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ABSTRACT

Despite its importance to agriculture, the genetic basis of heterosis is still not well

understood. The main competing hypotheses include dominance, overdominance and

epistasis. NC Design III is an experimental design that has been used for estimating

the average degree of dominance of QTL and also for studying heterosis. In this

study, we first develop a multiple interval mapping model (MIM) for Design III that

provides a platform to estimate the number, genomic positions, augmented additive

and dominance effects, and epistatic interactions of QTL. The model can be used for

parents with any generation of selfing. We apply the method to two data sets, one

for maize and one for rice. Our results show that heterosis in maize is mainly due to

dominant gene action, although overdominance of individual QTL could not completely

be ruled out due to the mapping resolution and limitations of NC Design III. For rice,

the estimated QTL dominant effects could not explain the observed heterosis. There

is evidence that additive by additive epistatic effects of QTL could be the main cause

for the heterosis in rice. The difference in the genetic basis of heterosis seems to be

related to open or self pollination of the two species. The MIM model for NC Design

III is implemented in Windows QTL Cartographer, a freely distributed software.
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Heterosis (or hybrid vigor) is a phenomenon in which an F1 hybrid has superior

performance over its parents. It has been observed in many plant and animal species.

The utilization of heterosis is responsible for the commercial success of plant breeding

in many species and leads to the widespread use of hybrids in several crops and horti-

cultural species. In maize–the most notable example, heterosis is the primary reason

for the success of commercial industry (Stuber et al. 1992). In China, hybrid rice

varieties showed about 20% yield advantage over inbred varieties (Yuan 1992) and

made a tremendous impact on rice production around the world.

Despite its importance, the genetic basis of heterosis has been debated for almost

one century and is still not explained satisfactorily. The dominance hypothesis (Dav-

enport 1908; Bruce 1910; Keeble and Pellew 1910; Jones 1917) suggests

that the alleles from one parent are dominant over the alleles from the other parent, and

due to the cancelation of deleterious effects at multiple loci the F1 hybrid is superior

to the parents. The overdominance hypothesis (Shull 1908; East 1908) assumes

that the loci with heterozygous genotypes are superior to both homozygous parents.

Epistasis is also frequently mentioned as a possible cause of heterosis.

NC Design III, or Design III (Comstock and Robinson 1948, 1952), is an ex-

perimental design for estimating genetic variances and the average degree of dominance

for quantitative trait loci (QTL) and has being used to study heterosis. Random F2

individuals are taken from a population originated by crossing two inbred lines. These

individuals are backcrossed to both parental lines and a quantitative trait is measured

in the progeny. An analysis of variance of the progenies gives estimates of the average

degree of dominance, which can be used to infer the genetic basis of quantitative traits

and study heterosis. Cockerham and Zeng (1996) extended the analysis of Design

III to include linkage, two-locus epistasis and also the use of F3 parents. Considering

that the F2 (or F3) parents could be genotyped with molecular markers, they presented

a statistical methodology based on four orthogonal contrasts for single marker analysis

of Design III allowing the study of the effects of QTL on both backcrosses simultane-

ously. Melchinger et al. (2007) studied the role of epistasis on the manifestation

of heterosis in Design III populations. They defined new types of heterotic genetic
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effects, the augmented additive and dominance effects of QTL, since the main effects

also contain epistasis that could not be removed or estimated separately.

Stuber et al. used the Design III with marker loci for the understanding of ge-

netic basis of heterosis in maize. They conducted separate interval mapping analyses

(Lander and Botstein 1989) in each backcross and concluded that overdominance

(or pseudo-overdominance) is the major cause of heterosis. However, a combined anal-

ysis of both backcrosses showed that dominance is probably more likely to be a major

cause of heterosis (Cockerham and Zeng 1996), although overdominance and epis-

tasis were also present. In rice, Design III using F7 parents was used by Xiao et al.

(1995) and the data was analysed in the same way of Stuber et al. (1992). They

concluded that dominance is the major genetic cause of heterosis in this species. Later,

Z.-B. Zeng (unpublished) analyzed this data set using the method of Cockerham

and Zeng and concluded that epistasis is more likely to be a major cause of heterosis

in rice.

The statistical analysis proposed by Cockerham and Zeng has several advan-

tages. It allows estimates of both additive and dominance effects and has two contrasts

for testing the presence of epistasis. However, it is based on single marker analysis and

was not developed for QTL mapping. The method has several limitations: the con-

trasts are biased due to the recombination fraction between marker and QTL; it is not

possible to separate the additive and dominance effects of several QTL linked to the

same marker; the contrasts for epistasis only detect a small portion of the interactions

between QTL that are linked to the same marker; it has low statistical power.

In this paper, we first extend the method of Cockerham and Zeng in the frame-

work of multiple interval mapping, or MIM (Kao and Zeng 1997; Kao et al. 1999),

which provides a sound basis for QTL mapping. Our MIM model for Design III com-

bines information from multiple markers and takes epistatic effects into account. By

analyzing both backcrosses simultaneously, it provides estimates of augmented addi-

tive and dominance effects. The model can be used for parents with any number of

generations in selfing. Then, we apply the model to the data of Stuber et al. and

Xiao et al. to study the genetic basis of yield heterosis in maize and rice.
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DESIGN III WITH MARKER LOCI

Before presenting the new model for Design III, we first outline some important

results for Design III from Comstock and Robinson (1952) and Cockerham and

Zeng (1996), adapting the notation when necessary. The genetic effects of QTL Qr

with genotypes QrQr, Qrqr and qrqr are defined as ar − dr/2, dr/2 and −ar − dr/2,

respectively (using the F2 model, see Zeng et al. 2005), where ar and dr are additive

and dominance effects. The two-way epistatic interactions between QTL Qr and Qs

are denoted as aars for additive × additive (ar × as), adrs for additive × dominance

(ar×ds), dars for dominance × additive (dr×as) and ddrs for dominance × dominance

(dr × ds) interaction.

Based on an analysis of variance for progenies of F2 parents in the backcrosses

in Design III, Comstock and Robinson developed a theory for estimating genetic

variances among F2 parents (σ2
p) and due to interactions of F2 and inbred parents

(σ2
pj). They showed that, under the assumption of no epistasis for m independent loci,

the genetic constitution of these variances are σ2
p =

∑m
r=1 a2

r/8 and σ2
pj =

∑m
r=1 d2

r/4.

Cockerham and Zeng expanded these ideas to include F3 parents, showing that

in this case σ2
p = 3

∑m
r=1 a2

r/16 and σ2
pj = 3

∑m
r=1 d2

r/8. For F2 (and F3) parents, the

average degree of dominance for a quantitative trait can be inferred through the ratio

D̄ =
√

σ2
pj/(2σ

2
p). When two-locus epistasis is considered, the additive effects include

ad and da, and the dominance effects include aa, regardless of linkage. The variances

are also affected: σ2
p contains a and aa + dd; σ2

pj contains d and ad + da. However, the

coefficients of epistatic effects on the variances are usually small.

Considering that information from molecular markers could be available, Cocker-

ham and Zeng presented a statistical method to analyze Design III in the framework

of single marker analysis. For a single marker locus M with genotypes MM , Mm

and mm for each parent (F2 or F3), four orthogonal contrasts Ck (k = 1, ..., 4) can be

used for testing linear functions of effects of QTL. The four contrasts explore the two

degrees of freedom for differences among the means of marker genotypes (C1 and C3)

and the two degrees of freedom for interaction of the marker genotypes with the inbred

lines (C2 and C4).
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In order to obtain a multiple interval mapping (MIM) model for Design III, we

first extend the contrasts of Cockerham and Zeng still in the framework of marker

analysis (not interval mapping), but considering simultaneously two marker loci (M1

and M2) observed for F2 parents, and two QTL (Q1 and Q2). Then, we generalize the

results for any number of QTL in any genomic position and develop a MIM model for

Design III.

Assume that the loci are linked with the order Q1M1M2 Q2. We denote ρ1, ρ, ρ2

and ρ12 as recombination fractions for the intervals between Q1 and M1, M1 and M2,

M2 and Q2, and Q1 and Q2, respectively. We calculated the relative frequencies of

QTL genotypes given the marker genotype in the F2 parent for two loci (Table 1), and

then derived the genotypic means of the progenies in both backcrosses (Appendix A).

These means were denoted as Hj
g , where j is inbred line (j = 2, 1) and g is genotype

of the two markers in the F2 parent.

It is possible to define 17 orthogonal contrasts for testing differences among Hj
g

means (Appendix B). These contrasts correspond to an orthogonal decomposition of

the degrees of freedom available when two loci and two backcrosses are considered.

There are two degrees of freedom for differences for marker genotypes of M1, two for

marker genotypes of M2, four for the interaction M1 ×M2, two for the interaction of

marker M1 with the inbred lines, two for the interaction of M2 with the inbred lines,

four for the interaction M1 ×M2 with inbred lines, and one for the difference between

inbred lines. Using the genotypic means of the progenies and following the definitions

of genetic effects based on the F2 genetic model according (Cockerham and Zeng

1996; Zeng et al. 2005), we derived the genetic expectation of these 17 contrasts

(Appendix B).

