \varepsilon p_{sex}(1-m)(1-m')(m'p_{auto} + (1-\varepsilon + \varepsilon m')p_{amphi}) - \varepsilon m'}{(1-\varepsilon)(m + \varepsilon (1-m)(1-m') + \varepsilon p_{sex}(1-m)(1-m')(m'p_{auto} + (1-\varepsilon + \varepsilon m')p_{amphi})} \tag{3}
\]

Substituting in the estimates \(m=10^{-7}-10^{-5}\) (CHERNOFF et al. 1999; KOLOTEVA-LEVINE et al. pers. comm.; LUND and COX 1981), \(p_{sex} = 0.001\), \(p_{auto} = 0.94\), \(p_{amphi} = 0.01\) and \(p_{haplo} = 0.05\) (TSAI et al. 2008), we find that the strength of selection against \([PSI^+]\) is significant (i.e., \(s_{PSI+}N_e > 1\)) so long as \(m' < m/\varepsilon\) (Figure 2). If the spontaneous rate of \([PSI^+]\) loss \(m'\) is larger, back epimutation alone is sufficient to keep \([PSI^+]\) at low levels, and we do not need to invoke selection against \([PSI^+]\) in order to explain why sex does not cause \([PSI^+]\) to rise to high frequency.

Selection against prion-forming modifiers: We determine the effective strength of indirect selection against \(prf^+\) \((s_{prf+})\) by comparing the long-term geometric growth rates of populations fixed for one or other allele. Assume that \([psi]\) individuals have \(R\) offspring on average while
[\textit{PSI}^+] individuals have \(R(1-s_{\text{PSI}^+}) \). In the population fixed for \textit{prf}^+, let \(Y_1(t) \) and \(Y_2(t) \) be the numbers of \[PSI^+\] and \[psi\] individuals respectively. In the \textit{prf}^+ population, \[PSI^+\] is present at the equilibrium frequency \(\hat{\epsilon} = \lim_{t\to\infty} Y_1(t)(Y_1(t) + Y_2(t)) \). In the \textit{prf}^0 population, \[PSI^+\] is absent.

The population dynamics of a \textit{prf}^+ population, given mutation, selection and the reproductive modes described in the previous section, now follow

\[
\begin{pmatrix}
Y_1(t+1) \\
Y_2(t+1)
\end{pmatrix} = R \begin{pmatrix}
A & m \\
B & (1-m)
\end{pmatrix} \begin{pmatrix}
Y_1(t) \\
Y_2(t)
\end{pmatrix}.
\]

The long-term \textit{prf}^+ population growth rate is determined by the leading eigenvalue \(\lambda_1 \) of (4), while the long term growth rate of \textit{prf}^0 populations is \(R \). The strength of selection against \textit{prf}^+ is

\[
s_{\text{prf}^+} = 1 - \lambda_1 \]

\[
s_{\text{prf}^+} = 1 - \frac{1}{2} \left(1 + A - m + \sqrt{1 - 2A + A^2 - 2m + 2Am + 4Bm + m^2}\right)
\]

The strength of selection against \textit{prf}^+ is negligible (i.e., \(s_{\text{prf}^+}N_e << 1 \)) for \(m' > m/\epsilon \), and equal to the rate of \[PSI^+\] appearance \(m \) for \(m' < m/(10\epsilon) \) (Figure 3), using the same parameters as before. The latter selection strength indicates that \[PSI^+\] lineages are effectively “doomed” from the moment of their appearance.
For selection of any kind to be effective, we need $sN_e > 1$. The disease hypothesis requires selection on $[PSI^+]$ to be effective while selection on prf^+ is not. When $mN_e > 1$, the small grey region in Figure 4 indicates values of m and m' where the conditions for the disease hypothesis are met. Outside this narrow grey region, either both $[PSI^+]$ and prf^+ are deleterious, or both are nearly neutral. Pending more precise experimental estimates of ε, m and m', the condition $m' > m'(10\varepsilon)$ seems unlikely to be satisfied. This implies that if $mN_e > 1$, then both $[PSI^+]$ and prf^+ are likely deleterious,

