The *multiple wing hairs* gene encodes a novel GBD-FH3 domain containing protein that functions both prior to and after wing hair initiation.

Jie Yan*, David Huen*^, Terri Morely^, Glynnis Johnson^, David Gubb^@, John Roote^ and Paul N. Adler+

* both authors contributed equally to this work.
^ Department of Genetics, University of Cambridge, Downing St, Cambridge, CB2 3EH, UK
+ Biology Department, Department of Cell Biology, Morphogenesis and Regenerative Medicine Institute and Cancer Center, University of Virginia, Charlottesville, Virginia 22903
@ CIC Biogune, Parque Tecnológico de Bizkaia 801A, Derio 48160, Spain

Multiple wing hairs connects PCP to the cytoskeleton
ABSTRACT

The *frizzled* signaling/signal transduction pathway controls planar cell polarity (PCP) in both vertebrates and invertebrates. Epistasis experiments argue that in the Drosophila epidermis *multiple wing hairs* (*mwh*) acts as a downstream component of the pathway. The PCP proteins accumulate asymmetrically in pupal wing cells where they are thought to form distinct protein complexes. One located on the distal side of wing cells and a second on the proximal side. This asymmetric protein accumulation is thought to lead to the activation of the cytoskeleton on the distal side, which in turn leads to each cell forming a single distally pointing hair. We identified *mwh* as CG13913, which encodes a novel GBD-FH3 domain protein. The Mwh protein accumulated on the proximal side of wing cells prior to hair formation. Unlike planar polarity proteins such as Frizzled or Inturned, Mwh also accumulated in growing hairs. This suggested that *mwh* had two temporally separate functions in wing development. Evidence for these two functions also came from temperature shift experiments with a temperature sensitive allele. Overexpression of Mwh inhibited hair initiation, thus Mwh acts as a negative regulator of the cytoskeleton. Our data argued early proximal Mwh accumulation restricts hair initiation to the distal side of wing cells and the later hair accumulation of Mwh prevents the formation of ectopic secondary hairs. This later function appears to be a feedback mechanism that limits cytoskeleton activation to insure a single hair is formed.
INTRODUCTION

The epidermis of many animals is polarized within the plane of the tissue. This tissue planar cell polarity (PCP) is dramatic in the adult cuticle of Drosophila, which is decorated with parallel arrays of hairs and sensory bristles. PCP in Drosophila is under the control of the frizzled (fz) signaling pathway (GUBB and GARCÍA-BELLIDO 1982; LAWRENCE et al. 2007; VINSON and ADLER 1987) and in recent years it has become clear that this pathway also controls planar polarity during vertebrate gastrulation, during the differentiation of stereocilia in the inner ear and in the mammalian epidermis (CURTIN et al. 2003; DABDOUB and KELLEY 2005; GUO et al. 2004; JESSEN et al. 2002; MONTCOUQUIOL et al. 2006; WALLINGFORD et al. 2002; WANG et al. 2006; YBOT-GONZALEZ et al. 2007).

In the fly wing fz pathway genes have been placed into 3 groups that represent both phenotypic and epistasis groups (ADLER 1992; WONG and ADLER 1993). These are the PCP (or core) genes, the PPE (Planar Polarity Effector) genes and the multiple wing hairs (mwh) gene. The PCP group includes fz, disheveled (dsh), prickle/spiny leg (pk/sple), Van Gogh (Vang) (aka strabismus), starry night (stan) (aka flamingo) and diego (dgo). The protein products of these genes accumulate asymmetrically on the distal (Fz, Dsh and Dgo), proximal (Vang, Pk) or both distal and proximal (Stan) sides of wing cells (AXELROD 2001; BASTOCK et al. 2003; DAS et al. 2004; STRUTT 2001; TREE et al. 2002; USUI et al. 1999). These genes/proteins act as a functional group and are co-requirements for the asymmetric accumulation of the others. Mutations in PCP genes result in the hair forming at a central location on the apical surface of wing cells and pointing in an abnormal direction (WONG and ADLER 1993).

The Planar Polarity Effector group (PPE) includes inturned (in), fuzzy (fy) and fritz (frtz). Mutations in these genes differ from those in PCP genes as many mutant wing cells form 2 or 3 hairs with abnormal polarity. These hairs initiate at abnormal locations along the cell periphery. Several observations argue that the PPE genes function downstream of the PCP genes. First, loss of function mutations in PPE genes are epistatic to both gain and loss of functions in PCP genes (LEE and ADLER 2002; WONG and ADLER 1993). Next, the function of the PPE genes is not required for the asymmetric accumulation of PCP proteins (AXELROD 2001; BASTOCK et al. 2003; FEIGUIN et al. 2001; STRUTT 2001; USUI et al. 1999). Finally, the In protein has been
found to accumulate on the proximal side of wing cells under the direction of the PCP genes (ADLER et al. 2004).

The multiple-wing-hairs (mwh) gene is the sole member of the third group. Mutations in mwh are epistatic to mutation in both the PCP and PPE genes (LEE and ADLER 2002; WONG and ADLER 1993) and mwh is not required for the asymmetric accumulation of PCP or PPE proteins (ADLER et al. 2004; AXELROD 2001; STRUTT 2001; USUI et al. 1999). Hence, mwh is thought to be the most downstream gene. A typical mwh wing cell produces 3-5 hairs with abnormal polarity and in this way differs from the upstream genes. Often some of the hairs produced by mwh cells are quite small. As is the case for PPE mutant cells, mwh cells form hairs at abnormal locations along the cell periphery (WONG and ADLER 1993). Strikingly the abnormal polarity patterns seen in the wings of mutants are not random (GUBB and GARCÍA-BELLIDO 1982; WONG and ADLER 1993). Rather, the patterns are similar from one wing to another and similar for mutations in the PCP, PPE and mwh genes providing additional evidence that these genes all function together in the generation of PCP (TAYLOR et al. 1998).