There are seven QTL genotypes present in a population originated from Design III

when two QTL are considered. It is important to notice that some QTL genotypes

do not occur in the backcross populations. For example, marker genotypes in the F2

parents include M1m2/M1m2, but there is no QTL genotype Q1q2/Q1q2 in the backcross

populations. Also not present is q1Q2/q1Q2. Hence, for a pair of QTL, it is possible to

define only six contrasts for the differences between genotypes, even though there are

7



eight parameters to be estimated (a1, a2, d1, d2, aa, ad, da and dd). As a consequence,

it is not possible to estimate all genetic parameters separately. Also, some of the 17

contrasts do not provide useful information for the genetic effects, because the genetic

expectations are based on the segregating QTL in the backcross populations, not on

the F2 markers genotypes. For example, contrasts c6, c7, c15 and c16 have genetic

expectations equal to zero. Contrasts c2 and c4 have the same expectation, which are

−1/2 of c8. The same happens to c11, c13 and c17.

Taking these into account, a new set of six orthogonal contrasts that provide useful

information about the genetic parameters was defined (Table 3). Let C̃1 = c1/6,

C̃2 = c10/6, C̃3 = c3/6, C̃4 = c12/6, C̃5 = c5/2+(c2 + c4− c8)/3 and C̃6 = c14/2+(c11 +

c13 − c17)/3. The genetic expectations of these new contrasts are

E(C̃1) = (1− 2ρ1)a1 − 1
2
(1− 2ρ1)da

E(C̃2) = (1− 2ρ1)d1 − 1
2
(1− 2ρ1)aa

E(C̃3) = (1− 2ρ2)a2 − 1
2
(1− 2ρ2)ad

E(C̃4) = (1− 2ρ2)d2 − 1
2
(1− 2ρ2)aa

E(C̃5) =
[
(−16ρ + 8)ρ12 + 6ρ2 + 2ρ− 1

]
(1− 2ρ1)(1− 2ρ2)

3(1− 2ρ + 2ρ2)
(aa + dd)

E(C̃6) =
[
(−16ρ + 8)ρ12 + 6ρ2 + 2ρ− 1

]
(1− 2ρ1)(1− 2ρ2)

3(1− 2ρ + 2ρ2)
(ad + da)

Contrasts C̃1 to C̃4 are for additive and dominance effects and came directly from

contrasts c1, c10, c3 and c12, respectively. They can be viewed as contrasts between

marginal means of genotypic classes. Because we do not have all QTL genotypes, it

is not possible in this case to define contrasts to test only the main effects (additive

and dominance) without some bias due to epistatic effects. However, by considering

contrasts for two QTL simultaneously, it is possible to test additive and dominance

effects (plus epistatic effects) even if the two QTL are linked.

For epistasis, it is also not possible to separate aa from dd, and ad from da. To test

aa+ dd, the contrast c5/2 could be used. It is important to notice that c5 does not use

the means from genotypes that are heterozygous for at least one marker loci. Thus,

by using c5/2, means H2
11 and H1

11 will not be used in the analysis. Also, contrasts

c2, c4 and c8, that could be used for estimating aa + dd, have the expectation zero if
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the markers are unlinked (ρ = 1/2), which is an obvious disadvantage. Therefore, we

suggest to use a linear combination of contrasts (defined as C̃5) that uses all Hj
g means.

Note that if ρ = 1/2, E(C̃5) = (1− 2ρ1)(1− 2ρ2)(aa+dd). The same argument applies

to C̃6, designed to test ad + da. Using ukgj to denote the coefficients of contrasts in

Table 3, the kth contrast is C̃k =
∑

g

∑
j ukgjH

j
g . The six new contrasts are orthogonal

because
∑

g

∑
j ukgjuk′gj = 0 for any pair C̃k and C̃k′ (k 6= k′).

The bias in the expectations of contrasts due to ρ1 and ρ2 can be removed by

using multiple interval mapping (next section). In MIM, we search and estimate the

positions of QTL. Thus it is possible to test contrasts between putative QTL, not

markers. This means that potentially ρ1 = 0 and ρ2 = 0, thus E(C̃1) = a1 − 1
2
da,

E(C̃2) = d1 − 1
2
aa, E(C̃3) = a2 − 1

2
ad and E(C̃4) = d2 − 1

2
aa. For epistasis, E(C̃5) =

− (1−10ρ+10ρ2)
3(1−2ρ+2ρ2)

(aa + dd) and E(C̃6) = − (1−10ρ+10ρ2)
3(1−2ρ+2ρ2)

(ad + da). For unlinked QTL with

ρ = 1/2, E(C̃5) = (aa + dd) and E(C̃6) = (ad + da). This shows that given a correct

identification of QTL model, the statistical analysis in the framework of MIM can

minimize the bias in estimation and increase statistical power. Also, it is possible to

test epistasis between any two QTL, not just QTL that are linked to a marker as in

the approach of Cockerham and Zeng (1995).

In a study of the role of epistasis in the manifestation of heterosis, Melchinger

et al. (2007) defined a∗r =
[
ar − 1

2

∑
r 6=s dars

]
as an augmented additive effect of QTL

r, and d∗r =
[
dr − 1

2

∑
r 6=s aars

]
as an augmented dominance effect. These augmented

effects are exactly the ones contained in contrasts C̃1 to C̃4, if we generalize the expres-

sions to multiple QTL. Therefore, in a statistical analysis by MIM, we estimate and

test a∗r and d∗r as well as epistasis effects.

MIM MODEL FOR DESIGN III

The six new contrasts for two markers (Table 1) were used for the development of a

MIM model for Design III. Multiple interval mapping (Kao and Zeng 1997; Kao et

al. 1999; Zeng et al. 1999) is a procedure for mapping multiple QTL simultaneously

with a model fitted with main and epistatic effects of multiple QTL. Combined with

a search procedure, it tests and estimates the positions, effects and interactions of

multiple QTL.
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Statistical Model

The MIM model for Design III is defined by generalizing the six contrasts for any

number of putative QTL and level of inbreeding of the parents:

yij = µj +
m∑

r=1

αrx
∗
ijr +

m∑

r=1

βrz
∗
ijr +

t1∑
r<s

γrsw
∗
ijrs +

t2∑
r<s

δrso
∗
ijrs + εij (1)

where yij is the phenotypic mean of the progenies of parent i (i = 1, ..., n) on backcross

with inbred line j (j = 1, 2). The parameters are the mean of backcross j (µj), the

regression coefficients for augmented additive effect (a∗) and dominance (d∗) effect of

QTL r (αr and βr, respectively), the regression coefficients for epistatic interactions

aa + dd and ad + da between QTL r and s (γrs and δrs, respectively). The residuals

εij are assumed to be N(0, σ2
j ). The variables x∗ijr, z∗ijr, w∗

ijrs and o∗ijrs denote QTL

genotypes corresponding to the main and epistatic effects specified by the six contrasts.

They were coded as:

x∗ijr =





1 if the genotype of Qr is QrQr

0 if the genotype of Qr is Qrqr for j = 1, 2;

−1 if the genotype of Qr is qrqr

z∗ijr =





x∗ijr if j = 1

−x∗ijr if j = 2

w∗
ijrs =





5/6 if the QTL genotype is QrQrQsQs

1/6 if the QTL genotype is QrQrQsqs

−1/6 if the QTL genotype is QrQrqsqs

1/6 if the QTL genotype is QrqrQsQs

−4/6 if the QTL genotype is QrqrQsqs for j = 1, 2;

1/6 if the QTL genotype is Qrqrqsqs

−1/6 if the QTL genotype is qrqrQsQs

1/6 if the QTL genotype is qrqrQsqs

5/6 if the QTL genotype is qrqrqsqs

o∗ijrs =





w∗
ijrs if j = 1

−w∗
ijrs if j = 2
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The first two summations are over the m QTL currently fitted in the model, and the

last ones are for significant t1 and t2 two-way epistatic interactions. The coefficients

for the coded variables can be seen as a generalization of the orthogonal contrasts

developed for two markers with some adaptations.

For Design III from recombinant inbred lines (after continuing selfing from F2 for

a number of generations), the model can be further simplified. As a consequence of

selfing, we can notice in Table 2 that the proportion of homozygous genotypes for at

least one locus are becoming smaller in relation to the others. So, if the parents used in

Design III have several generations of selfing, the contrasts and the MIM model should

be adapted to this situation. Details are presented in Appendix C.

Likelihood and Parameter Estimation

As pointed out by Kao et al. (1999), MIM models contain missing data, since

the QTL genotypes are not observed. Therefore, the likelihood function for the model,

assuming that the yij’s are independent across observations and backcrosses, is

L(E, µj, σ
2
j |Yj,X) =

n∏

i=1




3m∑

g=1

pig

2∏

j=1

φ
(
yij|µj + DjgE, σ2

j

)



where Yj is a vector of phenotypic data for backcross j, X is a matrix with molec-

ular data, g indicates the 3m multiple-QTL genotypes, pig is the probability of each

multilocus genotype conditional on marker data, φ(.) is a standard normal probability

density function, E is a column vector with QTL parameters (α’s, β’s, γ’s and δ’s),

Djg is a row vector that specifies the configuration of x∗’s, z∗’s, w∗’s and o∗’s associated

with the parameters on E in each backcross (following the notation of Kao and Zeng,

1997).

