Identification of Drosophila mutants altering defense and endurance of to *Listeria monocytogenes* infection.

Janelle S. Ayres*, Nancy Freitag** and David S. Schneider*

*Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305 and **Department of Microbiology and Immunology, University of Illinois, Chicago, Chicago, IL 60612.
Running title: A survival based screen for defense and endurance

Key words: *Drosophila melanogaster*, innate immunity, pathogenesis, *L. monocytogenes*, genetic screen

Corresponding author: David S. Schneider, Department of Microbiology and Immunology, Stanford University, 299 Campus Drive, Stanford, CA 94305. Telephone - (650) 724-8063, Fax – (650) 725-6757, dschneider@stanford.edu
ABSTRACT

We extended the use of Drosophila beyond being a model for signaling pathways required for pattern recognition immune signaling and show that the fly can be used to identify genes required for pathogenesis and host-pathogen interactions. We performed a forward genetic screen to identify Drosophila mutations altering sensitivity to the intracellular pathogen *Listeria monocytogenes*. We recovered 18 mutants with increased susceptibility to infection, none of which were previously shown to function in a Drosophila immune response. Using secondary screens, we divided these mutants into two groups: In the first group, mutants have reduced endurance to infections but show no change in bacterial growth. This is a new fly immunity phenotype that is not commonly studied. In the second group, mutants have a typical defense defect in which bacterial growth is increased and survival is decreased. By further challenging mutant flies with *L. monocytogenes* mutants, we identified subgroups of fly mutants that affect specific stages of the *L. monocytogenes* lifecycle, exit from the vacuole or actin based movement. There is no overlap between our genes and the hundreds of genes identified in Drosophila S2 cells fighting *L. monocytogenes* infection using genome wide RNAi screens *in vitro*. By using a whole animal model and screening for host survival, we revealed genes involved in physiologies different than those that were found in previous screens, which all had defects in defensive immune signaling.
INTRODUCTION

Intracellular pathogens are responsible for a large group of infectious diseases; for example, more than 500 million people worldwide suffer from tuberculosis, AIDS and malaria each year (http://www.who.int). By residing in a host cell, these pathogens protect themselves from some host immune responses and drug therapies. The ability to enter and survive within a host cell requires a close and intricate interaction between pathogen and host; by manipulating host processes, pathogens can prevent immune responses or subvert host processes to aid in infection.

L. monocytogenes is a Gram-positive, facultative intracellular bacterium and is the cause of listeriosis, a serious food borne disease. *L. monocytogenes* has been widely used as a model pathogen to better understand the molecular and cellular aspects of intracellular pathogenesis and mammalian cell-mediated immunity. *In vitro* studies using cultured cells as a model host defined the *L. monocytogenes* intracellular lifecycle and virulence factors (KREFT and VAZQUEZ-BOLAND 2001; VAZQUEZ-BOLAND et al. 2001; PORTNOY et al. 1988; COSSART and LECUIT 1998) and demonstrated that *L. monocytogenes* can enter professional phagocytes or non-phagocytic cells (COSSART et al. 2003). Entry into non-phagocytic cells is dependent on surface proteins called internalins (COSSART and LECUIT 1998; LECUIT et al. 1999; LECUIT et al. 2001). Upon entry, a single-membrane vacuole forms around the bacterium (COSSART and LECUIT 1998). Secretion of a pore forming cytotoxin, listeriolysin O (LLO), disrupts the phagosome membrane, freeing the bacterium into the cytosol where it can grow and divide (PORTNOY et al. 1988; GEDDE et al. 2000; KUHN et al. 1988; O’RIORDAN and PORTNOY 2002). Expression of the actin nucleating protein ActA facilitates
polymerization of host actin at one pole of the bacterium, resulting in directional movement through the cytosol. Bacteria are able to spread to neighboring cells and escape from a second double-membrane phagosome into the cytosol of a new host cell (KOCKS et al. 1992; KOCKS et al. 1993; TILNEY et al. 1990; TILNEY and PORTNOY 1989; DOMANN et al. 2002).

The development of RNA interference (RNAi) technology provided researchers with a new approach to studying host factors involved in host-pathogen interactions in the fly (RAMET et al. 2002; FOLEY and O’FARRELL 2004; AYRES and SCHNEIDER 2006). Two recent reports describe the use of RNAi in Drosophila S2 cells (embryo derived phagocytic cells from Drosophila) to identify host factors involved in *L. monocytogenes* infection; these screens helped clarify the cell-biology of the interactions of *L. monocytogenes* with professional phagocytes (AGAISSE et al. 2005; CHENG et al. 2005). The assays used in these *in vitro* screens measured bacterial loads or qualitative changes in bacterial patterns. This limited the scope of the screens to the identification of fly genes regulating the bacterial lifecycle. Surprisingly, these screens did not identify genes affecting the well characterized pattern recognition pathways, Toll and imd. Moreover, these *in vitro* systems are obviously limited in their ability to explore how whole-animal physiologies interacts with an infecting microbe and how *L. monocytogenes* can enter and survive in a wide variety of cell types.