Studies on mwh have been limited due to the gene not having been characterized molecularly. We report here that mwh is CG13913, which encodes a novel GBD-FH3 domain (G protein Binding Domain-Formin Homology 3) protein. The expression of mwh mRNA increases prior to hair initiation (REN et al. 2005) and we confirmed that this was also the case for Mwh protein. During this early period the protein accumulated on the proximal side of wing cells in a punctate manner. Over-expression of Mwh led to a delay in hair initiation, consistent with Mwh functioning as an antagonist of the cytoskeleton. Hence, we argue the proximal accumulation restricted hair initiation to the distal side of wing cells. Unlike other fz pathway proteins Mwh accumulated in growing hairs. Shift experiments with a temperature sensitive allele showed that mwh functioned after hair initiation to inhibit the formation of secondary hairs. Our data point to mwh having two functions. We hypothesize an early Mwh function that controls hair polarity and a later one that prevents the formation of secondary hairs. We suggest that Mwh in and in the vicinity of growing hairs mediates the inhibition of secondary hair initiation.

MATERIAL AND METHODS
Fly Genetics: All flies were raised at 25°C unless otherwise stated. Mutant stocks were either obtained from the *Drosophila* stock center at University of Indiana, generated in our lab or were generous gifts from J. Axelrod, D. Strutt, T, Uemura and T. Wolff. The FLP/FRT technology was used to generate genetics mosaics. To direct transgene expression, we used the Gal4/UAS system. For temperature shift experiments the relevant animals were collected as white prepupae, placed into fresh food vials and moved to the proper incubator. In line with FlyBase usage we use *starry night* instead of *flamingo* and *Van Gogh* instead of *strabismus*.

Immunostaining: A standard staining procedure was used (ADLER et al. 2004). Briefly, tissues were fixed with formaldehyde, rinsed, incubated with primary antibody, rinsed, incubated with fluorescently labeled secondary antibody and then mounted in ProLong (Invitrogen) Gold mountant.

Plasmid Constructs:

mwh cloning: PCR, cloning and sequencing used standard protocols. RACE was performed with a Marathon kit (Clontech). The extended mwh cDNA was PCR-amplified with a Expand kit (Boehringer) and cloned into pCR2.1 (Clontech). pUASt-mwh was prepared by excising the mwh insert from pCR2.1 with EcoRI and cloning it into the EcoRI site of pUAST.

mwh Subcloning for Protein Expression: The mwh EST clone SD18376 was used as the template. The last exon of mwh with correct coding frame was amplified with primers GATE-mwh5: GGGGACAAAGTTTGTACAAAAAACGAGGCTTCTTTTCTCAACACGTTCATTGAG-AGCG and GATE-mwh3: GGGACCACTTTGTACAAAGAAGCTGGGTCTTAGTAGAGG-CGGATGGCAGA. The PCR product was subcloned into pDORN 221 vector and then subcloned into pDEST 17 vector (Invitrogen Gateway technology).

Antibodies: His-tagged truncated Mwh proteins (encoded by last exon) were expressed in E.coli BL21-AI cells (Invitrogen) using the DEST 17 vector, and purified from inclusion bodies (Novagen). Antibodies against Mwh were raised in rats and rabbits. Monoclonal anti-Armadillo and anti-Flamingo antibodies were obtained from Developmental Studies Hybridoma Bank at the University of Iowa. Alexa 488- and Alexa 568-conjugated secondary antibodies were
RESULTS

CG13913 is mwh: We identified *mwh* by deficiency mapping followed by sequencing of candidate genes. We identified mutations in CG13913 in 4 null alleles of *mwh*, all of which would truncate the protein (Table 1). These included two mutations in splice acceptor sites, one nonsense mutation and one small deletion that altered the reading frame. For the *mwh*¹ allele, which is a phenotypic null we were unable to amplify the 3’ end of the gene suggesting it might be associated with a deletion, but we did not obtain definitive evidence on this point. By immunostaining we did not detect any Mwh protein in *mwh*¹ mutant cells, consistent with it being a null allele. In our collection of *mwh* alleles there is a single hypomorphic allele (*mwh*⁶) and we found it contained a change of Cys 222 to Tyr. The significance of this change will be discussed further below. By RACE analysis we confirmed that CG13913 was internally spliced as predicted and that there was a non-coding exon encoded by sequences some 20 kb upstream of the CG13913 coding exons (Figure 1A). Several lysozyme genes exist in both orientations within the large CG13913 first intron.

Additional proof that CG13913 was *mwh* came from experiments where we found that a UAS-CG13913 transgene provided rescue of a null *mwh* allele when driven by either *apterous-Gal4* (*ap-Gal4*) or *engrailed-Gal4* (Figure 1C,D). Almost complete rescue was obtained using the *actin-Gal4* driver, which drives expression at a somewhat lower level. In contrast, little rescue was obtained using *patched-Gal4* (*ptc-Gal4*) and this was restricted to very proximal parts of the *ptc* domain (data not shown). As is described later, this is presumably due to *ptc-Gal4* not being effective in driving *mwh* expression just prior to and during hair morphogenesis.