In order to obtain the MLE’s, we adapted the general formulas of Kao and Zeng

(1997) to the MIM model for Design III, based on the EM (expectation-maximization)

algorithm (Dempster et al. 1977). The E and M steps are iterated until some con-

vergence criteria is met and the converged values are the MLE’s. Details are presented

in Appendix D.

After the final model is selected, it is necessary to convert the estimates of the

regression coefficients to the contrasts, which contain the desired genetic effects. These
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can be easily done based on the genotypic expectations of the coefficients. For any

type of selfing parents (F2 to F∞), for estimating augmented additive and dominance

effects we simply multiply α̂r and β̂r by 2, since E(α̂r) = 1
2

[
ar − 1

2

∑
r 6=s dars

]
= 1

2
a∗r

and E(β̂r) = 1
2

[
dr − 1

2

∑
r 6=s aars

]
= 1

2
d∗r. For epistasis between unlinked QTL, for F2

(or F3, etc) parents E(γ̂rs) = 9
31

(aa + dd) and E(δ̂rs) = 9
31

(ad + da). For homozygous

parents (F∞), the expectations are E(γ̂rs) = 1
2
(aa + dd) and E(δ̂rs) = 1

2
(ad + da).

Melchinger et al. (2007) pointed out that a∗r and d∗r are the net contributions of

QTL r to parental difference and midparent heterosis, respectively, considering simulta-

neously main effects and epistatic interactions with the genetic background. Therefore,

by providing estimates of a∗r, d∗r and epistasis, the MIM model for Design III can be

very useful for studying the genetic basis of heterosis.

Strategy for QTL Mapping

The usual procedures for model selection in MIM can be used here and were dis-

cussed in details by Kao et al. (1997) and Zeng et al. (1999). Briefly, forward,

backward and stepwise procedures can be applied, combined with selection criteria,

such as Akaike Information Criteria (AIC, Akaike 1974), Bayesian Information Cri-

terion (BIC, Schwarz 1978) or likelihood ratio test. In stepwise selection, for a model

with m QTL, the genome is scanned to find the best position of an (m + 1)th QTL.

Then, all the QTL in the model are tested, one by one, to check if one of them should

be removed. The process is repeated until no QTL was added or removed, and then

the positions are refined. After finding the final model for main effects, the procedure

can be repeated to identify significant epistatic effects.

ANALYSIS OF A MAIZE DATA SET

Experiment Description

We applied our model to the maize data of Stuber et al. (1992), where detailed

information about the experiment can be found. Briefly, starting from two inbred lines,

Mo17 (L1) and B73 (L2), 264 F3 lines were created and backcrossed to the two inbred

lines. The backcross progenies of each of the F3 parents were allocated in 22 sets of 12

parents and then evaluated in six locations or environments without further replication.

Seven traits were measured on the backcross progenies, but we just use the adjusted
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means across locations for grain yield, calculated using the Type III analysis of variance

in the SAS general linear models procedure. Only 11 observations were missing. The F3

parents were genotyped with RFLP and isozyme markers and a genetic map was built

using Kosambi map function to express distances in centiMorgan (cM). We use the

same 73 markers analysed by Cockerham and Zeng, obtaining multipoint estimates

with MAPMAKER/EXP (Lander et al. 1987) for the distances not presented in

their paper.

Statistical Analysis

Interval Mapping (IM) for Design III: First, we applied IM for Design III for the

maize data. This corresponds to model (1) with only one QTL fitted in the model. This

was done in order to: 1) have comparisons with the results of Stuber et al. (using

IM for each backcross separately) and Cockerham and Zeng (using four contrasts

for single marker analysis of both backcrosses simultaneously); 2) help on the selection

of the final MIM model.

MIM for Design III: To select number and map positions of putative QTL to be

included in an initial model, a forward procedure was used based on the ideas of Kao et

al. (1999). Starting with a model with no QTL, a model with one QTL that resulted

in the greatest increase in the likelihood was selected. The procedure was repeated

for adding a second QTL and so on until no further QTL can be added with a model

of, say, m QTL. The models with m − 1 and m QTL were compared based on the

Bayesian Information Criteria (BIC) (Schwartz, 1978). We also tried to add QTL

on positions suggested by IM for Design III, keeping them in the model if the effects

were significant. When the QTL number of a model is changed, estimates of QTL

positions were optimized. After a model with main effects and refined positions was

established, a forward/backward procedure was applied in order to identify two-way

epistasis between QTL. Every possible epistatic effect was tested and the one with

highest likelihood was selected. The procedure was repeated until no more effects can

be added. We notice that using BIC few epistatic effects would remain in the model.

Since we are interested in estimating epistatic effects on heterosis, a less conservative

criterion, Akaike Information Criteria (AIC) (Akaike, 1974), was adopted. After
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epistatic effects were selected, all main and epistatic effects were tested for significance

and the non-significant effects were removed. If the main effects of a QTL were not

significant but it had some significant epistasis with at least another QTL, it was kept

in the model.

Results

IM for Design III: The results for QTL mapping for grain yield are presented in

Figure 1A and 1B. In general, they are in close agreement with the previous analysis

of Stuber et al. and Cockerham and Zeng, but providing more information and

statistical power. Stuber et al. did the analysis on each backcross separately. A

QTL was mapped if it had a significant effect in at least one backcross. We can notice

that using IM for Design III there are LOD peaks approximately in the same genomic

regions previously identified, but the shape of the new curves is similar to the sum of

the previous ones, with higher LOD scores. This is an indication of higher statistical

power and results in more identifiable peaks in some regions, such as chromosomes 1

and 10. On the backcrosses to B73 and Mo17, Stuber et al. found six and eight QTL

respectively, with LOD score varying from 2.73 to 9.73. We also found evidence for

QTL in the same regions, but with LOD scores between 10 to 35 approximately. On

chromosomes 8 and 10, the QTL that were barely detectable by the analysis on each

backcross separately now have LOD scores around 10.

The separate analysis on each backcross can lead to difficult interpretation about

QTL number. This can alleviated by the new analysis. For example, on chromosome

10, IM for DIII shows a profile indicating that there is evidence for only one QTL in

the middle of the chromosome, instead of two indicated before. However, IM for DIII

still has some problems. For example, using an arbitrary LOD threshold of 3, it is

difficult to precisely indicate how many QTL are on chromosomes 1, 2, 4, 5, 8, 9 and

10.

As pointed out by Cockerham and Zeng, by analyzing the backcrosses separately

and estimating the genetic effects in terms of differences between heterozygous and

homozygous, Stuber et al. actually estimated d∗ + a∗ for the backcross to Mo17 and

d∗−a∗ for the backcross to B73 (d+a and d−a on their notation). As a consequence,

14



if a∗ and d∗ have the same magnitude, the QTL will not be identified in one backcross

and its effect will be aggregated in the other. This seems to be the case for the QTL

on chromosomes 3 and 4, where only one LOD curve is above the threshold. With IM

for DIII, a∗ and d∗ can be estimated separately.

The Cockerham and Zeng approach does not provide LOD curves or indica-

tion about QTL number, but their p-values can be used to identify genomic regions

for the evidence of QTL. Their method is based on the analysis of both backcrosses

simultaneously and also allow the estimation of a∗ and d∗ associated with markers.

Marker analysis for all chromosomes have significant effects for at least one of the four

contrasts. In general, there is correspondence between small p-values and LOD peaks

for IM for Design III, specially for d∗ effects, which are the most significant ones. It

is noted that d∗ is positive in almost every position (with exceptions at the beginning

of chromosomes 3 and 9) and is consistently larger in magnitude than a∗, whose sign

varies from region to region. Few a∗ effects were significant, mostly on chromosomes 3

and 4.

MIM for Design III: We use this analysis to provide some detailed estimates and

base on these estimates to provide some interpretation (Figures 1A and 1B; Tables 5

to 7). Compared to other methods, this analysis tends to provide better estimates on

QTL number, positions, effects and epistasis. Thirteen putative QTL were mapped

in nine chromosomes with LOD score exceeding 5 (except for the closely-linked QTL

X and XI). All QTL together explain 74.90% and 78.23% of the phenotypic variation

on backcrosses to Mo17 and B73 respectively. These values are higher than the ones

found by Stuber et al. (59.1% and 60.9%). The main effects of each QTL individually

explained from 0.61% to 12.34% of the phenotypic variation.

The estimates of a∗ are both positive and negative. However, the values of d∗ are

consistently positive and are generally higher than those of a∗. When a∗ is positive,

the favorable allele comes from B73; when negative from Mo17. The magnitude of the

effects vary from -5.48 to 6.28 for a∗ and from 0.36 to 9.18 for d∗. These are generally

consistent with Stuber et al. results. For example, they had estimates of d∗ + a∗

for QTL IV and VI with values 11.57 and 10.55, respectively. In our results, these
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estimates are 10.81 and 8.67. For d∗ − a∗ for QTL II, they found 8.72; the MIM value

is 9.02.

