Relative influences of crossing-over and gene conversion on the pattern of linkage disequilibrium in *Arabidopsis thaliana*

Vincent Plagnol*, Badri Padhukasahasram*, Jeffrey D. Wall*, Paul Marjoram† and Magnus Nordborg*

* Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089
† Dept. of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089
Running head: Pattern of LD in *A. thaliana*

Key words: coalescent theory; population genetics; gene conversion; recombination

Corresponding author:

Vincent Plagnol
Molecular & Computational Biology
University of Southern California
1050 Childs Way, MCB 413L
Los Angeles, CA 90089-2910
Phone: 213.740-2398
E-mail: vincent.plagnol@normalesup.org
ABSTRACT

In this paper we infer the rates of gene conversion and crossing-over in *Arabidopsis thaliana* from population genetic data. Our data set is a genome-wide survey consisting of 1347 fragments of length 600 bp sequenced in 96 accessions. It has several orders of magnitude more markers than any previous non-human study. This allows for more accurate inference as well as a detailed comparison between theoretical expectations and observations. Our methodology is specifically set to account for deviations such as recurrent mutations or a skewed frequency spectrum. We found that even if some components of the model clearly do not fit, the pattern of LD conforms to theoretical expectations quite well. The ratio of gene conversion to crossing-over is estimated to be around one. We also find evidence for fine-scale variations of the crossing-over rate.
Several recent papers have focused on estimating crossing-over rates from population genetic data (reviewed in Stumpf and McVean, 2003). Recently, McVean et al. (2004) presented a methodology based on coalescent theory and Hudson’s pseudo-likelihood (Hudson, 2001), and Crawford et al. (2004) proposed a different approach based on an approximation of the coalescent process for which computations are tractable, originally described in Li and Stephens (2003). Both papers use Markov chain Monte Carlo computations and focus on human data.

Here we present a similar study for Arabidopsis thaliana, using data from a genome-wide polymorphism survey (Nordborg et al., 2005). The data set is larger than in any previous non-human study: in addition to making our estimates more reliable, this also allows us to assess the goodness-of-fit of our statistical model.

Because A. thaliana is highly selfing, it has unique advantages for estimating recombination rates (Nordborg, 2000). First, the fact that most individuals are homozygous means that haplotypes can be observed directly (as opposed to being inferred from genotypes). Second, the high degree of inbreeding reduces the efficacy of recombination in breaking up linkage disequilibrium, without also reducing the level of polymorphism (Nordborg, 2000). This increases power to detect recombination events which should make inference more accurate (Hudson and Kaplan, 1985).

Previous studies have shown that linkage disequilibrium in A. thaliana typically decays within 50 kb, but that it can be more extensive in particular genomic regions, as well as in some populations (Nordborg et al., 2002, 2005). It has also been argued that A. thaliana has a high rate of gene conversion (Haubold et al., 2002): characterizing the relative importance of crossing-over and gene conversion in determining the pattern of linkage disequilibrium is one of the main aims of this paper.

Our analysis proceeds in two steps. First, we assess the goodness-of-fit of different population genetics models, and develop a model suitable for analyzing the data. Second, we use this model to estimate rates of crossing-over and gene conversion.

MATERIALS AND METHODS

Data: The data consist of 1347 short (500-600 bp) alignments of 96 accessions, generated as part of genome-wide polymorphism survey in A. thaliana (http://walnut.usc.edu/2010). The data differ from those described in Nordborg et al. (2005) in two ways. First, more genome-wide fragments have been added. Second, in order to increase the number of markers at distances of 5–50 kb, data from nine more densely sequenced 500 kb regions
were added (M. J. Aranzana, C. Tang, H. Zheng, M. Nordborg, unpublished results). These regions contain approximately twenty fragments each, which should be contrasted with a median distance between fragment of 100 kb in the genome-wide data. The 1347 fragments analyzed in this paper are available in the supporting material section.

For our estimation procedure we used strict criteria regarding the quality of the data and considered as missing sites when the combined forward-reverse base calling score (Phred) was twenty-five or less. Also two accessions (Ms-0 and Van-0) were removed because many of their loci were heterozygous, indicating recent outcrossing.

Simulations: All simulations in this paper use Hudson’s software ms (Hudson, 2002). Unless otherwise specified, we simulate sets of 1347 fragments. Each fragment is simulated independently. We first simulate a coalescent tree using appropriate demographic and recombination parameters, then add mutations according to the finite sites model described below. The mutation rate for each fragment is chosen randomly from a prior which reproduces the variation in the level of polymorphism observed in the data.