Independent evidence that CG13913 was *mwh* came from our finding that three separate transformants (41513, 41514 and 45265) from the Vienna Drosophila RNAi Center that encoded double stranded RNA from CG13913 produced a *mwh* mutant phenotype when expressed by *ap-GAL4*. These data provided compelling evidence that *CG13913* encoded *mwh*. Henceforth we refer to CG13913 as *mwh*.
The Mwh protein: The predicted Mwh ORF encodes an 836 residue protein with a formin FH3 and GBD (GTPase binding domain) domains (Figure 1B). These two domains are frequently found together in proteins such as the Diaphanous family formins. In some recent papers these “sequence domains” have been renamed to reflect “structural domains” as a GBD (smaller than previous GBD domain), a DID (Dad interacting domain – corresponding to part of both the older GBD and FH3 domains) and a DD (dimerization domain – corresponding to part of the older FH3 domain) domain (Goode and Eck 2007). These domains correspond to the regulatory region of Diaphanous family formins.

We identified Mwh homologs in other arthropods, including the lepidopteran B. mori, the coleopteran T. castenaum, the hemipteran P. humanus, the hymenopteran A. melifera and even the crustacean D. pulex (see alignments in Figure S1). However it was not detected in the unassembled sequence traces from the arachnid I. scapularis nor in nematodes or vertebrates. The distribution of Mwh across distantly related arthropod orders suggested it was part of an ancient morphogenesis network. Notable was the distinctive and highly conserved C-terminal KVTDLPSGLY motif. An FH3 domain was identified in our original Blast searches and additional psi-Blast searches and multiple sequence alignments (Rivero et al. 2005) identified vertebrate genes that were similar to an approximately 430 amino acid region of Mwh that comprised the amino terminal regulatory region of Diaphenous family formins and included both GBD and FH3 domains (Figures S2, S3). There are other Drosophila genes that are more similar to the identified vertebrate genes, thus, the vertebrate genes are not orthologs of mwh. Mwh does not contain the actin binding FH1 and FH2 domains that are characteristic of true formins, thus while related, Mwh is not a formin.

In the Diaphanous family formins the GBD domain binds a Rho GTPase and this displaces the autoinhibitory C terminal DAD domain (Alberts 2001; Watanabe et al. 1999) from the DID. This leads to the activation of Diaphanous and its stimulation of actin polymerization. The residue changed in mwh is within the GBD domain and conserved in other Mwhs. Hence this region is of functional significance. Based on similarity to Diaphanous, this residue is predicted to be part of the α8 helix that interacts directly with the G protein (Rose et al. 2005). By analogy, we suggest that the Mwh GBD domain will bind a small G protein in a regulatory interaction.
Mwh accumulation and localization is dynamic: We raised a polyclonal anti-Mwh antibody that was able to specifically detect the endogenous Mwh protein in pupal wings and used it to localize Mwh (Figure 2AB). We did not detect Mwh in wing disc or pupal wing cells by immunostaining prior to about 30 hr after puparium formation (apf) (Figure 2C-F). By the time of hair initiation strong Mwh staining was detected.

As noted earlier we found only very weak rescue of mwh using ptc-Gal4 UAS-mwh. This could be due to ptc-Gal4 not driving the needed level of mwh expression at the appropriate time. Consistent with this explanation we could easily detect a long stripe of Mwh by immunostaining of ptc-Gal4; UAS-mwh third instar wing discs and 24 hr pupal wings (Figure S4A). In 27 hr pupal wings Mwh staining was bright only in the center of the ptc domain (where ptc-Gal4 activity is highest) in the proximal half of the wing (Figure S4B). In 32-34 hr apf pupal wings, during and after the start of hair growth we detected increased Mwh immunostaining only in very proximal regions in the center of the ptc domain (Figure S4CD). Using the decline in the intensity of staining we were able to follow the decline in Mwh levels and this allowed us to estimate that the half life of the Mwh protein was at most 2-3 hrs in young pupal wings (Figure S5).

We found a complex pattern for Mwh localization in pupal wing cells (Figure 2). Mwh accumulated in a zig zag pattern at the cell periphery of wing cells between 30-34 hr apf (Figure 2E, J-L). The accumulation was quite uneven. In z sections it was located at the same location as Armadillo (β-catenin), a key component of adherens junctions (Figure 2 M-O). Both the uneven zig zag staining and the accumulation near the adherens junctions are also properties of the PCP and PPE proteins. The Mwh staining pattern was not nearly as sharp as that seen with PCP proteins such as Stan or In as some Mwh was seen near but not at the proximal plasma membrane. Indeed, Mwh did not completely co-localize with Stan or In (Figure 3A-F). The subcellular distribution of Mwh was dynamic. It accumulated in both emerging (e.g. from 30-32 hr apf) (Figure 2E) and growing wing hairs (e.g. from 32-34 hr apf) (Figure 2 F, P-R). Compared to F-actin it appeared to accumulate preferentially in the proximal part of the hair. Later in hair morphogenesis Mwh preferentially localized to the base of the hairs (e.g. after 36 hr apf) (Figure 2F, S-U). At later stages we also saw Mwh along the cell periphery, but the zig zag pattern was no longer distinct and the staining was relatively uniform. Other fz pathway proteins
do not localize in growing hairs (Adler et al. 2004; Axelrod 2001; Bastock et al. 2003; Das et al. 2004; Strutt 2001; Tree et al. 2002; Usui et al. 1999).