The QTL found on chromosomes 1, 2, 3, 7 and 9 are the same ones suggested by

Stuber et al.. The two QTL previously indicated on chromosome 10 is now estimated

as a single one. We tried to fit a model with another QTL on this chromosome. There

is not enough statistical evidence to support this model. For chromosomes 4, 5 and 8,

there is evidence for three additional QTL: one near the beginning of chromosome 4,

one at the end of chromosome 5 and one near the beginning of chromosome 8. The

presence of QTL at the beginning of chromosome 4 was suggested by IM for Design

III and with more support from MIM. QTL VII on chromosome 5 has the largest

LOD score (23.36) and explains 8.76% and 12.34% of the phenotypic variances in two

backcrosses. This indicates the importance of this region and is in agreement with

Stuber et al..

On chromosome 8 the two mapped QTL have a∗ in opposite signs (repulsion link-

age), making their identification difficult by using single-QTL models. QTL X and XI

were barely detectable as a single one by Stuber et al. with LOD score 2.73. Cock-

erham and Zeng found p-values of 0.01 in this region only for the contrast for d∗.

The two QTL also have smaller LOD scores using MIM for Design III (2.48 and 0.89,

respectively). However, they were retained in the model, since they were detected to

have significant epistatic interaction with other QTL (Table 5).

For epistasis, the final selected model has 14 effects of aa + dd and 8 effects of

ad + da. Their LOD scores vary from 0.51 to 2.66, generally smaller than the ones

for the main effects. Also, they explained individually only a small fraction of the

phenotypic variance (the highest R2
j was only 3.47% for ad + da between QTL IX

and XI in the backcross to B73). Because in Design III it is impossible to estimate

individual epistatic effects separately, the magnitude of the effects are generally higher

than the ones for a∗ and d∗ separately, varying from -16.49 to 12.91.

A summary of the final results for the selected model is presented in Table 7. The

means of the progenies for the backcross to Mo17 and B73 are 86.25 and 90.78 from

Cockerham and Zeng, close to the model means 85.52 and 90.59 in Table 7. Based
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on the orthogonal principle for the genetic model used for this study, the difference

between the means is an estimate of the sum of additive effects of all potential QTL

(Wang and Zeng 2006). For the 13 QTL,
∑

r a∗r = 3.23, which is somewhat close to

the observed mean difference (4.53). From the estimates of genetic variance partition

in the model, 21.02% is due to α, 59.71% to β and 19.27% to epistasis (γ and δ).

Discussion

Since MIM for Design III tends to provide more appropriate results as compared

to other methods, the following discussion will be based on this analysis. The signs of

a∗ effects vary from QTL to QTL, with seven positive (the plus allele from B73) and

six negative (the plus allele from Mo17). The lines B73 and Mo17 are elite inbred lines

for grain yield and produce a superior hybrid when crossed. These lines, or lines and

cultivars derived from them, are widely used for commercial purposes (Stuber et al.

1992). We found favorable alleles evenly distributed between the inbred lines. Since

the difference µ̂2− µ̂1 is positive, one would also expect that B73 have some advantage

in terms of a∗ effects, and our results corroborate this hypothesis, since
∑

r a∗r = 3.23.

All mapped QTL have d∗ with positive sign, meaning that the heterozygous geno-

type is always superior in the direction of the favorable allele, wherever it is. This is

in line with the hypothesis of dominance of favorable alleles as the cause of heterosis

in maize. The magnitude of d∗ is more than 2.5 times greater than those of a∗ for six

QTL (III, VII, IX, X, XII and XIII). Normally this would be interpreted as evidence

of overdominance for these QTL (or some of them). For QTL VII on chromosome 5,

further studies based on near isogenic lines dissected this QTL into at least two smaller

ones, linked in repulsion to each other and with dominant gene action (Graham et al.

1997). Pseudo-overdominance, described first by Jones et al. (1917) as a possible

cause of heterosis, is usually difficult to identify. The result of Graham et al. clearly

indicates that QTL VII which has the highest ratio d∗/|a∗| might be due to pseudo-

overdominance, rather than overdominance. Without further study it is difficult to

know whether this might be also the case for QTL III, IX, X, XII and XIII, although

there is some weak indication for it as the estimates associated with a∗ change in sign

around those QTL regions by the analysis of Cockerham and Zeng and IM for De-
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sign III. Based on a further study on F7 parents from the same initial cross, LeDeaux

et al. (2006) concluded that the genes act predominantly in a dominant manner (not

overdominant). Further experiments with larger sample sizes may be required to check

if some of those QTL have real overdominance.

Comstock and Robinson (1952) showed that, without epistasis, the average

degree of dominance D̄ is an weighted average for d effects over r loci with weights a2
r.

From MIM, the estimate of the augmented average degree of dominance is D̄∗ = 3.60.

This value could be interpreted as evidence for overdominance. However, Melchinger

et al. (2007) discussed in detail that D̄∗ is not suitable to provide an accurate estimate

of D̄, because it is based in a ratio of quadratic forms due to d∗ (ς2
d∗) and a∗ (ς2

a∗) effects,

being strongly affected by epistasis and the linkage disequilibrium between QTL. In

our results, QTL pairs I-II, VII-VIII and X-XI have a∗ effects linked in repulsion, while

for pair V-VI they are in coupling. In this situation, the contribution of linked QTL

are likely to cancel in ς2
a∗ . In contrast, ς2

d∗ is clearly overestimated since all d∗ effects

are positive. As a consequence, D̄∗ is possibly overestimated.

It can be shown that the midparent heterosis h (considering only up to digenic

epistasis) is h =
∑

r dr − 1
2

∑
r 6=s aars =

∑
r d∗r. Therefore, only negative aa epistasis

increases h besides of dominance effects. Unfortunately, in Design III it is impossible

to estimate aa effects separately from dd. Because we are estimating sums of aa + dd,

if they have the same magnitude and opposite signs, the effects will cancel out and

epistasis will not be detectable. With opposite signs, the effect can be detected only if

one of them is much larger than the other. On the other hand, if they have the same

sign, the effects will add up and the interaction can be more easily detected. So, if aa

is important for heterosis and most of its effects are negative, one would expect the

signs of aa + dd estimates to be predominantly negative, because when dd is positive

the effects tend to cancel out and would be more difficult to be detected. From the

results, this does not seem to be the case, because there are 7 positive and 7 negative

estimates of aa+dd. By these arguments, aa epistasis could be present, but is unlikely

to contribute to the observed heterosis significantly in maize. Stuber et al. did not

find evidence for epistasis, although they used an analysis with low statistical power.
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Cockerham and Zeng found some evidence for the presence of epistasis in their

analysis. Their second and fourth contrasts estimate only a small fraction of linked

aa + dd and ad + da epistasis. We found linked QTL on chromosomes 1, 4, 5 and 8,

and for them the signs of the contrast for aa + dd were both positive and negative.

Therefore, unless most of the negative aa effects were canceled out by positive dd and

not detected (which seems to be unlikely), epistasis is unlikely an important explanation

for the heterosis in maize.

From the expression of midparent heterosis, the importance of having reliable es-

timates of d∗ becomes evident. The augmented dominance effect d∗ measures the net

contribution of heterotic QTL to the midparent heterosis. Based on the results of

QTL mapping, we have ĥ =
∑

r d̂∗r = 62.51 bushels/acre (3.92 tons/hectare). Unfor-

tunately, the inbred lines were not evaluated in the experiments used for the current

analysis and so direct heterosis estimates for this data set are not available. Dr. James

Holland (personal communication) provided some information about heterosis magni-

tude on the cross Mo17 × B73. Based on means over evaluations in two locations

near Lafayette (IN), 2003, ĥ = 5.25 tons/hectare. The plant density used was 50,000

plants/hectare, while Stuber et al. used from 36,000 to 50,000 plants/hectare. More-

over, the growing conditions in Indiana are not necessarily similar to the ones used in

Stuber et al., and some genotype-by-environment interaction might be expected. In

any case, the estimate of heterosis based on MIM results seems to be comparable to

the data provided by Dr. James Holland.

ANALYSIS OF A RICE DATA SET

Experiment Description and Statistical Analysis

The rice data set was presented in detail in Xiao et al. (1995). Briefly, 194 F7

parents were backcrossed to two elite homozygous lines, 9024 (L1, indica parent) and

LH422 (L2, japonica parent). The backcross progenies were evaluated in a randomized

complete block design with two replications. Twelve quantitative traits were measured,

but we just use means over replications for grain yield (in tons/hectare). A genetic

map for the recombinant inbred population was constructed with 141 RFLP markers

and the genetic distances were expressed in centimorgans using Kosambi map function.
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To help the selection of the final MIM model, the same procedures used for the

maize data were applied. Initially, IM for Design III was applied. Then, a MIM model

for Design III was selected. First a forward procedure was used until no more QTL can

be added. Second, a forward/backward procedure was applied to find two-way epistasis

between QTL. Models were compared using the Bayesian Information Criterion (BIC)

for the main effects and the Akaike Information Criterion (AIC) for epistatic effects.

The positions were refined in every step of model updating. Finally, we also estimated

the four contrasts proposed by Cockerham and Zeng for all markers. For epistasis,

some markers did not have heterozygous genotypes and therefore the contrasts could

not be estimated.