Finite sites were incorporated by discretizing the location of the segregating sites produced by ms. Mutations that occurred at the same position after rounding were treated as recurrent mutations, and were randomly designated as di- or tri-allelic with the probabilities estimated below (see Model Fitting).

Statistical procedures: Several inference techniques are used in this paper. To infer the recombination rate we used Hudson’s composite likelihood (Hudson, 2002). This procedure incorporates a varying population size model, but assumes no recurrent mutations. Because of this limitation we must be cautious about the interpretation of such estimates, particularly for short-range data where recurrent mutations can easily bias our estimates.

Alternatively, we use our best-fitting model to simulate data sets. Because a full-likelihood approach is not feasible, we measure the level of LD using various summary statistics. Our general approach consists of finding the range of evolutionary parameters that makes the observed statistics plausible.

Because it is difficult to estimate crossing-over and conversion rates simultaneously from the kind of data we have, our inference strategy consists of two steps: we first use the correlations between loci to estimate the recombination rate. Then, given this estimated recombination rate, we infer the amount of gene conversion needed to account for the observed pattern within the loci.

Summary statistics: For distant markers (which do not belong to the same frag-
ment) we use Lewontin’s D':

$$D'(p, q, r) = \begin{cases} \frac{r-pq}{\min[p(1-q), (1-p)q]} & \text{if } r - pq > 0 \\ \frac{r-pq}{\min[-pq, -(1-p)(1-q)]} & \text{if } r - pq < 0 \end{cases}$$

where p and q are the observed frequencies of the minor allele at the two SNPs, and r is the observed frequency of haplotypes with the minor allele at both SNPs.

When measuring LD between closely-spaced markers we find that D' is very sensitive to recurrent mutations and is therefore not appropriate. We instead look at the number of fragments that show evidence of recombination. A fragment is called *incompatible* if any two SNPs within the fragment fail the four gametes test. An equivalent definition is to say that the statistic R_{\min} (Hudson and Kaplan, 1985; Myers and Griffiths, 2003) is greater than or equal to one. In the absence of recurrent mutations such a pattern must be caused by a change in the underlying genealogical tree, which indicates either a crossing-over or a conversion event. We observed 330 incompatible fragments in our data set (approximately 25% of the total number of fragments).

Finally we use a statistic designed to be characteristic of the pattern produced by a single gene conversion event. More precisely, we looked for fragments with the property that a single crossing-over cannot explain the data, but a single conversion can. We add the extra property that the conversion tract needs to include at least two SNPs in order to distinguish conversion from recurrent mutations. We call this pattern a *clear conversion*. This parsimony analysis was made possible by theoretical tools developed in Gusfield et al. (2004).

MODEL FITTING

The coalescent has become the standard model for analyzing population genetics data (Nordborg, 2001; Stephens, 2001). As with any model-based inference, a major concern is that the model does not fit the data; however, population geneticists have typically not had enough data to assess model fit. In the present case, it is clear that the standard coalescent does not explain the data (Nordborg et al., 2005). In order to improve the inference, we therefore begin by modifying the standard coalescent model to fit the data better. Specifically, we find that adding population growth, and a finite-sites mutation model improves goodness-of-fit greatly.

We also observed that even if the average number of pairwise differences is comparable
between each pair of accessions (around three differences per kb genome-wide), two accessions are significantly different (around five differences per kb) and were removed (Cvi-0 and Mr-0). Also four pairs (Tamm-2 and Tamm-27, Lov-1 and Lov-5, Got-22 and Got-7, Bil-5 and Bil-7) and one triplet of accessions (Knox-10, Pna-10 and RRS-10) are very similar (about one difference per kb). Bil-5, Got-22, Lov-1, Tamm-2, as well as Knox-10 and Pna-10 were therefore removed. With both heterozygotes accessions removed we have thus 86 accessions left. We were unable to improve the fit by incorporating further population structure.

Frequency spectrum: A useful summary of the data is the allele frequency spectrum. Several of the statistics we use to estimate recombination rates below are highly dependent on the frequency spectrum. For example, Lewontin’s \(D'\) is always equal to one when a singleton allele is involved. Thus, it is very important that our model reproduces this component of the data as accurately as possible.