To overcome these limitations, we performed a forward genetic screen in whole Drosophila to identify host genes required to survive infections. We had three goals. First we wanted to cast a wider net than has been previously used to measure immunity in Drosophila. Much of what we know about fly immunity has been deciphered using
extracellular microbes in immunocompromised flies. By using *L. monocytogenes* in our study we were able to identify host genes important for survival of an intracellular infection. These genes may be specific to a *L. monocytogenes* infection, intracellular pathogens in general or a variety of pathogens. By coupling survival and bacterial proliferation as our output phenotypes, we were able to identify mutants with defense defects as well as lines with pathological defects – those that die from the disease faster without altered bacterial load. We hypothesize that this second class of mutants is less able to endure the stress of an infection. Second, we wanted to determine whether genes required to survive infection in whole flies were the same as those identified in cultured cells by RNAi screens. By doing this, our screen would reveal differences in the host genes involved in the interactions between whole-animal physiology and the microbe, as well as those host genes involved in the interactions between one cell type and the infecting microbe. Third, we wanted to probe the host contributions to the infection because most studies involving host-pathogen interactions with an intracellular pathogen have focused on identifying microbial factors required for infection.

The *Drosophila* innate immune response has three arms: First, the cellular immune response depends on circulating phagocytic cells that can engulf and clear foreign microbes. Second, the melanization response produces melanin and toxic reactive oxygen species at wounds and sites of infection. The third branch is the humoral immune response, which involves the production of antimicrobial peptides (AMP) by the fat body. These AMPs are produced largely under the control of the Toll and IMD pathways. Both of these pathways are activated by microbial elicitors and disruption of these pathways immunocompromises the fly such that the fly becomes sensitive to

We identified 18 mutants with increased sensitivity to *L. monocytogenes* infection. None of these genes were described previously to have immune or pathogenesis functions. Secondary screens grouped these mutants into phenotypic classes. The flies can be split into classes based on their ability to control the growth of *L. monocytogenes*. We define one group as having defects in endurance and suspect that it has difficulties controlling pathogenesis because mutant flies die faster than wild type flies even though the bacterial load is the same as in wild type flies. A second class appears to lack defense functions. We define this group as immunocompromised because it shows increased fly death that is correlated with rapid growth of *L. monocytogenes*. The mutants can also be split into either sensitive or wild type classes based on their response to *Staphylococcus aureus* or *Salmonella typhimurium*. Secondary screens that used *L. monocytogenes* mutants allowed us to determine that three of our fly mutants may be acting at the vacuole and cytoplasmic stages of the bacteria lifecycle. Thus, by
screening for survival as an endpoint instead of monitoring the transcriptional output of Toll or imd signaling, we identified host genes involved in immunity and pathogenesis that have not been identified previously.

MATERIALS AND METHODS

Flies, bacterial strains and media. The Exelixis *Drosophila melanogaster* piggyback insertion mutant collection was used for the survival screen. To serve as a wild-type control the w1118 line used to generate the isogenic collection was used. All viable lines available at Bloomington Drosophila stock center at the beginning of the screen were obtained (1,231 lines total). Flies were kept in standard fly bottles containing dextrose medium. *L. monocytogenes* strains 10403S, DP-L2161 (Δhly) and DP-L3078 (ΔactA) were stored at -80°C in brain-heart infusion broth (BHI) containing 15% glycerol. The *L. monocytogenes* mutant strains were derived from the 10403S parent strain and generated in the laboratory of Dr. Daniel A. Portnoy (University of California, Berkeley). *Salmonella typhimurium* SL1344 was stored at -80°C in LB media containing 15% glycerol. *Staphylococcus aureus* – clinical isolate from the Clinical Microbiological Laboratory at Stanford University and was stored at -80°C in BHI media containing 15% glycerol.

Survival screen. For infection of adult flies, *L. monocytogenes* was grown overnight in BHI medium at 37°C without shaking. A total of 10 adult flies, aged five- to seven-days old, per mutant line were injected with 50 nL of culture using a picospritzer and pulled glass needle. Flies were injected in the anterior abdomen on the ventrolateral surface with approximately 1000 CFUs. Mutant lines were tested in groups of a minimum of 20 lines, in addition to a wild type control. Once infected, flies were
transferred to vials containing dextrose medium and incubated at 29°C and the number of
dead flies for each line was counted every twenty four hours post infection until all flies
were dead. The median time to death (MTD), the time post-infection when 50% of
infected flies have succumbed to the infection, for each line was determined and those
exhibiting the most extreme phenotypes were flagged for further testing. Mutant lines
that failed to exhibit a phenotype in the initial test were not further tested. Candidate
lines were re-tested in three independent experiments to eliminate any false positives.
Thirty five- to seven-day old male flies per line were infected as before and the death rate
of the mutant flies for each line was compared directly to the death rate of wild type
control flies using Graphpad Prism software. Using log rank analysis, the p-value was
determined. Lines that exhibited a death rate with a p-value less than p = 0.05 for all
three re-tests were considered positive mutants.

Secondary screens.

* S. aureus and S. typhimurium secondary screens. For infection of adult flies
 with *S. aureus*, bacteria were grown overnight in BHI medium at 37°C with shaking.
 Approximately 100 CFUs were injected into each fly. For infection with *S. typhimurium*,
 bacteria were grown in LB medium at 37°C and approximately 10,000 CFUs were
 injected into each fly. For all infections, thirty five- to seven-day old male flies per
 mutant line were infected as mentioned above and the death rate for each line was
directly compared to that of wild type flies and analyzed as previously mentioned.