Results

IM for Design III: The results for QTL mapping for grain yield are presented in

Figure 2A and 2B. In the same way as for the maize data, they are in agreement with

the analysis of Xiao et al., but providing more information and statistical power. Xiao

et al. did their analysis in a way similar to Stuber et al., considering the backcrosses

separately. They only found two QTL, one in the backcross to japonica on chromosome

8 (with LOD score 2.49), and another one in the backcross to indica on chromosome

11 (with LOD score 2.64). Using IM for Design III there are LOD peaks in the same

regions, but with higher LOD scores (around 4.5). Moreover, there is indication of

additional QTL in many other chromosomes.

In general, the LOD curves from Xiao et al. are flat and with small values. When

the analysis is done for both backcrosses simultaneously, some peaks become more

evident, such as on chromosomes 2, 3, 5 and 11. The QTL on chromosome 4, that

had previously a LOD score smaller than 2 thus was not selected, now has a more

identifiable peak with LOD score about 4. At the beginning of chromosome 11 there

is strong evidence for the presence of a QTL, showing that the new analysis can signif-

icantly increase the ability for the identification of QTL. In fact, this QTL is the most

important one in the MIM model (next section).

For the same reasons as discussed above for the maize data, Xiao et al. also

estimated d∗+a∗ and d∗−a∗, leading to the identification of QTL in only one backcross
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if the effects are similar in magnitude. With the combined analysis, a∗ and d∗ could be

estimated separately. The p-values for the contrasts of Cockerham and Zeng were

not significant for all markers, with only few exceptions that are possibly false positives.

None of the p-values is smaller than 0.01. The signs of the contrasts are in agreement

with the estimates from IM for Design III. In contrast to the results for maize data,

now d∗ effects are positive and negative for approximately the same number of regions.

MIM for Design III: Six QTL were mapped on chromosomes 2, 4, 7, 8 and 11, with

LOD scores varying from 0.40 to 9.43 (Figure 2A and 2B, Tables 8 to 10). QTL II

and III were retained in the model because they had significant epistasis with another

QTL. Not all putative QTL suggested by IM were kept in the final MIM model, since

they were not significant. This is the case for putative QTL on chromosomes 1, 5 and

6, and also for the one near the end of chromosome 2. Only chromosome 11 has more

than one QTL, but they are very far apart (more than 90 cM).

Surprisingly, QTL V at the beginning of chromosome 11 was not detected by Xiao

et al., having just a slight tendency for its presence in the backcross to japonica. How-

ever, it has the highest LOD and R2 in our analysis. Its presence is also suggested by

IM for Design III. This is an indication that the analysis of the combined backcross

has more statistical power and can lead to different results.

Together, all QTL explain 60.94% and 64.67% of the phenotypic variation in the

backcrosses to indica and japonica, respectively. In their analysis, Xiao et al. found

only two QTL (named IV and VI in our results), explaining 6.80% and 6.30% of the

phenotypic variation. In our analysis, the main effects of QTL have R2s varying from

0.34% to 31.13%. Four aa + dd and five ad + da epistasis effects were selected, with

small LOD scores. Among the estimated genetic variance, 74.29% is due to additive

effects of QTL; 9.52% due to dominance effects; and 16.19% due to epistatic effects.

In contrast to the maize results, a∗ effects seem to be more important for rice.

The signs of a∗ are negative for all QTL (except QTL I), showing that the favorable

alleles are concentrated in indica. Their values vary from -0.723 to 0.442 (tons/hectare).

Significantly different from maize, d∗ effects are both positive (for 4 QTL) and neg-

ative (for 2 QTL) and are in general smaller than a∗ in magnitude. No evidence for
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overdominance of any QTL is observed.

Discussion

Again, all the following discussion will be based on the results of MIM for Design

III. The a∗ effect is positive for one QTL and negative for the other five, showing

that the favorable alleles are distributed between the parents but with concentration

in the indica parent. In contrast to maize, d∗ estimates are now positive and negative,

indicating that heterozygote is not always superior in the direction of the favorable

allele. This is not in line with the hypothesis that dominance is a major cause of

heterosis in rice.

For rice, d∗ effects are not significantly greater than a∗ effects for any QTL. This

can be interpreted as lack of overdominance (or pseudo-overdominance). Actually,

from our results, ˆ̄D∗ = 0.12, corroborating the importance of a∗ effects for grain yield

in rice. Even knowing that D̄∗ can be strongly biased, one would expect this to occur

in a smaller magnitude in this case, since there is no evidence for closely linked QTL

(the only two QTL on the same chromosome are very far apart). Therefore, the bias

due to aa and da effects contained in a∗ and d∗, and the overestimation that happened

for D̄∗ in maize is not expected here.

Xiao et al. concluded that dominance is the major genetic basis of heterosis in rice.

In the same way as Stuber et al., they used the difference between the phenotypic

means of heterozygous and homozygous genotypes in each backcross as an estimate

of the phenotypic effect of QTL. They found one positive and one negative result for

these differences for the two QTL for grain yield. Since positive and negative signs

indicate superior heterozygous and homozygous genotypes, respectively, they assumed

lack of overdominance and concluded that dominance (or partial dominance) is the

major contributor to F1 heterosis. Probably, their conclusions were reinforced by the

fact that they did not find significant epistasis. However, using differences on each

backcross they were actually estimating d∗ + a∗ and d∗ − a∗ in the backcross to indica

and japonica, respectively. Our estimates for d∗+a∗ and d∗−a∗ for QTL IV and V are,

respectively, -0.171 and 0.834, with the same signs of Xiao et al. estimates, showing

that positive and negative estimates can appear, but not necessarily being evidence of
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dominance (or partial dominance) as a major cause for heterosis.

Since rice is a self-pollinated species, it is common to express heterosis also in

terms of the difference between F1 and the better parent (also called heterobeltiosis,

H). Xiao et al. estimated heterobeltiosis Ĥ = 1.35 tons/hectare. Melchinger et al.

showed that H =
∑

r(d
∗
r−a∗r). From the MIM results, Ĥ = 0.938 tons/hectare, close to

the observed heterosis. However, when considering the mid-parent heterosis h, we get

from the MIM results ĥ =
∑

r d̂∗r = 0.104 tons/hectare, while Xiao et al. value is 1.605

tons/hectare, more than 15 times greater. One possible explanation for this difference

is the presence of epistasis. As pointed out above, if aa is a cause for the mid-parent

heterosis, its signs will be predominantly negative. But if d signs vary from locus to

locus, d∗ signs will tend to be positive and negative, and therefore will tend to cancel

each other out when added in h. Our estimates of aa + dd showed three negative and

one positive sign. This could be an indication of a tendency of aa being predominantly

negative and therefore potentially important as a cause for the mid-parent heterosis in

rice. In addition to the facts that normally epistasis is difficult to detect and Design

III is also not suitable to estimate epistatic effects separately, the progeny data used in

this research were evaluated in only one location and year, with few replications. So,

it may be expected that the means used in the analysis were not estimated with good

precision. Therefore, this tendency for the presence of negative aa epistasis as a cause

for heterosis needs to be confirmed in further studies.

CONCLUSIONS

The objective of this research is to study the genetic basis of heterosis in maize

and rice. Since maize and rice are economically important and are good examples

of outcrossing and self-pollinating crops, we believe that the conclusions from this

study may be useful for plant breeders and geneticists. To achieve this goal, we first

extended the single marker contrasts proposed by Cockerham and Zeng for the

analysis of Design III to two markers. Based on the genetic expectations of contrasts

for the analysis of two markers simultaneously, we were able to propose a new model

for a statistical analysis of Design III taking into account positions between markers.

This leads to the MIM model for Design III that provides a basis to estimate QTL
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number, positions, effects (a∗ and d∗) and epistatic interactions (aa + dd and ad + da)

simultaneously. Our model can be used for parents with any number of generation in

selfing.

After Stuber et al. and Cockerham and Zeng, a few authors also proposed

methods for QTL mapping and analysis of Design III, most of them based on the

derivations of Cockerham and Zeng showing that the contrasts of heterozygous and

homozygous genotypes on each backcross actually test d∗+a∗ and d∗−a∗. For example,

Lu et al. (2003) and LeDeaux et al. (2006) proposed the utilization of Composite

Interval Mapping (CIM) (Zeng et al. 2004) on each backcross separately and, after

QTL were mapped (in one or both backcrosses), a∗ and d∗ effects are estimated by

a linear combination of the contrasts for each backcross. Although a∗ and d∗ effects

can be estimated individually in this way, the results of QTL mapping are still based

on the analysis of each backcross separately in a similar way as Stuber et al.. Lu

et al. proposed to test epistasis by fitting a two-locus linear regression model for the

main effects and interaction between loci. If performed in this way, it is likely that

epistasis will be rarely identified because the test tends to have relatively low statisti-

cal power and, even if identified, it is not clear how to interpret the results in a way

to understand its influence on heterosis. In a different approach, Melchinger et al.

suggested the use of CIM for the identification of genomic regions affecting heterosis.