To determine if Mwh was localized at the proximal or distal or both sides of cells, we immunostained pupal wings that contained mwh mutant clones. The staining pattern of cells located at clone boundaries showed that Mwh accumulated at the proximal sides of wing cells (Figure 2G). This pattern is also seen for Pk, Vang and In.

The regulation of hair initiation and the actin cytoskeleton by mwh: mwh has long been used as a cuticular marker in genetic mosaics and thought to act cell autonomously. We confirmed this by examining marked clones in pupal wings where obvious changes in hair formation and the actin cytoskeleton were restricted to mutant cells (Figure 2HI).

The adult wing phenotype of mwh is similar to those of PCP and PPE genes in that loss of function mutations result in similar abnormal polarity phenotypes (Figure 1E-H). For example, in a fz, in or mwh mutant hairs in the most anterior region of the wing point toward the anterior margin as opposed to distally as in wild type (Figure 1E-H). In this region of the wing the fz phenotype is weaker than that of in or mwh. The mwh mutant phenotype differs from upstream genes due to most mwh cells forming 3-5 hairs instead of the 1 formed by the vast majority of fz cells and the 1-3 formed by in cells. Often, one or two of the hairs produced by a mwh cell were very small and such tiny hairs are rarely seen in mutants of PCP or PPE genes (Figure 1H).

That loss of mwh function lead to extra hairs suggested that Mwh served as an inhibitor to restrict hair initiation. However, the increase in mwh expression just prior to hair initiation suggested that Mwh might serve to activate the cytoskeleton. To attempt to distinguish between these hypotheses we examined the consequences of expressing mwh precociously. We saw no change in the actin cytoskeleton in wing discs expressing mwh and we saw no change in the timing of hair initiation or the appearance of the cytoskeleton in pupal wings where mwh was precociously expressed by ptc-Gal4. Thus, Mwh did not show any evidence of activating hair initiation. A limitation of this experiment is that as noted earlier, at the normal time of hair initiation ptc-Gal4 activity is low and does not result in mwh over expression. To get around this limitation we directed a higher-level of Mwh expression by using a combination of two Gal4 drivers (e.g. ptc-Gal4/+; Tub-Gal4/UAS-mwh). In such flies we observed a weak gain of function phenotype that consisted of occasional small hairs, cells that failed to form a hair,
multiple hair cells and regions of slightly altered polarity (Figure 4A,B). These phenotypes were primarily seen in the proximal part of the \textit{ptc} domain, in the vicinity of the posterior cross vein and in the proximal part of the anterior most region of the wing. This phenotype while weak showed complete penetrance. In 32 hr pupal wings of this genotype we observed that hair initiation was delayed over a substantial part of the \textit{ptc} domain and also near the posterior cross vein (Figure 4D-F). Since the adult phenotype was seen in a much smaller region of the wing than the pupal phenotype we concluded that most of the cells that were delayed in hair initiation still produced adult hairs of normal morphology. The ability of cells with delayed hair initiation to “catch up” and produce normal adult hairs was previously seen for clones of \textit{not} (non-stop) (\textit{REN} \textit{et al.} 2005). We concluded that Mwh acted as a negative regulator of hair initiation. The lack of an actin phenotype when over expressed in wing discs or in loss of function mutations in many cell types (data not shown) indicated that Mwh was not a general regulator of the cytoskeleton, but rather a cell type/developmental stage specific regulator.

The multiple hair cell phenotype and the accumulation of Mwh in growing hairs suggested that Mwh might bind to the actin cytoskeleton. To test this possibility we examined the distribution of Mwh in other cell types. \textit{mwh} mutations do not result in a mutant phenotype in bristles, however by immunostaining we found the endogenous protein co-localized with the large bundles of actin filaments found around the periphery of growing bristles (Figure 3G-L) (\textit{TILNEY} \textit{et al.} 1995). We extended these experiments to look at the localization of Mwh in larval body muscle and salivary gland cells where it is not normally expressed. The well-characterized sarcomeric structure of larval body wall muscle provided a scaffold to test the hypothesis that Mwh could bind to F-actin as opposed to an alternative cytoskeletal component. In larval muscle Mwh accumulated in a striated pattern (Figure 3 M-O) that did not coincide with F-actin staining and instead appeared to be localized to the M line. This suggested the possibility that Mwh interacted with a protein that regulated the activity or assembly of myosin. The lateral membranes of salivary gland cells stained strongly for F-actin and there were also bright staining actin “bars” in the basal most 1/3 of these cells. When we expressed \textit{mwh} in salivary gland cells, Mwh also accumulated at both of these locations (data not shown). We concluded that Mwh could bind to a constituent of the actin cytoskeleton but likely not F-actin itself.
mwh has two temporally separate functions: The two locations for Mwh accumulation were temporally distinct suggesting they reflected separate functions. We used a series of temperature shifts with the temperature sensitive mwh⁶ allele to test this hypothesis. When mwh⁶ flies were grown at 18°C they showed only a very weak phenotype (Figure 5A). In contrast when grown at 29°C they showed a strong hypomorphic phenotype (Figure 5D).