The frequency spectrum for our data is highly skewed toward low frequencies, compared to standard expectations (Figure 1). Another view of the same problem is the distribution of Tajima’s \(D\): the mean computed across fragments is -0.74, whereas the expectation under a constant population size is close to zero (Tajima, 1989).

![Figure 1 approximately here.](image)

The simplest explanation for a genome-wide excess of rare alleles is demography, in particular some form of recent population growth. However, we note that although the bias is genome-wide, it is stronger in exons, indicating that selection must also be responsible (Nordborg et al., 2005). We will model the skew in the frequency spectrum using a simple growth model. Because of the evident effect of selection, we only use non-coding regions when fitting the data.

We investigated scenarios of recent exponential growth preceded by a constant population size (cf. Marjoram and Donnelly, 1994). This model can be described by two parameters: the growth rate \(\alpha\), and the time of the beginning of growth \(t_0\).

We designed a wide grid for the parameters \(\alpha\) and \(t_0\) and estimated the expected frequency spectrum using simulations at each point of the grid. For each value of the parameters we simulated a large number \(10^5\) of coalescent trees. The mutation rate was set such that the average number of segregating sites in our simulations and in the data are equal. We assumed no crossing-over, no conversion and an infinitely many sites model (no recurrent mutations).
We compared the observed and simulated frequency distributions at each point in the grid using a χ^2 statistic. We binned the SNPs in our data set into ten bins according to the frequency of the minor allele. Bins were chosen to have a similar number of SNPs in each bin, so that our fitting procedure balances the weight given to rare and frequent alleles.

Including growth dramatically improved the overall goodness-of-fit. The value of χ^2 dropped from 700 without growth to approximately 15 for the best fit. Based on the frequency spectrum our simulations fit the data well. The best fit was obtained for α equal to three and a time t_0 equal to 0.22 (ms command line: ms 86 1 -t 5.4 -r 0.5 600 -G 3. -eG 0.22 0.) . When normalized t_0 is slightly less than a third of the expected time to the most recent common ancestor. With these parameters the ratio r between current and ancestral population is equal to two.

In the rest of the paper we use these estimated growth parameters. When we refer to scaled rates, these are always scaled with respect to the ancestral population size (note that this notation differs from Hudson’s ms).

Recurrent mutations: Because recurrent mutations can lead to patterns of polymorphism similar to those expected under recombination (in particular under gene conversion), it is important to take them into account when estimating rates of recombination. We found clear evidence of recurrent mutations in the data. Consequently, we first estimated the amount of recurrent mutation and then used this estimate to calibrate our coalescent simulations.

Direct evidence for recurrent mutation in our data comes from sites showing more than two alleles. Barring sequencing errors, such sites must have mutated at least twice since the Most Recent Common Ancestor (MRCA). Out of 20,888 SNPs we found 411 tri-allelic and 4 quadri-allelic sites.

Because of back mutations, a fraction of sites that have experienced recurrent mutation will be tri- or quadri-allelic. This fraction can be estimated using the relative mutation rate between each nucleotide. These rates can be estimated by assuming that the most frequent allele is ancestral, an assumption that is motivated by classical population genetics theory (Watterson and Guess, 1977). Using this assumption, we obtain the results presented in Table 1. Although crude, we note that we observe the expected symmetry (due to the A-T and G-C complementarity of both DNA strands) and also a very high rate of cytosine-deamination (from C to T).

[Table 1 approximately here.]
Let r denote the proportion of double-hit mutations that result in a di-allelic site. Then $1 - r = \sum_i \pi_i (1 - r_i)$ where $r_i = \sum_{j \neq i} p_{ij}p_{ji}$ is the probability that a double hit results in a di-allelic site given that the ancestral state is i. Thus, from Table 1 and the overall composition in terms of A, T, G and C, we estimate that approximately 60% of the recurrent mutations result in tri-allelic sites, and that consequently, the number of recurrent sites that are not tri-allelic is of the magnitude of $(100 - 60)/60 \times 411 \approx 274$. In other words, recurrent sites (di- and tri-allelic) represent three to four percent of the total number of segregating sites. Our simulations use a finite-sites model based on these results (see Materials and Methods).