Quantification of CFUs in flies. Infected flies were homogenized in BHI media
supplemented with 1% Triton X-100. Homogenates were serially diluted and plated on
BHI-agar and incubated overnight at 37°C. The number of CFUs per mutant line was
compared to that of wild-type flies using Graphpad Prism software for three independent experiments. Using an unpaired t-test, the p-value was determined. Mutant lines that exhibited a p-value less than p = 0.05 for all three retests were considered to have significantly different bacterial growth compared to wild-type control.

L. monocytogenes mutants. For infection of adult flies with both DP-L2161 and DP-L3078, bacteria were grown at 37°C overnight without shaking. Thirty five- to seven- day old male flies per mutant line were infected for three independent replicates for each mutant fly line and flies were injected with approximately 1000 CFUs. The death rate for each line was directly compared to a wild-type control and analyzed using Graphpad Prism software as described above.

Verification of PiggyBac insertion site. Inverse PCR was done to determine the insertion site for the pBac element following a protocol provided by Exelixis. Briefly, Genomic DNA from each mutant fly line was isolated using the Qiagen DNeasy kit. 5’ and 3’ end digestions were done using Sau3AI and HinP1 respectively and incubated at 37°C for three hrs. Ligations were done using T4 DNA ligase at 4°C overnight. PCR reactions were performed using the primer sequences and reaction conditions provided by Exelixis (http://flystocks.bio.indiana.edu).

RESULTS AND DISCUSSION

Screening for host genes important for survival: To search for host genes that are important for surviving an infection, we conducted a forward genetic screen in a mutant population of Drosophila and monitored death rates following challenge with *L. monocytogenes*. *L. monocytogenes* establishes a lethal infection upon injection into
Drosophila (Figure 1A) (MANSFIELD et al. 2003). Wild type flies injected with \(10^3\) colony forming units (CFUs) exhibited a median-time-to-death (MTD) of four to five days post infection. The predictable death kinetics allowed us to use survival as an output phenotype for our screen. We hypothesized that screening flies for their ability to survive \(L.\ monocytogenes\) infections would allow us to determine immune mechanisms used to fight this microbe, host mechanisms exploited by the pathogen, and physiologies that drive pathogenesis in the fly.

For our initial screen we tested 1,231 viable mutants from the publicly available collection of Exelixis PiggyBac (pBac) homozygous transposon insertion lines. We tested only homozygous viable lines and this number represents approximately 8% coverage of the Drosophila genome. Age-matched male flies from each mutant line were injected with \(10^3\) CFU of \(L.\ monocytogenes\) and survival was monitored. Approximately half of the mutants tested exhibited a MTD of four days post infection (Table 1). The mutant lines that exhibited the most extreme phenotypes with MTDs of Day one and Day seven (approximately 100 mutants) were tested further to eliminate any false positives. The candidate mutants were tested in three independent experiments and the death curves for each were compared to the wild-type control and statistical analysis was done. After three rounds of re-testing more than 80% of these mutants were considered false positives and a total of 18 mutants, all with increased sensitivity to infection, were identified as positive mutants that affect host susceptibility to \(L.\ monocytogenes\) infection (Table 2). For our study, we define any fly that exhibits a reproducible, significantly different faster death rate compared to wild type flies as sensitive and any fly with a slower death rate
compared to wild type as resistant. We injected the positive mutants with media alone to confirm that the increased mortality was infection-dependent (data not shown).

Identification of genes: A benefit of using the Exelixis pBac collection is that the insertion sites of the transposons for the mutants in the collection are publicly available. The Bloomington Drosophila Stock center (http://flystocks.bio.indiana.edu) has verified the reported insertion sites. For additional verification, we identified the pBac element insertion site in each of our positive mutants using iPCR and by BLAST sequence analysis of the flanking DNA sequences. Our gene identities agree with those reported by Exelixis (Table 3). We also outcrossed our 18 mutants to the parental strain and challenged the F4 generation with *L. monocytogenes* to reduce the possibility of background effects on host survival. Using the Computed Gene (CG) numbers for the genes we determined the Gene Ontology (GO) terms from Flybase (http://flybase.bio.indiana.edu) and listed in Table 3.

Ubiquitination components: From our screen we identified three mutant lines whose candidate genes can be categorized as genes involved in the ubiquitination process. These are *crossbronx*, *CG15120* and *CG2247*. This was not surprising as previous studies demonstrated the importance of ubiquitin-mediated protein degradation in the regulation of the Toll and IMD pathways. Activation of the Toll pathway requires the ubiquitination and degradation of cactus, the inhibitor of the NF-kb-like transcription factor DIF. Lys-63 polyubiquitination of TRAF6 is necessary for signaling through the IMD pathway (ZHOU et al. 2005). Additionally, ubiquitination is important for controlling the cytotoxicity of LLO after release of *L. monocytogenes* from the vacuole during infection.
cbx is characterized as an ubiquitin conjugating E2 enzyme. It has been studied in processes including axon pruning, sperm development and sperm individualization. In the context of fly immunity, cbx has been identified from a genetic screen to possibly have a role in crystal cell development, a type of immune cell in the fly (MILCHANOWSKI et al. 2004). The identification of this gene may reveal a role for crystal cells in the host defense against bacterial infection.