To facilitate the interpretation of shift experiments we first examined the timing of hair initiation in this stock at the permissive and restrictive temperatures. When this stock was grown at 29°C we found 0 of 4 24 apf hr wings contained hairs, 3 of 5 27 hr apf wings contained hairs (when detected the hairs were quite short and were not seen in the proximal most part of the wing) and 5 of 5 31 apf hr wings contained long hairs. We concluded that hair initiation was around 27 hr apf at 29°C. When the stock was grown at 18°C, 0 of 5 64 hr wings had hairs, 6 of 7 68-69 hr apf wings had hairs (in 5 of the 6 the hairs were short) and 13 of 13 70-72 hr apf wings had hairs (for 12/13 medium length hairs were seen in all regions of the wing (see Figure 5 M,N). We concluded that hair initiation was around 67-69 hr apf at 18°C. Initial temperature shift experiments showed that the temperature sensitive period was around the time of hair initiation.

To analyze the phenotypes of adult wings we examined qualitatively the polarity of hairs in the adult wing (Figure 5), and quantitatively the fraction of cells that formed a single hair and the average number of medium and long hairs per cell (within our test region) (Table 2). When pupae raised at the restrictive temperature (29°C) were shifted to the permissive temperature (18°C) prior to hair initiation (at 24 hrs apf) the phenotype was indistinguishable from those grown continually at 18°C (Figure 5A, E). This was true for the abnormal polarity of hairs, the fraction of cells that formed a single hair (100%) and the average number of hairs/cell (1 per cell) (Table 2). When the shift was made a few hrs later (27hr apf – around the time of hair initiation) the wings were different from those grown entirely at either the permissive or restrictive temperature. They showed a moderate hair polarity phenotype (Figure 5F,G), 51% of cells formed a single hair and on average cell 1.63 hairs per cell (Table 2). There were few of the very small hairs that are common in mwh but not in, fy or frtz mutants. When pupae were shifted several hr after hair formation (35 hr apf) there was no rescue and the wings resembled those from animals that were kept at 29°C. They showed a strong polarity phenotype, only 4% of the cells formed a single hair and on average they contained 2.56 hairs per cell (Figure 5H and
Different results were seen with the complementary shifts. Shifting from 18°C to 29°C well after hair formation (75 hr apf) had no effect (Figure 5I and Table 2), while shifting pupae several hours prior to hair initiation (62/64 hr apf) resulted in a completely restrictive phenotype (Figure 5L and Table 2). Once again an intermediate phenotype was seen when pupae were shifted right around the time of hair initiation (68 hr apf) (Table 2). A novel result was obtained when animals were shifted several (≈4) hours after hair initiation (72 hr apf). With this shift most wing cells produced a single relatively normal length distally pointing hair (Figure 5J and Table 2). These phenotypes were similar to those seen when no shift was made. In addition most of these cells produced several very small secondary hairs that could best be seen when the microscope was focused close to the surface of the wing (Figure 5K). We concluded from these observations that *mwh* functioned prior to hair initiation to control the number and polarity of medium/long hairs and after hair initiation to block the formation of small extra hairs. *mwh* is unique among *fz* pathway genes in having a function in the wing after hair initiation. Shifting temperature sensitive alleles of *fz* or *in* after the time of hair initiation had no effect on hair number or polarity (ADLER et al. 1994a; ADLER et al. 1994b). Further, inducing the expression of *fz* pathway components after hair initiation also failed to alter hair number or polarity (KRASNOW and ADLER 1994; STRUTT and STRUTT 2007; STRUTT and STRUTT 2002).

DISCUSSION

mwh has two functions in hair morphogenesis: The subcellular localization of Mwh was dynamic and unique for a protein involved in PCP. Mwh preferentially localized to the proximal side of pupal wing cells prior to hair formation (e.g. 30-32 hr apf), in emerging hairs (at 32-34 hr) and later at the base of mature hairs (e.g. after 36 hr apf). Our temperature shift experiments argued that *mwh* had discrete functions before and after hair initiation. We hypothesize that the early proximal accumulation of Mwh leads to hair initiation at the distal side of wing cells. This likely represents *mwh*’s function as a downstream component in the *fz* pathway. We further suggest that the inhibition of small ectopic hair formation that was detected by temperature shifts after hair initiation is mediated by Mwh that accumulates in the growing hair and in the base of the hair.
Our observation that the over expression of mwh around the time of hair initiation can lead to a delay in hair initiation and a small and multiple hair phenotype in adult wings argues that Mwh acts as a negative regulator of hair initiation. This is consistent with Mwh being localized to the proximal side of wing cells when hairs initiate on the distal side, and Mwh being localized to the hair when it functions to prevent the formation of small hairs after the normal hair has begun to grow.

How is Mwh recruited to the hair? The accumulation of Mwh in the hair is presumably due to its interacting with one or more hair components. The hair contains both peripheral actin filaments and centrally localized microtubules. Because of the small size of the hair it is difficult to distinguish between Mwh accumulating with either or both of these cytoskeletons. We therefore examined the localization of Mwh in other cell types. In both bristles and salivary gland cells we found that Mwh co-localized with the actin cytoskeleton. Although Mwh contained a GBD-FH3 domain that is also found in formins it lacked the FH1 and FH2 domains that mediate formin binding to F-actin (GOODE and ECK 2007). This suggested Mwh would not interact directly with actin. Consistent with this hypothesis we found that in larval muscle Mwh accumulated in a striated pattern that was offset from the bands of F-actin. From this we concluded that Mwh did not bind directly to F-actin. The localization to what appeared to be the M line in muscle suggested Mwh interacted with a protein that regulated myosin assembly or activity in striated muscle (MERCER *et al.* 2006; MUSA *et al.* 2006) and perhaps with a similar protein in epidermal cells.