Our analysis does, however, support the disease hypothesis if $mN_e < 1$. N_e is currently estimated as $\approx 3 \times 10^6 - 6 \times 10^6$ in the wild (see calculation in Introduction above) and m as $10^{-7} - 10^{-5}$ in the lab (Chernoff et al. 1999; Koloteva-Levine et al. pers. comm.; Lund and Cox 1981; True pers. comm.). This yields $mN_e \approx 0.3 - 60$, a range that is not sufficiently precise either to accept or to reject the disease hypothesis. Note, however, that conversion assays may return only a subset of particularly strong and stable $[PSI^+]$ colonies (True pers. comm.), suggesting that the true value of m may be higher: if this result is borne out, the disease hypothesis could be rejected in favor of relatively weak but still appreciable selection against prf^+. On the other hand, previous conversion assays have not accounted for the possibility that multiple colonies may arise from the same conversion event: such a correction can be made by using a fluctuation test based on fitting a Luria-Delbrück distribution, and may lead to a lower estimate of m. Accurate measurement of m at the lower end of the current parameter range would support the disease hypothesis, in which indirect selection is too weak to eliminate the ability to form the generally deleterious $[PSI^+]$ prion.
DISCUSSION

Our calculations imply that \([PSI^+]\) is usually deleterious if \(m' < m / \varepsilon\), and we infer that effective selection also extends to modifiers of \([PSI^+]\) if both \(m' < m / (10 \varepsilon)\) and \(mN_e > 1\). Spontaneous conversion from \([psi]\) to \([PSI^+]\) has been estimated in lab strains to have a rate of around \(10^{-7} - 10^{-5}\) (Chernoff et al. 1999; Koloteva-Levine et al. pers. comm.; Lund and Cox 1981), and a reverse rate \(m' < 2 \times 10^{-4}\) (Tank et al. 2007). Pending more precise measurements, it seems likely that the condition \(m' < m / (10 \varepsilon)\) is easily met. This argument is even stronger if not all the Sup35 aggregates observed by Nakayashiki et al. (2005) correspond to \([PSI^+]\) and \(\varepsilon\) is therefore even lower than 0.01. If \(mN_e > 1\), we can infer that selection against both \([PSI^+]\) and its modifiers is effective. If instead \(mN_e < 1\), then this would support the “disease” hypothesis in which indirect selection is too weak to eliminate a propensity to form the generally deleterious element \([PSI^+]\).

Improved measurement of the parameters, particularly the product \(mN_e\), is critical to understanding selective forces on \([PSI^+]\). Inference ultimately depends on the range of parameters in effect over long periods of yeast evolution, so extrapolation of population genetic measurements of \(N_e\) and of sexual frequencies in \(S. paradoxus\) to cover the history a clade of closely related species is not unreasonable. However, it is hard to rule out the important possibility that lab strains have substantially different epimutation rates \(m\) and \(m'\) than wild species, especially when those lab strains have been extensively used to study \([PSI^+]\). Our population genetic model is very general in its treatment of well-characterized yeast and \([PSI^+]\) biology. Correct inference from the model ultimately depends on accurate parameter estimates.
Note that the rate of $[PSI^+]$ appearance increases in response to stress (Tyedmers et al. 2008). Negative selection against $[PSI^+]$-forming ability, as calculated here, depends largely on the value of mN_e under normal conditions, while only the adaptive potential of $[PSI^+]$-forming ability increases with m under stress.

If it turns out that $mN_e > 1$, and both $[PSI^+]$ and prf$^+$ are therefore inferred to be significantly deleterious under most conditions, then something else must be acting to maintain prion-forming ability over long periods of yeast evolution. Insurmountable pleiotropic constraint for each of the many possible modifiers, each enduring over long periods of evolutionary time, seems an unlikely explanation. Indeed, the data directly show that prion-forming ability can be dispensable in wild populations on short evolutionary timescales (Resende et al. 2003). Instead of multiple insurmountable constraints at each possible modifier, $[PSI^+]$ itself could have a single, mechanistic inseparable adaptive pleiotropic function that counters its other deleterious effects. On this view, long periods of relatively weak selection against $[PSI^+]$ and its modifiers would be balanced by short, intense periods of positive selection for them (King and Masel 2007; Masel and Bergman 2003; Masel et al. 2007). During the long periods of selection against $[PSI^+]$, the rarity of outbreeding, combined with weak negative selection, explain why meiosis does not drive $[PSI^+]$ to high frequency. $[PSI^+]$ is predicted to occur at high frequency during occasional episodes of $[PSI^+]$-mediated adaptation. These episodes are likely to be both rare and brief, however, and so theoretical considerations suggest that it is not surprising that none were seen in a sample of 70 natural populations (Masel et al. 2007).
Acknowledgements: We thank Heather True for helpful comments on the manuscript. Work was supported by the BIO5 Institute at the University of Arizona and National Institutes of Health grant R01 GM076041. J.M. is a Pew Scholar in the Biomedical Sciences and an Alfred P. Sloan Research Fellow.