They defined two orthogonal single-marker contrasts based on progeny mean values

for pair means and pair differences. These contrasts, which correspond to contrasts

C1 and C3 of Cockerham and Zeng, and x∗ijr and z∗ijr in our MIM model, are used

individually for CIM analysis of the combined backcrosses and the estimation of a∗

and d∗. Although using information from both crosses simultaneously, their method

is still based on CIM and do not capitalize all the advantage of MIM models. To

our knowledge, the proposed MIM model for Design III is probably the most pow-

erful statistical method for QTL mapping in this type of population currently. We

developed a module of MIM for Design III for Windows QTL Cartographer (Wang

et al. 2007) specifically for its public use. The software can be freely download from

http://statgen.ncsu.edu/qtlcart/WQTLCart.htm.
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We realize that by using AIC as a criteria for including epistasis in the MIM model,

there is a risk that the final model may be over-fitted. However, this was done mostly

to study the sign of estimates for epistasis. Normally, epistasis is difficult to detect

with statistical significance, and both Stuber et al. and Xiao et al. did not find evi-

dence for it using statistical tests with relatively low statistical power. Since our model

allows the inclusion of epistasis, it is possible to study its effects more clearly on maize

and rice. The results showed that dominance is possibly a major cause of heterosis in

maize, although overdominance (or pseudo-overdominance) of individual loci could not

be ruled out. On the other hand, for rice there is evidence that additive × additive

epistasis could be important for explaining heterosis. Maize and rice evolved from a

common ancestor (Ahn and Tanksley 1993) but have different reproductive biology.

As a consequence, maize is supposed to have more deleterious recessive alleles than rice,

masked by their corresponding dominant counterparts. When inbreeding occurs, this

unfavorable alleles are expressed in the homozygous loci, causing the inbreeding depres-

sion. In self-pollinating species, deleterious alleles are possibly eliminated by natural

(and artificial) selection since the individuals are homozygous. Therefore, outcrossing

species could be selected for true dominant loci to avoid the expression of these dele-

terious loci (causing the outbreeding advantage), whereas in self-pollinating species

the selection for dominance is less important and, when a F1 cross shows midparent

heterosis, it is more likely due to epistatic interactions (aa) among loci.

Two important Conferences about heterosis should be mentioned. In 1950, in Iowa,

there was a five week conference (Gowen et al. 1952). At that occasion, Comstock

and Robinson proposed Design III as a means to estimate the average degree of dom-

inance and also presented some estimates, suggesting overdominance. Some authors

proposed breeding schemes to exploit it. Since then, Design III has been widely used

in breeding programs over the years for understanding the genetic basis of many eco-

nomically important traits and for developing breeding schemes. Crow (1999) said

that ”1950 and the next few years was the zenith of overdominance”, but in the later

years the importance of the dominance hypothesis increased. When comparing this

Conference with another one that took place in 1997 in Mexico City, Crow (1999)
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noticed a change in emphasis, since in the second one many authors included epistasis

in their presentations. We hope that the results presented here can make contribution

to this important discussion.
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Appendix A: Genotypic Constitution of the progenies from F2 Parents

Here we expand the idea of Cockerham and Zeng (1996) and consider F2 par-

ents for two linked markers (M1 and M2) with recombination fraction ρ. The markers

are linked to two QTL with the linkage order Q1M1M2Q2. The recombination fraction

between Q1 and M1 is ρ1, between M2 and Q2 ρ2, and between Q1 and Q2 ρ12. We as-

sume no cross-over interference, so ρ12 = ρ1(1−ρ)(1−ρ2)+(1−ρ1) ρ (1−ρ2)+(1−ρ1)(1−
ρ) ρ2+ρ1ρ ρ2. Assume that the inbred lines genotypes are L2 = Q1Q1M1M1M2M2Q2Q2

and L1 = q1q1m1m1m2m2q2q2.

Denote F1 gametes as

g′ =
[

g′M1M2
, g′M1m2

, g′m1M2
, g′m1m2

]

with

g′M1M2
=

[
Q1M1M2Q2, Q1M1M2q2, q1M1M2Q2, q1M1M2q2

]

g′M1m2
=

[
Q1M1m2Q2, Q1M1m2q2, q1M1m2Q2, q1M1m2q2

]

g′m1M2
=

[
Q1m1M2Q2, Q1m1M2q2, q1m1M2Q2, q1m1M2q2

]

g′m1m2
=

[
Q1m1m2Q2, Q1m1m2q2, q1m1m2Q2, q1m1m2q2

]

The gametic frequencies are one half of

f ′M1M2
=

[
(1− ρ1)(1− ρ)(1− ρ2), (1− ρ1)(1− ρ) ρ2, ρ1(1− ρ)(1− ρ2), ρ1(1− ρ) ρ2

]

f ′M1m2
=

[
(1− ρ1) ρ ρ2, (1− ρ1) ρ (1− ρ2), ρ1ρ ρ2, ρ1 ρ (1− ρ2)

]

f ′m1M2
=

[
ρ1 ρ (1− ρ2), ρ1ρ ρ2, (1− ρ1) ρ (1− ρ2), (1− ρ1)ρ ρ2

]

f ′m1m2
=

[
ρ1(1− ρ) ρ2, ρ1(1− ρ)(1− ρ2), (1− ρ1)(1− ρ) ρ2, (1− ρ1)(1− ρ)(1− ρ2)

]

From these frequencies, it is easy to show the conditional frequencies of QTL ga-

metes from F2 with different marker genotypes (Table 1). These gametes are combined

with the gametes Q1Q2 and q1q2 from inbred lines L2 and L1, respectively, to form two

backcross populations.

Let Hj
g denote the genotypic means of backcross progenies with g marker genotype

in the F2 parent backcrossed to parental line j. There are 18 Hj
g values. They are
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weighted genotypic values of seven QTL genotypes (the nine possible genotypes at

two loci minor genotypes Q1q2/Q1q2 and q1Q2/q1Q2, which are not produced in the

backcrosses) with weights given in Table 1.
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Appendix B: Orthogonal Contrasts with Two Markers

When two markers are considered simultaneously in the two backcrosses of De-

sign III, it is possible to define a set of 17 orthogonal contrasts denoted as ck (k =

1, ..., 17) (Table 2). Denoting the coefficients in Table 2 as ukgj, the kth contrast is

ck =
∑

g

∑
j ukgjH

j
g . All contrasts are orthogonal because

∑
g

∑
j ukgjuk′gj = 0 for any

pair of contrasts ck and ck′ (k 6= k′).

Contrasts c1 to c4 are for marginal differences among means for marker genotypes

of M1 (c1 and c2) and M2 (c3 and c4), and can be viewed as a direct expansion of

the first and third contrasts of Cockerham and Zeng. Contrasts c1 and c3 are for

differences between homozygous marker genotypes for M1 and M2, respectively, and c2

and c4 are for contrasts between heterozygous and homozygous marker genotypes. The

contrasts c5 to c8 are for interactions between c1 and c3, c1 and c4, c2 and c3, c2 and

c4, respectively. Contrast c9 is for testing the difference between the inbred lines (not

considered by Cockerham and Zeng) and c10 to c17 are for interactions of contrasts

c1 to c8 with the inbred lines (analogous to contrasts 2 and 4 of Cockerham and

Zeng).

Based on the genotypic constitution of the progenies of F2 parents (Table 1 and

Appendix A) and substituting the genotypic values by the genetic effects based on the

F2 genetic model (Cockerham and Zeng 1996; Zeng et al. 2005), we derived the

genetic expectation of the 17 contrasts:

E(c1) = 6(1− 2ρ1)a1 − 3(1− 2ρ1)da

E(c2) = E(c4) = − 1

2
E(c8) = − (1− 2ρ1)

2(1− 2ρ)2(1− 2ρ2)
2

1− 2ρ + 2ρ2
(aa + dd)

E(c3) = 6(1− 2ρ2)a2 − 3(1− 2ρ2)ad

E(c5) = 2(1− 2ρ1)(1− 2ρ2)(aa + dd)

E(c6) = E(c7) = E(c15) = E(c16) = 0

E(c9) = −9(a1 + a2) +
(1− 2ρ1)

2(1− 2ρ)2(1− 2ρ2)
2

2(1− 2ρ + 2ρ2)
(ad + da)

E(c10) = 6(1− 2ρ1)d1 − 3(1− 2ρ1)aa

E(c11) = E(c13) = − 1

2
E(c17) = − (1− 2ρ1)

2(1− 2ρ)2(1− 2ρ2)
2

1− 2ρ + 2ρ2
(ad + da)

E(c12) = 6(1− 2ρ2)d2 − 3(1− 2ρ2)aa
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E(c14) = 2(1− 2ρ1)(1− 2ρ2)(ad + da)
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Appendix C: Design III with Recombinant Inbred Lines

If we continue selfing F2 for a number of generations, it will lead to the development

of recombinant inbred lines (F∞) where heterozygote genotypes are eliminated. There

are four homozygote genotypes for two loci in the recombinant inbred lines and eight

genotypic means in the two backcrosses. The six contrasts can be further simplified

from Table 3 and are presented in Table 4.