CG15120, is a homolog of the Parkin co-regulated gene protein, PACRG, which is involved in ubiquitination; Moreover, polymorphisms in PACRG and a related gene, PARK2, are linked to increased susceptibility to the intracellular pathogen Mycobacterium leprae in humans (LORENZETTI et al. 2004; SCHURR et al. 2006). Polymorphisms in PACRG and PARK2 have been linked to the susceptibility of humans to the pathogens Salmonella typhi and Salmonella paratyphi (ALI et al. 2006). The third ubiquitin-related gene, CG2247 represented in line 18050 contains an F-box domain that facilitates the interactions between proteins during polyubiquitination. Our identification of these genes may reveal new processes in host defense and pathogenesis in which ubiquitin-mediated protein degradation are involved.

RNA binding/processing components: The second main class of mutants we identified from our screen includes proteins involved in various processes involving RNA. CG3527 is involved in rRNA processing, specifically processing of the small ribosomal subunit. CG32706 and CG3056 are reported to have mRNA binding activity. Expression and mutation analysis have not been published for these genes.

Additional interesting genes recovered: Two additional genes we recovered that we find of great interest are ets21C and gr28b. ets21C is a DNA-binding protein with
transcription factor activity. Previous studies have demonstrated that ets21C is immune-regulated: its expression is up-regulated in *Drosophila* S2 cells in response to an LPS challenge and regulation is dependent on activation of JNK signaling via the IMD pathway (BOUTROS *et al.* 2002; PARK *et al.* 2004). No immune function for this gene has been demonstrated.

gr28b is a seven pass transmembrane gustatory receptor important for taste perception. Expression studies have shown this protein is expressed in the bitter taste cells of the sensilla in the fly taste organs. Identifying a gene involved in taste perception in the context of immunity and pathogenesis was somewhat surprising. Future experiments will reveal if the feeding behavior of the fly is affected and thus affecting the immune response in the fly. Alternatively, *gr28b* may be serving a function other than taste perception in the fly.

Phenotypic characterization of mutants – defense defects versus endurance

defects: To distinguish which of our mutants had defects in immunity versus pathogenesis, we performed three secondary screens. First, we measured *L. monocytogenes* growth to determine whether flies had a defect in preventing growth of this microbe. Second, we measured survival when infected with *S. aureus* to determine whether the mutants had a general defect in preventing Gram-positive bacterial growth (Toll mutants are very sensitive to both these microbes). Third, we measured survival when infected with *S. typhimurium* to determine whether the mutants were sensitive to Gram-negative bacteria (as might be expected for IMD pathway mutants) (Table 4).

To monitor *L. monocytogenes* growth, flies were infected, homogenized at 0, 24 and 48 hours post-infection, and plated to count viable bacteria. Twelve mutants had
increased *L. monocytogenes* growth when compared to wild-type flies. We consider the nature of these mutations to be immunocompromising to the fly because they allow increased growth of *L. monocytogenes*. An alternative explanation for some of these mutants could be that the environment of the pathogen in the mutant fly is more favorable to *L. monocytogenes* growth and the mutation affects physiology outside of what would normally be considered the immune system. The remaining mutants exhibited no significant difference in *L. monocytogenes* levels compared with wild-type. This is a new class of mutant phenotype in the sense that it is not commonly studied in the field of fly immunity. Since microbial proliferation is unchanged in this group, these mutants should not be regarded as immunocompromised; instead, we suggest these flies have an altered physiology that makes them more sensitive to the pathology induced by the *L. monocytogenes* infection. These flies are less able to endure the infection than wild type flies even though bacterial levels are similar.

Often, studies examining the Drosophila immune response to Gram-positive bacteria involve challenges with non-pathogens and have used specific molecular readouts such as AMP production to assess immune activity (DeGREGORIO et al. 2002; TAUSZIG-DELAMASURE et al. 2002; RUTSCHMANN et al. 2002; MICHEL et al. 2001). Defects in signaling resulted in an inability to mount an immune response to all tested Gram-positive microbes. Based on our examination of our mutants, it is clear that the Drosophila response to Gram-positive bacteria is more complex than has been previously appreciated. Not all of our mutants are sensitive to a second Gram-positive pathogen, *S. aureus*. The presence of the two mutant lines that are clearly immunocompromised with respect to *L. monocytogenes* but show no change in *S. aureus*
susceptibility indicates that there are multiple mechanisms and pathways used to fight Gram-positive pathogenic bacteria.

To determine whether mutations causing increased sensitivity to \textit{L. monocytogenes} infection could also affect infections with Gram-negative bacteria, we challenged flies with \textit{S. typhimurium}. Only one gene, \textit{CG11293}, shows increased sensitivity to \textit{S. typhimurium}. This mutant exhibits increased sensitivity to \textit{L. monocytogenes} and \textit{S. aureus} infection but unaltered \textit{L. monocytogenes} growth. We suggest that these flies have a general pathogenesis defect because they are sensitive to three different pathogenic bacteria even though the bacterial load is comparable to wild type flies. \textit{gr28b} exhibits increased resistance to \textit{S. typhimurium} infection while being more sensitive to \textit{S. aureus}. This increased resistance was an unexpected phenotype; we are not aware of any other fly mutations that cause resistance to Gram-negative bacteria but increased sensitivity to Gram-positive bacteria.