LITERATURE CITED

CHERNOFF, Y. O., A. P. GALKIN, E. LEWITIN, T. A. CHERNOVA, G. P. NEWMAN et al., 2000

GRISWOLD, C., and J. MASSEL, in prep. Complex adaptations drive the evolution of the capacitor [PSI'-], even with realistic rates of yeast sex.

KOLOTEVA-LEVINE, N., G. H. MERRIT and M. F. TUITE, pers. comm.

LANG, G. I., and A. W. MURRAY, 2008 Estimating the Per-Base-Pair Mutation Rate in the Yeast *Saccharomyces cerevisiae*. Genetics 178: 67-82.

STANSFIELD, I., K. M. JONES, V. V. KUSHNIROV, A. R. DAGKESAMANSKAYA, A. I. POZNYAKOVSKI et al., 1995 The products of the sup45 (eRF1) and sup35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 14: 4365-4373.

ZHOURAVLEVA, G., L. FROLOVA, X. LEGOFF, R. LEGUELLEC, S. INGE-VECHTOMOV et al., 1995 Termination of translation in eukaryotes is governed by two interacting polypeptide-chain release factors, eRF1 and eRF3. EMBO J. 14: 4065-4072.

Figure Legends

Figure 1: Logical breakdown of all possible scenarios of direct and indirect selection on [PSI+], together with an assessment of their plausibility in explaining the data. [PSI+] must be either
adaptive, neutral or deleterious under the majority of normal conditions found in the wild, as shown by the three direct selection possibilities on the left. If direct negative selection against \([PSI^+]\) is appreciable, the next question is whether indirect selection against modifiers of \([PSI^+]\) is also appreciable. Appreciable selection is equivalent to the standard population genetics criterion \(sN_e > 1\). Conditions for appreciable selection being compatible with data on \([PSI^+]\) rarity are derived in the paper in terms of the spontaneous rates of \([PSI^+]\) appearance \(m\) and disappearance \(m'\), as well as the frequency \(\varepsilon\) of \([PSI^+]\) within a \([PIN^+]\) population and the effective population size in the wild \(N_e\). The conditions under which each scenario is compatible with data are summarized along each branch.

Figure 2: Strength of selection against \([PSI^+]\) versus the rate of spontaneous \([PSI^+]\) loss \(m'\): (A) \(\varepsilon = 0.0001\) and (B) \(\varepsilon = 0.01\). The figure assumes Tsai et al. (2008) estimates of the probabilities of sex, automixis, amphimixis, and haplo-selfing. Above the dotted line the strength of selection is greater than \(1/N_e\), where \(N_e=5 \times 10^6\). The vertical dotted line corresponds to the Tank et al.’s (2007) upper limit on \(m'\) (\(m'\) is constrained to fall to the left of this line).

Figure 3: Strength of selection against the modifier allele \(prf^+\) versus the rate of spontaneous \([PSI^+]\) loss \(m'\). The dotted lines and conditions are the same as in figure 2.

Figure 4: The solid and dashed curves give the boundaries between nearly neutral (upper) and deleterious (lower) parameter regions for \([PSI^+]\) and \(prf^+\) respectively, based on \(N_e=5 \times 10^6\). \([PSI^+]\) is deleterious while its modifier \(prf^+\) is nearly neutral only in the very restricted gray
region in the middle for both $\varepsilon = 0.0001$ and $\varepsilon = 0.01$. The horizontal dotted line corresponds to TANK et al.'s (2007) upper limit on m' (m' is constrained to fall below this line).
Fig. 1

[PSI'] usually deleterious: requires $m' > m/\epsilon$ (likely) to explain why [PSI'] is rare despite spread by sex

[PSI'] usually neutral

[PSI'] usually adaptive

Implausible since [PSI'] is rare

Significant indirect selection against [PSI'] modifiers if $mN_e > 1$ (supported by current estimates)

Why does the ability to form [PSI'] persist despite selection against it?

$\frac{m}{10\epsilon} < m' < \frac{m}{\epsilon}$

(narrow and unlikely range)

OR $mN_e < 1$

[PSI'] is a "disease" that indirect natural selection is too weak to eliminate

Rare [PSI']-mediated benefits

Insurmountable pleiotropic constraint (unlikely; RESENDE et al. (2003))

[PSI'] is a rare [PSI']-mediated benefits

[PSI'] is a "disease" that indirect natural selection is too weak to eliminate
Fig. 2
Fig. 3
Fig. 4

\[\varepsilon = 0.0001 \]

\[\varepsilon = 0.01 \]

Nearly-neutral region

Deleterious region