Mwh, G proteins and Formins: The sequence similarity between Mwh and the regulatory domain of formins suggested several possible biochemical mechanisms that could be functionally important. In diaphanous family formins the GBD binds Rho1, which results in the activation of the formin to promote actin polymerization (GOODE and ECK 2007). Rho1 has been implicated in fly planar polarity making it a strong candidate for interacting with Mwh (STRUTT *et al.* 1997). In preliminary studies we have obtained both genetic and biochemical evidence for such an interaction but the interpretation of the data are complicated by our finding that Rho1 has multiple functions in wing hair development. The presence of the DD domain also suggests the possibility that Mwh might dimerize with a true formin and regulate the actin cytoskeleton in
that way. An obvious candidate for such a function is the DAAM formin, which in Xenopus was found to bind to Dsh (HABAS et al. 2001). However, studies on fly DAAM failed to reveal any function in planar polarity or hair morphogenesis (MATUSEK et al. 2006). The diaphanous gene is another potential candidate. This gene has been well studied but there are no reports on its role in the differentiation of the adult epidermis. Intriguingly, Diaphenous localizes to growing embryonic denticles (PRICE et al. 2006), which like hairs are actin containing extensions of epidermal cells. As is the case for epidermal hairs, mwh mutations result in the formation of extra denticles (DICKINSON and THATCHER 1997) suggesting Dia as a possible partner for Mwh. None of the other fly formins have been found to function in wing hair development or wing planar polarity but several have not been well studied and are expressed in pupal wings (e.g. CG10990, Formin 3 and Fhos) (REN et al. 2005). One of these could function with mwh.

A Model for Mwh in Wing Tissue Polarity: There are several possible models as to how Mwh located on the proximal side of wing cells resulted in distal hair formation. One is that proximal Mwh stimulated hair initiation at the juxtaposed distal side of neighboring cells. However, mwh acts cell autonomously so we can rule out this model. An alternative is that Mwh, In and other PPE proteins formed a protein complex that organized the cytoskeleton to direct intracellular transport of hair building components to the distal side leading to hair initiation there. This is plausible but no changes in the cytoskeleton prior to hair initiation have been seen in these mutants. A third possible model and one we prefer is that proximal Mwh locally inhibits hair initiation by regulating the cytoskeleton. This would lead to the preferential activation of the cytoskeleton on the distal side of the cell where Mwh levels were lowest. The cytoskeleton would self assemble to refine the area for hair initiation to a small region near the distal vertex. As the cytoskeleton is activated distally and a new hair emerges, Mwh would be recruited to this region, perhaps by binding to a hair component and/or a protein that interacted with a cellular myosin. Mwh would once again function locally to inhibit new hair initiation events and hence insure that only a single unbranched hair forms. We view this latter Mwh function as a type of feedback inhibition that limits the activation of the cytoskeleton.
Acknowledgements
This work was supported by a grant from the NIGMS to PNA and a grant from the UK Medical Research Council to Michael Ashburner. We gratefully acknowledge the provision of laboratory space by Dr. Ashburner. We thank Jeannette Charlton for technical help. The NCBI, EBI, FlyBase and the Kyoto University GenomeNet supplied online bioinformatics services used in this study. We thank the reviewers for helpful comments.

Literature Cited

Mercer, K. B., R. K. Miller, T. L. Tinley, S. Sheth, H. Qadota et al., 2006 Caenorhabditis elegans UNC-96 is a new component of M-lines that interacts with UNC-98 and paramyosin and is required in adult muscle for assembly and/or maintenance of thick filaments. Mol Biol Cell 17: 3832-3847.

Figure Legends

Figure 1. The *mwh* gene and protein. Panel A is a representation of the *mwh* gene. Other genes in the region and the experimentally determined splicing pattern are shown. Panel B is a representation of the Mwh protein. The relative location of the GBD and FH3 domains are shown along the 836 amino acid protein. Panel C shows the dorsal surface of the anterior edge of an *ap-Gal4/UAS-mwh; mwh* wing. Panel D is the ventral surface of the same wing. *ap-Gal4* drives expression of *mwh* only in dorsal cells providing rescue of the mutant phenotype in that cell layer. This rescue is seen in 100% of animals. Panels E, F, G and H show a small region from the anterior part of Ore-R, *fz*, *in*, and *mwh* wings. Note the hairs point distally in wild type but not in the mutants. The polarity phenotype is weaker in *fz* than in *or mwh* mutant wings in this region. Almost of the cells in the *in* wing produce more than one hair and all of the cells in the *mwh* wing do so. One cell in the *fz* wing formed two hairs. The very small hairs seen in *mwh* wings (arrows) are not seen in any of the other genotypes.