Characterization of \textit{L. monocytogenes} mutants in Drosophila mutants: We chose \textit{L. monocytogenes} as the pathogen for our screen because the lifecycle and virulence factors have been well characterized, and by using bacterial mutants, we can test for changes in pathogenesis in our mutant flies. After being taken up by a host cell, \textit{L. monocytogenes} secretes listeriolysin O (LLO) to lyse the phagosome membrane and release the bacteria into the cytoplasm. The protein ActA is important for nucleating host actin at one pole of the bacterium. Actin polymerization drives motility of \textit{L. monocytogenes} in the cytoplasm of an infected cell and enables the bacteria to move from one host cell to another without entering the extracellular space, avoiding immune defenses of the host. We found that \textit{Δhly} (LLO deletion) and \textit{ΔactA} mutants are strongly
attenuated in wild-type *Drosophila*, with a MTD of 18-20 days and 11-12 days respectively (Figure 1C and D). We examined susceptibility of our fly mutants to infection with the *L. monocytogenes* mutants ∆hly and ∆actA to determine if any of our *Drosophila* mutants are involved in specific steps of the bacterial lifecycle. We hypothesized that if any of our fly mutations are involved in specific stages of the lifecycle, then the fly susceptibility to mutant bacterial infections will be different compared to a wild-type bacterial infection.

In 14 mutant fly lines, we found that the mutant *L. monocytogenes* strains acted as they do in wild type flies, killing flies more slowly than do wild type *L. monocytogenes*, (Table 5), (Individual death curves are provided in the supporting materials section). For four of our fly mutants (CG11489, CG4857, CG32706 and gr28b) the flies were equally sensitive to at least one *L. monocytogenes* mutant and wild type *L. monocytogenes*. Two mutants, CG11489 and CG4857, are just as sensitive to infection with ∆actA as they are to infection with wild-type bacteria while being much less sensitive to ∆hly mutants. In other words, even though the ∆actA *L. monocytogenes* are defective in cell-to-cell spread, these mutant fly lines are just as sensitive as if they had been infected with wild type bacteria. However, these two mutant fly lines respond like wild type flies to an infection with *L. monocytogenes* lacking LLO – they are more resistant. Based on their RNAi screen results, Cheng et al. suggested that mutants like this might be more sensitive to LLO and that the knocked down genes were involved in controlling LLO toxicity (CHENG et al. 2005). This model could also apply to our mutants; however, we find that our mutants are also sensitive to *S. aureus* and presumably sensitivity to *S. aureus* is not
caused by the same perturbed process that might result in sensitivity to LLO. Perhaps this mutant affects a more general process involved in sensing bacteria.

CG32706 is sensitive to Δhly mutants but is comparatively insensitive to ΔactA infection. That is, even though the Δhly strain is defective in vacuole escape, it kills this mutant fly line with similar kinetics as wild-type *L. monocytogenes*. Yet this fly line is resistant to *L. monocytogenes* that lack ActA and are defective in cell-to-cell spread. Perhaps in these flies, LLO is not required for *L. monocytogenes* to be released into the cytosol. Similar phenotypes have been observed in *in vitro* screens in which genes involved in later stages of vesicular trafficking had been knocked down (CHENG *et al.* 2005).

gr28b is sensitive to Δhly and ΔactA *L. monocytogenes*. As shown above, *gr28b* is sensitive to *L. monocytogenes* and *S. aureus*, but has increased resistance to *S. typhimurium*. Because the mutant strains of *L. monocytogenes* are not attenuated in this fly line, we suggest that LLO and ActA are not required for the bacteria to elicit pathogenic effects on this fly line. In other words, *L. monocytogenes* lacking factors required for normal intracellular pathogenesis are not attenuated, indicating that *L. monocytogenes* in the *gr28b* mutant may be an extracellular population.

Members of immunity pathways were not identified: Two known immunity genes were present in the collection of mutant flies we tested, (*IMD* and *kenny*). Because previous studies of fly immunity have primarily focused on the Toll and Imd pathways, we anticipated that these two genes would be identified from our screen. These mutants had median times to death of two days, but were not tested further because they were outside of our cutoff of a median time to death of one day. As we screened a relatively
small number of mutants, it is possible that we did not hit any members of the Toll signaling pathway because of our small sample size. In addition, some Toll pathway mutants would not meet our viability requirement and we be excluded. Regardless, this screen demonstrates that fighting an infection and the interactions that occur between host and pathogen are complex, and many processes in addition to the pathways regulating AMP transcription are involved.