The genotypic expectations of the contrasts in the framework of MIM can be ex-

pressed for two QTL as

E(C̈1) = a1 − 1

2
da

E(C̈2) = d1 − 1

2
aa

E(C̈3) = a2 − 1

2
ad

E(C̈4) = d2 − 1

2
aa

E(C̈5) = (aa + dd)

E(C̈6) = (ad + da)

The MIM model is then

yij = µj +
m∑

r=1

αrx
∗
ijr +

m∑

r=1

βrz
∗
ijr +

t1∑
r<s

γrsw
∗
ijrs +

t2∑
r<s

δrso
∗
ijrs + εij

where yij, µj, αr, βr, γrs, δrs and εij have the same interpretation of the MIM model

in the main text.

The indicator variables for the main and interaction effects are

x∗ijr =





1 if the genotype of Qr is QrQr

−1 if the genotype of Qr is qrqr

for j = 1, 2;

z∗ijr =





x∗ijr if j = 1

−x∗ijr if j = 2
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w∗
ijrs =





1/2 if the QTL genotype is QrQrQsQs or qrqrqsqs

−1/2 if the QTL genotype is QrQrqsqs or qrqrQsQs

for j = 1, 2;

o∗ijrs =





w∗
ijrs if j = 1

−w∗
ijrs if j = 2
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Appendix D: EM Algorithm

Adapting the general formulas of Kao and Zeng (1997) for the likelihood of

our model, we present here the EM algorithm using matrix notation. (However, when

coding the software, we took into consideration the problems for convergence presented

by Zeng et al. 1999 and used a different notation; see Kao and Zeng for details).

For the [τ + 1]th iteration:

E-step:

π
[τ+1]
ig =

pig

2∏

j=1

φ
(
yij|µ[τ ]

j + DjgE
[τ ], σ

2 [τ ]
j

)

3m∑

g=1


pig

2∏

j=1

φ
(
yij|µ[τ ]

j + DjgE
[τ ], σ

2 [τ ]
j

)



M-step:

E[τ+1] = r[τ ] −M[τ ]E[τ ]

µ
[τ+1]
j =

(
1

n

)
1′

(
Yj −Π[τ+1]DjE

[τ+1]
)

σ
2 [τ+1]
j =

(
1

n

) [(
Yj − 1µ

[τ+1]
j

)′ (
Yj − 1µ

[τ+1]
j

)

−2
(
Yj − 1µ

[τ+1]
j

)′
Π[τ+1]DjE

[τ+1]

+E′ [τ+1]Vj
[τ ]E[τ+1]

]

where 1 is a column vector of ones, Π = {πig}n×3m , Vj = {1′Π(Djk#Djl)}m(m+1)×m(m+1),

r =
{[∑

j(1/σ
2
j )(Yj − 1µj)

′ΠDjk

]
/

[∑
j(1/σ

2
j )1

′Π(Djk#Djk)
]}

m(m+1)×1
,

M =
{[∑

j(1/σ
2
j )1

′Π(Djk#Djl)
]
/

[∑
j(1/σ

2
j )1

′Π(Djk#Djk)
]
× δ(k 6= l)

}
m(m+1)×m(m+1)

.

Djk (Djl) is the kth (lth) column of the genetic design matrix Dj, δ(k 6= l) is an indi-

cator variable that assume values 1 if k 6= l and 0 otherwise, and # denotes Hadamard

product. For details about genetic design matrices see Kao and Zeng (1997) and

Kao et al. (1999).

To test the MLEs of the E vector, the likelihood ratio test or the LOD Score can

be used. For example, for testing the effect Er:

LOD = log10

L(E1 6= 0, ..., E2m+t1+t2 6= 0)

L(E1 6= 0, ..., Er−1 6= 0, Er = 0, Er+1 6= 0, ..., E2m+t1+t2 6= 0)
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TABLE 1

Conditional frequency of QTL gamete from F2 given marker genotype

QTL gametic frequencies

Marker f g Q1Q2 Q1q2 q1Q2 q1q2

M1M1M2M2
(1−ρ)2

4
22 (1− ρ1)(1− ρ2) (1− ρ1)ρ2 ρ1(1− ρ2) ρ1ρ2

M1M1M2m2
ρ(1−ρ)

2
21 (1/2)(1− ρ1) (1/2)(1− ρ1) (1/2)ρ1 (1/2)ρ1

M1M1m2m2
ρ2

4
20 (1− ρ1)ρ2 (1− ρ1)(1− ρ2) ρ1ρ2 ρ1(1− ρ2)

M1m1M2M2
ρ(1−ρ)

2
12 (1/2)(1− ρ2) (1/2)ρ2 (1/2)(1− ρ2) (1/2)ρ2

M1m1M2m2
(1−ρ)2

2
+ ρ2

2
11 −1

ζ

[
ρ12(1− ρ12) 1

ζ

[
ρ12(1− ρ12)

1
ζ

[
ρ12(1− ρ12)

−1
ζ

[
ρ12(1− ρ12)

− 1
4
(1 + ζ)

]
− 1

2
ρ(1− ρ)

]
− 1

2
ρ(1− ρ)

]
− 1

4
(1 + ζ)

]

M1m1m2m2
ρ(1−ρ)

2
10 (1/2)ρ2 (1/2)(1− ρ2) (1/2)ρ2 (1/2)(1− ρ2)

m1m1M2M2
ρ2

4
02 ρ1(1− ρ2) ρ1ρ2 (1− ρ1)(1− ρ2) (1− ρ1)ρ2

m1m1M2m2
ρ(1−ρ)

2
01 (1/2)ρ1 (1/2)ρ1 (1/2)(1− ρ1) (1/2)(1− ρ1)

m1m1m2m2
(1−ρ)2

4
00 ρ1ρ2 ρ1(1− ρ2) (1− ρ1)ρ2 (1− ρ1)(1− ρ2)

f is frequency of marker genotype; g is a coded variable for marker genotypes; ρ1, ρ,

ρ2 and ρ12 are the recombination fractions between M1 and Q1, M1 and M2, Q2 and

M2, and Q1 and Q2, respectively; ζ = 1− 2ρ + 2ρ2.
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TABLE 2

Orthogonal contrasts for Design III with two markers

Contrast H2
22 H2

21 H2
20 H2

12 H2
11 H2

10 H2
02 H2

01 H2
00

c1 1 1 1 0 0 0 -1 -1 -1

c2 1 1 1 -2 -2 -2 1 1 1

c3 1 0 -1 1 0 -1 1 0 -1

c4 1 -2 1 1 -2 1 1 -2 1

Hj
g is the genotypic mean of the backcross progenies from F2 parents with marker

genotype g (see Appendix A) backcrossed to parental line j (j = 2, 1). Only H2
g means

are presented, and the coefficients for H1
g are the same as for H2

g for c1 to c4. Contrasts

c5 to c8 are c5 = c1 × c3, c6 = c1 × c4, c7 = c2 × c3 and c8 = c2 × c4. Contrast c9 has

u9g1 = 1 and u9g2 = −1. Contrasts c10 to c17 have the same coefficients of c1 to c8 for

H1
g , respectively; for H2

g the coefficients are the same but with opposite signs.
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TABLE 3

Orthogonal contrasts for the analysis of Design III

Contrast H2
22 H2

21 H2
20 H2

12 H2
11 H2

10 H2
02 H2

01 H2
00

C̃1 1/6 1/6 1/6 0 0 0 -1/6 -1/6 -1/6

C̃3 1/6 0 -1/6 1/6 0 -1/6 1/6 0 -1/6

C̃5 5/6 1/3 -1/6 1/3 -8/3 1/3 -1/6 1/3 5/6

Hj
g is the genotypic mean of the backcross progenies from F2 parents with marker

genotype g backcrossed to parental line j (j = 2, 1). Only coefficients of C̃1, C̃3 and

C̃5 are given for H2
g means. The coefficients of C̃1, C̃3 and C̃5 for H1

g are the same as

those for H2
g . The coefficients of C̃2, C̃4 and C̃6 have the same coefficients of C̃1, C̃3

and C̃5 for H1
g ; but for H2

g , those coefficients have opposite signs.
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TABLE 4

Orthogonal contrasts for the analysis of Design III with recombinant

inbred lines

Contrast H2
22 H2

20 H2
02 H2

00

C̈1 1/4 1/4 -1/4 -1/4

C̈3 1/4 -1/4 1/4 -1/4

C̈5 1/2 -1/2 -1/2 1/2

Hj
g is the genotypic mean of the backcross progenies from F∞ parents with marker

genotype g backcrossed to parental line j (j = 2, 1). Only H2
g means are presented,

since the coefficients for H1
g are the same (for a given g) for C̈1, C̈3 and C̈5. Contrast

C̈2, C̈4 and C̈6 have the same coefficients of C̈1, C̈3 and C̈5 for H1
g , respectively; for H2

g ,

the coefficients are the same but with opposite signs.
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TABLE 5