Figure 2. Mwh localization is dynamic. Panels A and B are confocal images of a *mwh* clone marked by a loss of GFP in a pupal wing stained with anti-GFP (green) and anti-Mwh (red) antibodies. Panel A shows the merged image. Panel B (as well as other single channel panels) is shown in grayscale as this provides better contrast. The asterisk labels the clone. Panels C, D, E, and F show pupal wings stained with anti-Mwh antibody at 28 hr, 30 hr, 32 hr and 36 hr after puparium formation (apf) respectively. The arrow points to accumulation of Mwh at the base of the hair in the 36 hr wing. Panel G shows Mwh immunostaining at the boundary between expressing and non-expressing cells. The arrows point to proximal edges that show accumulation of the protein. The arrowhead points to the distal edge of an expressing cell that does not accumulate Mwh. Panels H and I show a *mwh* clone marked by the loss of GFP and stained with phalloidin. Note the multiple hair cell phenotype is limited to the mutant cells. Panels J, K and L show pupal wing cells stained with anti-Armadillo (green) and anti-Mwh (red) antibodies. Panel K is a merge. Panels M, N and O are Z section reconstructions from the wing shown in panels J-L. Note that Mwh and Armadillo are co-localized near the apical surface of wing cells. Panels P, Q and R show the accumulation of Mwh (red) and F-actin (green) in growing hairs. Note that Mwh is preferentially localized in proximal regions of the hair, but not extensively in the actin rootlet that extends into the cell. Panels S, T and U show pupal wing
cells aged around 36 hr apf. Note the accumulation of Mwh at the base of the hairs (arrow in G3).

Figure 3. Panels A, B and C show a 30 hr pupal wing stained with both anti-Mwh (red) and anti-Stan (green) antibodies. As in Figure 2 single channel images are shown in grayscale to improve contrast. B is the merged image. Note the Stan staining is more precisely localized at the plasma membrane and the two proteins are not tightly co-localized. Panels D, E and F show a 30 hr pupal wing stained with both anti-Mwh (red) and anti-In (green) antibodies. In immunostaining is very sensitive to fixation so only very weak fixation was used in this experiment and this led to the poor anti-Mwh staining. Panels I and K show a wing bristle where the endogenous Mwh protein is immunostained (red). F-actin is in green. Panels J and L are higher magnification images of the proximal region of the bristle. Note that Mwh accumulates along the large actin bundles and is preferentially in the proximal part of the bristle. Panels M, N and O show a piece of larval body wall muscle where \textit{mwh} expression was driven using Tubulin-Gal4. Mwh is shown in red and F-actin in green (Alexa 488 phalloidin). Note the strong Mwh staining in the gap between regions of F-actin staining.

Figure 4 The over expression of \textit{mwh} inhibits hair initiation. Panels A and B are from \textit{ptc-GAL4/}; \textit{Tub-Gal4/UAS-mwh} flies. Panel A is from the dorsal wing surface just distal to the anterior cross vein. Several double hair cells are shown (arrows) and a weak polarity phenotype is seen. Panel B is from the ventral surface just distal to the posterior cross vein. In this region many cells from very small (or no hairs)(arrowheads) and other form double hair cells (arrows). Panel C is from a \textit{ptc-GAL4/}; \textit{Tub-GAL4/+} fly. A high level of GAL4 expression can induce the formation of a small number of multiple hair cells (arrow). This phenotype is much weaker than that seen with \textit{ptc-GAL4/}; \textit{Tub-Gal4/UAS-mwh} wings. The number of multiple hair cells is about 4 fold higher in this latter genotype. Panel D is a \textit{ptc-GAL4/}; \textit{Tub-Gal4/UAS-mwh} pupal wing stained for F-actin. Panel E is an equivalent Ore-R control wing. They are centered on the middle of the \textit{ptc} domain ventral surface. Note the delayed hair formation in the central part of the \textit{ptc} domain in panel D (marked with an asterisk). Panel F is a \textit{ptc-GAL4/}; \textit{Tub-Gal4/UAS-mwh} showing the region around the posterior cross vein. Arrows point to cells forming multiple hairs. The arrowhead points to a cell that has not yet begun to form a hair.
Figure 5. *mwh* has two functions. Panels A-L are of *mwh*\(^6\) adult wings after various temperature regimes. Panels A through D are wings from flies raised completely at 18°C, 21°C, 25°C and 29°C respectively. Note how the phenotype becomes more severe as the temperature increased. Panels E through H show wings from pupae that were shifted from 29°C to 18°C at 24 hr, 27 hr (shown at two focal planes) and 35 hr apf respectively. Note that a shift at 27 hr produces a relatively strong polarity phenotype but only a small number of short hairs. Panels I through L show wings from pupae shifted from 18°C to 29°C at 75 hr, 72 hr (two focal planes) and 62 hr apf. Note the many very small hairs in panel K. Panels M and N are from *mwh*\(^6\) 70 hr pupal wings that show short and medium length hairs (as discussed in the text).

Figure 6 – A model for *mwh* function. In 32 hr pupal wings Mwh accumulates on the proximal side of wing cells. As differentiation proceeds activators of the cytoskeleton accumulate. Local inhibition by Mwh leads to the cytoskeleton being activated in the distal most part of the cell. In 34 hr pupal wings hair morphogenesis has begun. The growing hair contains both F-actin and microtubules and associated bound proteins. Mwh is recruited to the proximal part of the hair. At this location it inhibits the cytoskeleton from initiating new hair outgrowth centers.
32 hr
Activated Cytoskeleton

34 hr Hair
Table 1
Nature of \textit{mwh} mutations.