The importance of performing both in vivo and in vitro screens: We compared our list of mutant genes with the hundreds of genes identified in RNAi screens monitoring *L. monocytogenes* growth in cultured Drosophila cells. Because many mutations in essential functions would have a lethal phenotype in the whole fly, we anticipated that we would not find some genes in the whole fly that were identified *in vitro*. Conversely, we also expected to find genes that were important in the whole animal but not in tissue culture. Nonetheless, we expected significant overlap between the sets of genes isolated in these two screens; instead, we found no overlap. The screen by AGAISSE et al. was a genome wide screen and theoretically all of our mutants should have been tested in that screen (AGAISSE et al. 2005). The dsRNA library used by CHENG et al. contained eight of our positive mutants, none of which were identified from their *in vitro* screen (see Table 3). Both of these *in vitro* screens selected for bacterial phenotypes, including growth and vacuole escape, and utilized one cell type. The majority of genes identified from these *in vitro* screens are, not surprisingly, involved in vesicular trafficking and phagocytosis. By screening for host survival in a whole animal model, we were able to identify different host genes involved in a variety of processes during infection including the immune response and pathogenesis.
Conclusions: In the present study we demonstrate the power of combining two genetically tractable organisms; one host and one pathogen, to reveal a previously uncharacterized group of genes involved in immunity and pathogenesis. Previous genetic studies using each organism separately greatly limit the scope of genes and processes that can be identified. The use of Drosophila to study the innate immune response to infection facilitated our understanding of signaling events that lead to the production of AMPs. Previous screens in the fly and in S2 cells have focused on identifying genes involved in these signaling pathways, but they did not look beyond this process. In vitro studies using L. monocytogenes have expanded our knowledge to better understand pathogenic mechanisms used by intracellular pathogens. Yet these genetic studies have focused more on the bacteria rather than host genes involved in the infection. Attempts to overcome these limitations have been made with RNAi screens in S2 cells infected with L. monocytogenes. These screens have revealed important host factors required for internalization and growth of L. monocytogenes in host cells but were not capable of identifying immunity or pathogenesis related genes. By screening for host survival in a whole fly model, we could probe the host contributions to infection that extend to processes beyond those found by other screens and uncovered genes that were not discovered by the other methods.
ACKNOWLEDGEMENTS

We thank Marc Dionne, Linh Pham, Eric Mabery and Madeleine Moule for critical review of the manuscript. The DP-L3078 (ΔactA) and DP-L2161 (Δhly) were kindly provided by Dr. Julie Theriot (Stanford University). The S. aureus strain was provided by Dr. Ellen Jo Baron. Thanks go to Dr. Stanley Falkow, Dr. Michael Simon, Dr. Julie Theriot and all members of the Schneider lab for helpful discussions. A special thanks to Adam, Baxter and Buster Ayres for their support. This work was supported by National Institute of Health RO1 A1053080-01 (DSS), National Institute of Health A1055651 (DSS) and the National Science Foundation Graduate research program (JSA).
LITERATURE CITED

29. MANSFIELD, B. E., M. S. DIONNE, D. S. SCHNEIDER, and N. E.
24

44. WU, LP, K. M. CHOE, Y. LU, and K. V. ANDERSON, 2001 Drosophila
immunity: genes on the third chromosome required for the response to bacterial infection. Genetics 159: 189-199.

45. YAGI, Y. and Y. T. IP, 2005 Helicase89B is a Mot1/BTAF1 homologue that mediates an antimicrobial response in Drosophila. EMBO Rep. 6: 1088-1094.

Table 1. Distribution of mutant lines

<table>
<thead>
<tr>
<th>Mean time to death (Day)</th>
<th>Number of PBac lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>145</td>
</tr>
<tr>
<td>3</td>
<td>249</td>
</tr>
<tr>
<td>4</td>
<td>510</td>
</tr>
<tr>
<td>5</td>
<td>168</td>
</tr>
<tr>
<td>6</td>
<td>58</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 1. Distribution of mutant fly lines. After an initial test, the MTD for each mutant Drosophila line was determined. The majority of mutant lines exhibit a MTD of four days post-infection and the most extreme phenotypes observed were one and seven days post-infection. Mutants exhibiting the most extreme phenotypes were flagged for further testing to eliminate false positives.
Table 2. Screening for genes affecting defense and endurance.

<table>
<thead>
<tr>
<th>Retest number</th>
<th>Number of lines tested</th>
<th>Number of positive lines</th>
<th>Number of negative lines</th>
<th>Percent positive line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Test</td>
<td>1,231</td>
<td>101</td>
<td>—</td>
<td>8.2</td>
</tr>
<tr>
<td>1</td>
<td>101</td>
<td>35</td>
<td>66</td>
<td>34.6</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>25</td>
<td>10</td>
<td>71.4</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>18</td>
<td>7</td>
<td>72</td>
</tr>
</tbody>
</table>

Table 2. Screening for genes affecting defense and endurance. Over 1,200 PBac insertion mutant lines were tested for their ability to survive a L. monocytogenes infection and the MTD for each line was determined. The mutant lines that exhibited the most extreme phenotypes with MTDs of Day one and Day seven (approximately 100 mutants) were considered positive hits and tested further to eliminate any false positives. The candidate mutants were tested in three independent experiments and the death curves for each were compared to the wild-type control and log rank statistical analysis was done. Lines that exhibited a death rate with a p-value less than p = 0.05 for all three re-tests were considered positive mutants. After three rounds of re-testing more than 80% of these mutants were considered false positives and a total of 18 mutants, all with increased sensitivity to infection, were identified as positive mutants that affect host susceptibility to L. monocytogenes infection.
Table 3. Summary of positive Drosophila lines. (see page 28 for table)