Estimates of QTL position, effect, LOD score and coefficient of

determination for the maize data using the MIM model for Design III

Position Effecta

QTL Chrom cM LOD a∗ LOD d∗ LOD R2
1(%)b R2

2(%)b

I 1 89.7 5.76 2.28 1.82 4.05 4.77 2.42 3.41

II 1 151.4 11.11 -4.53 6.51 4.49 4.82 4.40 6.20

III 2 23.8 18.80 -1.66 1.12 7.76 16.91 6.56 9.25

IV 3 89.7 15.60 6.28 12.45 4.53 6.25 6.22 8.77

V 4 2.9 6.61 2.01 1.56 4.44 5.93 2.47 3.49

VI 4 56.1 10.72 3.85 5.42 4.82 7.05 4.11 5.79

VII 5 69.8 23.36 0.09 0.01 9.18 23.16 8.76 12.34

VIII 5 124.9 10.21 -5.48 9.80 0.36 0.03 3.15 4.44

IX 7 14.8 9.48 -0.74 0.26 5.54 8.48 3.22 4.54

X 8 20.9 2.48 -0.66 0.05 4.24 2.28 1.93 2.73

XI 8 66.3 0.89 1.88 0.63 1.51 0.40 0.61 0.87

XII 9 72.5 14.33 -1.75 1.21 6.73 12.69 5.04 7.11

XIII 10 78.9 7.17 1.66 1.10 4.86 6.78 2.54 3.58

a Augmented additive (a∗) and dominance (d∗) effects in bushels/acre.

b R2
1(%) = (σ̂2

r/σ̂
2
P1

) × 100 and R2
2(%) = (σ̂2

r/σ̂
2
P2

) × 100 are the fraction of the

phenotypic variance in backcross to Mo17 (σ̂2
P1

) and B73 (σ̂2
P2

), respectively, accounted

for by each putative QTL r.
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TABLE 6

Estimated epistatic effects between QTL for the maize data

Effecta

QTL pair LOD aa + dd ad + da R2
1(%)b R2

2(%)b

I, II 1.97 -7.20 0.53 0.74

I, V 1.12 -5.81 0.32 0.45

I, IX 2.66 9.57 0.90 1.27

I, XII 1.37 -6.54 0.38 0.53

II, III 1.36 7.65 0.52 0.74

II, IX 0.88 5.49 0.28 0.39

III, IV 1.50 -7.21 0.47 0.67

III, VI 1.13 -5.38 0.28 0.40

III, VIII 0.51 4.74 0.20 0.28

III, XIII 1.21 -5.72 0.31 0.43

IV, XII 1.28 7.09 0.44 0.62

V, VIII 0.91 -4.92 0.21 0.30

V, X 1.69 8.14 0.59 0.84

VIII, XIII 1.22 6.05 0.35 0.49

V, VIII 0.84 -6.59 0.38 0.54

VI, VII 1.22 -6.85 0.44 0.61

VI, VIII 1.88 8.33 0.70 0.99

VIII, XIII 1.05 6.12 0.36 0.50

IX, X 2.25 12.91 1.61 2.27

IX, XI 2.65 -16.49 2.46 3.47

IX, XII 0.80 4.97 0.24 0.33

X, XIII 0.92 5.63 0.30 0.43

a Epistatic effects in bushels/acre.
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b R2
1(%) = (σ̂2

r/σ̂2
P1

)×100 and R2
2(%) = (σ̂2

r/σ̂2
P2

)×100 are the fraction of the phenotypic

variance on backcross to Mo17 (σ̂2
P1

) and B73 (σ̂2
P2

), respectively, accounted for by each

putative QTL epistatic interaction.
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TABLE 7

Summary of parameter estimation of the MIM model for the maize data

Backcross to

Mo17 B73

µ̂ a
j 85.52 90.59

σ̂2 b
j 44.59 27.44

σ̂2 b
Pj

177.65 126.05

σ̂2 c
G 113.20

σ̂2
α 23.80

σ̂2
β 67.60

σ̂2
γ 10.28

σ̂2
δ 11.53

R2
j (%)d 74.90 78.23

a µj is mean of the model for backcross j (bu./acre).

b σ2
j and σ2

Pj
are residual and phenotypic variances in (bu./acre)2 for backcross j,

respectively.

c σ2
G is variance in (bu./acre)2 due to the regression coefficients of the genetic effects

in the model, that is decomposed in parts due to α, β, γ and δ.

d R2(%) = 100× (σ̂2
Pj
− σ̂2

j )/σ̂
2
Pj

is coefficient of determination.
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TABLE 8

Estimated QTL position, effect, LOD Score and variance component for

the rice data using the MIM model for Design III

Position Effecta

QTL Chrom cM LOD a∗ LOD d∗ LOD R2
1(%)b R2

2(%)b

I 2 32.9 5.16 0.442 4.86 0.151 0.79 12.09 12.83

II 4 17.9 1.53 -0.067 0.22 -0.114 1.39 0.99 1.05

III 7 28.8 0.40 -0.081 0.34 0.011 0.01 0.34 0.36

IV 8 5.9 5.28 -0.312 3.58 0.141 1.52 5.69 6.04

V 11 24.9 9.43 -0.723 8.89 0.111 0.83 29.33 31.13

VI 11 115.7 3.29 -0.093 0.52 -0.196 2.96 2.63 2.79

a Augmented additive (a∗) and dominance (d∗) effects in tons/hectare.

b R2
1(%) = (σ̂2

r/σ̂
2
P1

)×100 and R2
2(%) = (σ̂2

r/σ̂
2
P2

)×100 are the fraction of the pheno-

typic variance in backcross to indica (σ̂2
P1

) and japonica (σ̂2
P2

), respectively, accounted

for by each putative QTL.
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TABLE 9

Estimated epistatic effect, LOD Score, and variance component between

QTL for the rice data

Effecta

QTL pair LOD aa + dd ad + da R2
1(%)b R2

2(%)b

I, IV 1.14 -0.325 1.46 1.55

I, VI 0.74 -0.264 0.97 1.03

II, IV 1.53 -0.356 1.78 1.88

III, V 0.83 0.226 0.70 0.74

I, IV 1.04 -0.327 1.48 1.57

I, V 0.06 0.079 0.09 0.10

I, VI 0.86 0.267 0.99 1.05

III, IV 2.41 -0.358 1.80 1.90

IV, VI 0.88 0.207 0.61 0.64

a Epistatic effects in tons/hectare.

b R2
1(%) = (σ̂2

r/σ̂
2
P1

)×100 and R2
2(%) = (σ̂2

r/σ̂
2
P2

)×100 are the fraction of the pheno-

typic variance in backcross to indica (σ̂2
P1

) and japonica (σ̂2
P2

), respectively, accounted

for by each QTL pair epistatic interaction.
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TABLE 10

Parameter estimates of the MIM model for the rice data

Backcross to

indica japonica

µ̂ a
j 6.17 6.31

σ̂2 b
j 0.1738 0.1481

σ̂2 b
Pj

0.4449 0.4192

σ̂2 c
G 0.2711

σ̂2
α 0.2014

σ̂2
β 0.0258

σ̂2
γ 0.0218

σ̂2
δ 0.0221

R2 (%)d 60.94 64.67

a µj is mean of the model for backcross j (ton/hectare).

b σ2
j and σ2

Pj
are residual and phenotypic variances in (tons/hectare)2 for backcross

j, respectively.

c σ2
G is variance in (tons/hectare)2 explained by the regression coefficients of the

genetic effects in the model and decomposed in parts due to α, β, γ and δ).

d R2(%) = 100× (σ̂2
Pj
− σ̂2

j )/σ̂
2
Pj

is coefficient of determination.
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Figure legend:

Figure 1: Genetic mapping results of the maize data for grain yield (bu/acre):

(A) for chromosomes 1 to 5; and (B) for chromosomes 6-10. The results are shown

for comparison by using four statistical methods: (1) Interval Mapping (IM) for each

backcross (Stuber et al. 1992), with LOD threshold 2. The identified QTL are

indicated by yellow triangles. (2) Interval Mapping for Design III showing augmented

additive (a∗) and augmented dominance (d∗) effects. (3) Multiple Interval Mapping for

Design III indicating QTL number, effects and positions. (4) Single marker analysis of

the four contrasts proposed by Cockerham and Zeng (1996). Each line corresponds

to one contrast with effects indicated on the left. The rectangles correspond to the

marker loci and their colors represent the p-values. Plus and minus signs indicate the

direction of effects.

Figure 2: Genetic mapping results of the rice data for grain yield (tons/hectare):

(A) for chromosomes 1 to 6; and (B) for chromosomes 7-12. The results are shown

for comparison by using four statistical methods: (1) Interval Mapping (IM) for each

backcross (Xiao et al. 1995), with LOD threshold 2. The identified QTL are indicated

by yellow triangles. (2) Interval Mapping for Design III showing augmented additive

(a∗) and augmented dominance (d∗) effects. (3) Multiple Interval Mapping for Design

III indicating estimated QTL number, effect (tons/hectare) and position. (4) Single

marker analysis of the four contrasts proposed by Cockerham and Zeng (1996).

Each line corresponds to one contrast whose effects are indicated on the left. The

rectangle corresponds to the marker locus with color representing the p-values. Plus

and minus signs indicate the direction of effects. Missing rectangles for epistasis are

due to lack of heterozygous marker genotypes.
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Figure 1A

Stuber et al. (1992)
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Figure 1B

Stuber et al. (1992)
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Figure 2A

Xiao et al. (1995)
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Figure 2B

Xiao et al. (1995)
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