<table>
<thead>
<tr>
<th>Allele</th>
<th>Molecular Change</th>
<th>Phenotype</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{mwh}^1</td>
<td>uncertain, unable to amplify 3' end of gene</td>
<td>null</td>
<td>Likely a deletion, no CRM</td>
</tr>
<tr>
<td>\textit{mwh}^2</td>
<td>C1229633T</td>
<td>null</td>
<td>Stop at codon 11</td>
</tr>
<tr>
<td>\textit{mwh}^3</td>
<td>G1230259T</td>
<td>null</td>
<td>Eliminates exon 5 splice acceptor</td>
</tr>
<tr>
<td>\textit{mwh}^4</td>
<td>1230897-1230902 deletion</td>
<td>null</td>
<td>Deletes exon 7 splice acceptor</td>
</tr>
<tr>
<td>\textit{mwh}^5</td>
<td>1230570-1230582 deletion</td>
<td>null</td>
<td>Changes reading frame after codon 243 followed by 39 novel amino acids prior to a stop cod</td>
</tr>
<tr>
<td>\textit{mwh}^6 *</td>
<td>G1230445A</td>
<td>hypomorphic, ts</td>
<td>Cys 222Tyr</td>
</tr>
</tbody>
</table>

*The temperature sensitive \textit{mwh}^6 allele contained 3 amino acid substitutions compared to the reference wild type sequence; however two of these were also found on another chromosome (from the same parental stock) that did not show the \textit{mwh}^6 phenotype and hence are likely neutral polymorphisms.
Table 2
Effects of temperature shifts on the phenotype of *mwh*ts.

<table>
<thead>
<tr>
<th>allele</th>
<th>Original °C</th>
<th>Time of shift*</th>
<th>Fraction of single hair cells*</th>
<th>P vs 18°C</th>
<th>P vs 29°C</th>
<th>Mean hairs/cell@</th>
<th>P vs 18°C</th>
<th>P vs 29°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>mwhts</td>
<td>18°C</td>
<td>none</td>
<td>1.00 (0)</td>
<td>NR</td>
<td>0.002</td>
<td>1.00 (0.002)</td>
<td>NR</td>
<td><0.001</td>
</tr>
<tr>
<td>mwhts</td>
<td>21°C</td>
<td>none</td>
<td>0.87 (0.013)</td>
<td>0.005</td>
<td>0.002</td>
<td>1.14 (0.014)</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>mwhts</td>
<td>29°C</td>
<td>none</td>
<td>0.055 (0.015)</td>
<td>0.002</td>
<td>NR</td>
<td>2.47 (0.028)</td>
<td><0.001</td>
<td>NR</td>
</tr>
<tr>
<td>mwhts</td>
<td>18°C</td>
<td>72 hr</td>
<td>1.00 (0)</td>
<td>1.00</td>
<td>0.002</td>
<td>1.00 (0.002)</td>
<td>1.0</td>
<td><0.001</td>
</tr>
<tr>
<td>mwhts</td>
<td>18°C</td>
<td>69 hr</td>
<td>1.00 (0)</td>
<td>1.00</td>
<td>0.002</td>
<td>1.00 (0.002)</td>
<td>1.0</td>
<td><0.001</td>
</tr>
<tr>
<td>mwhts</td>
<td>18°C</td>
<td>68 hr</td>
<td>0.78 (0.095)</td>
<td>0.015</td>
<td>0.002</td>
<td>1.26 (0.022)</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>mwhts</td>
<td>18°C</td>
<td>66 hr</td>
<td>0.052 (0.0095)</td>
<td>0.002</td>
<td>0.699</td>
<td>2.48 (0.029)</td>
<td><0.001</td>
<td>0.94</td>
</tr>
<tr>
<td>mwhts</td>
<td>29°C</td>
<td>24 hr</td>
<td>1.00 (0)</td>
<td>1.00</td>
<td>0.002</td>
<td>1.00 (0.002)</td>
<td>1.0</td>
<td><0.001</td>
</tr>
<tr>
<td>mwhts</td>
<td>29°C</td>
<td>25 hr</td>
<td>0.995 (0.0034)</td>
<td>0.394</td>
<td>0.002</td>
<td>1.01 (0.0033)</td>
<td>0.842</td>
<td><0.001</td>
</tr>
<tr>
<td>mwhts</td>
<td>29°C</td>
<td>27 hr</td>
<td>0.51 (0.14)</td>
<td>0.015</td>
<td>0.002</td>
<td>1.63 (0.030)</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>mwhts</td>
<td>29°C</td>
<td>31 hr</td>
<td>0.043 (0.011)</td>
<td>0.002</td>
<td>0.55</td>
<td>2.53 (0.0285)</td>
<td><0.001</td>
<td>0.09</td>
</tr>
<tr>
<td>mwhts</td>
<td>21°C</td>
<td>none</td>
<td>0.012 (0.0048)</td>
<td>0.002</td>
<td>0.041</td>
<td>2.78 (0.030)</td>
<td><0.001</td>
<td><0.001</td>
</tr>
</tbody>
</table>

* Animals were either shifted from 18°C to 29°C or from 29°C to 18°C

The fraction of cells from our assay region forming a single hair was determined for 6 wings of each genotype and these values were compared. Only long and medium length hairs were considered. The Mann-Whitney rank sum test was used to test for significance, as the data points did not show equal variance.

@ The distribution of hair cell types (single, double etc.) was determined for 100 cells from each of 6 wings. The 600 hair cell populations from each genotype were compared. Only long and medium length hairs were considered. The Mann-Whitney rank sum test was used to test for significance, as the data points did not show equal variance.