Table 3. Summary of positive Drosophila lines. The insertion sites and closest gene of the p-element for each mutant line are listed. The insertion sites were determined by Exelixis using iPCR and verified by Flybase and are publicly available. We verified the insertion sites by iPCR of lines marked with ‡. The proposed molecular functions of the genes as provided by Flybase are also listed. Lines marked with * were genes tested in the RNAi screens by CHENG et al. (2005).
<table>
<thead>
<tr>
<th>PBac line</th>
<th>CG no.</th>
<th>Symbol</th>
<th>PBac orientation relative to gene</th>
<th>Gene ontolgy/molecular function</th>
</tr>
</thead>
<tbody>
<tr>
<td>10036</td>
<td>CG11489‡</td>
<td>within fifth intron of CG11489</td>
<td>ATP binding, receptor signaling protein serine/threonine kinase activity</td>
<td></td>
</tr>
<tr>
<td>10067</td>
<td>CG10536‡</td>
<td>cbx</td>
<td>within first intron of cbx</td>
<td>ubiquitin conjugating enzyme activity</td>
</tr>
<tr>
<td>10269</td>
<td>CG13564‡</td>
<td>within 5' UTR of CG13564</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10496</td>
<td>CG14899‡</td>
<td>within 5' UTR of CG14899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10618</td>
<td>CG11293‡</td>
<td>400 bp from CG11293</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10675</td>
<td>CG15120/ CG16926</td>
<td>within 3' end of CG15120 and CG16926</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10743</td>
<td>CG13788‡</td>
<td>gr28b</td>
<td>within first intron of Gr28b</td>
<td>taste receptor activity</td>
</tr>
<tr>
<td>10881</td>
<td>CG32706‡</td>
<td>within 100bp of 3' end of CG32706</td>
<td>mRNA binding</td>
<td></td>
</tr>
<tr>
<td>17872</td>
<td>CG4857‡*</td>
<td>within first intron of CG4857</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18050</td>
<td>CG2247‡*</td>
<td>within first intron of CG2247</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18270</td>
<td>CG3527*</td>
<td>within 5' UTR of CG3527</td>
<td>rRNA processing, ribosomal small subunit processing</td>
<td></td>
</tr>
<tr>
<td>18398</td>
<td>CG2152‡*</td>
<td>pcmt</td>
<td>within 200bp of 5' end of pcmt</td>
<td>protein-L-isoaspartate (D-Aspartate) O-methyltransferase activity</td>
</tr>
<tr>
<td>18609</td>
<td>CG12487‡</td>
<td>bobA</td>
<td>within coding region of BobA</td>
<td>Notch signaling pathway, cell fate specification</td>
</tr>
<tr>
<td>18678</td>
<td>CG2914‡*</td>
<td>ets21C</td>
<td>within first intron of Ets21C</td>
<td>DNA binding, transcription factor activity</td>
</tr>
<tr>
<td>19181</td>
<td>CG6128*</td>
<td>within coding region of CG6128</td>
<td>alpha-L-fucosidase activity, fucose metabolism</td>
<td></td>
</tr>
<tr>
<td>19207</td>
<td>CG2397*</td>
<td>cyp6a13</td>
<td>within coding region of Cyp6a13</td>
<td>electron transporter activity, oxidoreductase activity</td>
</tr>
<tr>
<td>19220</td>
<td>CG3056*</td>
<td>within 3' end of CG3056</td>
<td>mRNA binding</td>
<td></td>
</tr>
<tr>
<td>19305</td>
<td>CG7408*</td>
<td>within 5' UTR of CG7408</td>
<td>N-acetylglactosamine-4-sulfatase activity</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Characterization of Drosophila mutants – Sensitivity to *S. aureus* and *S. typhimurium* and growth of *L. monocytogenes*.

<table>
<thead>
<tr>
<th>PBac Line</th>
<th>CG no.</th>
<th>Symbol</th>
<th>S. aureus</th>
<th>S. typhimurium</th>
<th>Bacterial Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>10067</td>
<td>CG10536</td>
<td>cbx</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>10675</td>
<td>CG15120/CG16926</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>10881</td>
<td>CG32706</td>
<td></td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>17872</td>
<td>CG4857</td>
<td></td>
<td>+</td>
<td>0</td>
<td>+*</td>
</tr>
<tr>
<td>18050</td>
<td>CG2247</td>
<td></td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>19207</td>
<td>CG2397</td>
<td>cyp6a13</td>
<td>+</td>
<td>0</td>
<td>+**</td>
</tr>
<tr>
<td>19220</td>
<td>CG3056</td>
<td></td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>10036</td>
<td>CG11489</td>
<td></td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>18609</td>
<td>CG12487</td>
<td>bobA</td>
<td>+</td>
<td>0</td>
<td>+**</td>
</tr>
<tr>
<td>18270</td>
<td>CG3527</td>
<td></td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18398</td>
<td>CG2152</td>
<td>pcmt</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19305</td>
<td>CG7408</td>
<td></td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10496</td>
<td>CG14899</td>
<td></td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>19181</td>
<td>CG6128</td>
<td></td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>18678</td>
<td>CG2914</td>
<td>ets21C</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10269</td>
<td>CG13564</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10618</td>
<td>CG11293</td>
<td></td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>10743</td>
<td>CG13788</td>
<td>gr28b</td>
<td>+</td>
<td>—</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 4. Characterization of Drosophila mutants – Sensitivity to *S. aureus* and *S. typhimurium* and growth of *L. monocytogenes*. Mutant lines were injected with 10^2 CFU of *S. aureus* or 10^3 CFU of *S. typhimurium* and the survival of the flies was monitored over the course of the infection. The growth of *L. monocytogenes* in mutant lines was determined as described in Materials and Methods. + indicates increased growth or sensitivity compared to wild-type flies, – indicates resistance or decreased growth.
compared to wild type flies. 0 indicates no change in sensitivity or growth compared to wild type. * indicates increased growth at 24 hrs post-infection only. ** indicates increased growth at 48 hrs post-infection only. Statistical analysis on survival curves was done using log rank analysis and lines with p < 0.05 were considered statistically significant. Statistical analysis on bacterial growth was done using t-test and lines with p < 0.05 were considered statistically significant.
Table 5. Characterization of *L. monocytogenes* mutants in Drosophila lines.

<table>
<thead>
<tr>
<th>PBac line</th>
<th>CG no.</th>
<th>Symbol</th>
<th>Δhly</th>
<th>ΔactA</th>
</tr>
</thead>
<tbody>
<tr>
<td>18270</td>
<td>CG3527</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10067</td>
<td>CG10536</td>
<td>cbx</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10269</td>
<td>CG13564</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10496</td>
<td>CG14899</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10618</td>
<td>CG11293</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10675</td>
<td>CG15120/CG16926</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>18050</td>
<td>CG2247</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>19181</td>
<td>CG6128</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>19207</td>
<td>CG2397</td>
<td>cyp6a13</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>19220</td>
<td>CG3056</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>19305</td>
<td>CG7408</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18678</td>
<td>CG2914</td>
<td>ets21C</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18609</td>
<td>CG12487</td>
<td>bobA</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10036</td>
<td>CG11489</td>
<td>—</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17872</td>
<td>CG4857</td>
<td>—</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>10881</td>
<td>CG32706</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>18398</td>
<td>CG2152</td>
<td>pcmt</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>10743</td>
<td>CG13788</td>
<td>gr28b</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5. Characterization of *L. monocytogenes* mutants in Drosophila lines. Fly lines were infected with Δhly or ΔactA mutant lines as described in the Materials and Methods.
– indicates resistance compared to 10403S infection. 0 indicates no change in sensitivity compared to 10403S infection. Statistical analysis on survival curves was done using log rank analysis and lines with p < 0.05 were considered statistically significant.
FIGURES

Figure 1. *L. monocytogenes* infection in *Drosophila melanogaster*. Wild-type flies were injected with 10^3 CFUs of either wild-type or mutant *L. monocytogenes*. Survival and growth (growth of wild-type bacteria only) were monitored over the course of the infection. (A) *L. monocytogenes* strain 10403S (wild-type) infection. Wild-type flies exhibit a Median-time-to-death (MTD) of approximately five days post infection. (B) Growth of 10403S in flies. Bacteria reach levels greater than 10^4 CFU by 48 hr post-infection. ** p < 0.005 (t-test) (C) Δhly infection in flies. Wild type flies exhibit a MTD of approximately 20 days post-infection. (D) ΔactA infection in flies. Infected flies exhibit a MTD of approximately 10 days post-infection. Statistical analysis on survival curves was done using log rank analysis and lines with p < 0.05 were considered statistically significant.

SUPPORTING FIGURE LEGENDS

Supporting Figure 1. Survival curves of Drosophila mutants infected with wild-type Listeria 10403S. Wild-type and mutant flies were injected with 10^3 CFUs of Listeria strain 10403S and survival was monitored. The death rate of each mutant line was compared to a wild-type control and statistical analysis was done as described in the methods section. Each mutant line was tested in three independent experiments.

Supporting Figure 2. Survival curves of Drosophila mutants infected with *S. aureus*. Wild-type and mutant flies were injected with 10^2 CFUs of *S. aureus*. Survival was monitored and the death rate of each mutant line was compared to a wild-type control. Statistical analysis was done as described in the methods section. Each mutant line was tested in three independent experiments.

Supporting Figure 3. Survival curves of Drosophila mutants infected with *S. typhimurium*. Wild-type (square) and mutant flies (diamond) were injected with 10^4 CFUs of *S. typhimurium* and survival was monitored. The death rate of each mutant line was compared to a wild-type control and statistical analysis was done as described in the methods section. Each mutant line was tested in three independent experiments.

Supporting Figure 4. Growth of Listeria 10403S in Drosophila mutants. Mutant lines were injected with 10^3 CFUs of wild-type Listeria. Flies were homogenized at 0, 24 and 48 hrs post-infection to quantify bacterial loads as described in the methods section. An unpaired t-test was done to identify mutants that had significantly different bacterial loads compared to wild-type flies (* p < 0.05 or ** p < 0.005).

Supporting Figure 5. Survival curves of Drosophila mutants infected with Δhly Listeria. Mutant flies were injected with 10^3 CFUs of Listeria strain 10403S (squares) or DP-
L2161 (diamonds). Survival was monitored and the death rate of each mutant for each bacteria strain tested was compared. Statistical analysis was performed as described in the methods section. Each mutant line was tested in three independent experiments.

Supporting Figure 6. Survival curves of Drosophila mutants infected with ΔactA Listeria. Mutant flies were injected with 10^3 CFUs of Listeria strain 10403S (squares) or DP-L3078 (diamonds) and survival was monitored. The death rate of each mutant for each bacteria strain was compared and statistical analysis was done as described in the methods section. Each mutant line was tested in three independent experiments.