In the simulated data we found nonetheless fewer tri-allelic sites than observed in the data, most likely because of heterogeneity in the mutation rate. To account for this we assumed that a fraction x of the coding region could not mutate. Using the number of tri-allelic sites as a proxy, this fraction x was estimated at 0.5, which is compatible with the limited redundancy of the genetic code. Specifically, we assumed that if mutations occur in an exon, they must be synonymous. With this supplementary condition the observed amount of recurrent mutation becomes compatible with an otherwise uniform mutation rate within each fragment.

It should be noted that the calculations above assume that almost all tri-allelic sites result from double mutations. Our results could be biased if there is a large heterogeneity in the mutation rate at the base pair scale. For example, if most tri-allelic sites are the products of highly mutable sites (mutation hot spots), we would overestimate the total amount of recurrent mutations. However, the very small number of quadri-allelic sites indicates that these hot spots cannot be too frequent.

Goodness of fit: Adding population growth and recurrent mutations dramatically improves the fit of the model; however, the model still does not fit very well. A particularly striking discrepancy lies in the higher-than-expected variance across fragments for several summary statistics (e.g., Tajima's D and the number of segregating sites, see Nordborg et al., 2005).

This discrepancy is largely due to the fact that several fragments appear to have genealogies characterized by an extremely long internal branch, leading to two highly diverged haplotypes. This phenomenon, sometimes referred to as “dimorphism”, has been observed several times in A. thaliana (see, for example Aguadé, 2001), and recent studies have shown that it is not compatible with a standard neutral model (Schmid et al., 2005; Nordborg et al., 2005).
Perhaps the most likely explanation for this pattern is some form of population structure, ancient or current. We attempted to design a simple two-population model that would explain the data, but were not successful (V. Plagnol, M. Nordborg, J. D. Wall, unpublished results). Schmid et al. (2005) reported similar findings. There is at this point no clear explanation for this pattern.

The only way we could improve the fit of the model, is by removing outlier fragments. More precisely, we removed a fragment for which we could find a subset of fifteen or more segregating sites with the property that the subset of the data restricted to these sites displays only two haplotypes. With our estimated growth parameters, this pattern is very unusual ($p = 0.01$). We found 105 such loci, for approximately nine expected under the model.

While removing fragments that do not fit the model using arbitrary criteria is not particularly satisfying, we found that the recombination estimates below are largely unaffected by this procedure. In other words, we get the same estimates whether we include the outlier fragments or not (the results below are for the full data). This leads us to believe that our recombination estimates are robust to this particular deviation from the model.

RATE ESTIMATION

Average crossing-over rate: Since *A. thaliana* is selfing most individuals are homozygotes. Hence, most of the crossing-over events are undetectable. Thus we are not estimating the actual rate of crossing-over but a scaled version which measures its impact on the level of LD. A theoretical description of what this normalization means in a selfing organism is presented in Nordborg (2000).

We estimated the crossing-over rate under models where this rate is uniform across the genome. We will go on to discuss how much can be said about the variability of this crossing-over rate, but estimates for the genome-wide average are useful when compared to average mutation and conversion rates in order to assess the relative importance of these phenomena.

Our estimation is based on the observation that the pattern of LD between distant markers mostly depends on the crossing-over rate. Unlike crossing-over, the rates of gene conversion and recurrent mutation do not increase with distance (see Discussion). More precisely, given the range of parameters we consider, it is reasonable to assume that when two fragments are more than 5 kb apart the level of LD is almost only affected by crossing-
over. We compared estimates obtained from two different methods: Hudson’s composite likelihood (Hudson, 2001) and a method of least squares using the decay of LD. Note that for both methods we used our estimated growth parameters.

For our least-square approach we considered all pairs of SNPs separated by at least 5 kb. We estimated the theoretical mean D' for different values of the crossing-over rate. We did so by simulating a large number of two-loci fragments separated by different values of ρ on a grid: $\rho = 2, 4, 6, \ldots, 100$ under an infinitely many sites model. We used linear interpolation to obtain the expected D' at precise values. For each pair of fragments we summed the difference between expectation and observation weighted by the number of pairs of SNPs for this pair of fragments. Figure 2 shows how this distance varies with the crossing-over rate. The minimum distance is obtained for a crossing-over rate equal to 0.3 per kb. As shown in this graph we obtained the same estimates using Hudson’s pseudo-likelihood. Note that the least square approach requires a large amount of data to be efficient and is used mostly to confirm the accuracy of Hudson’s composite likelihood estimator.

Figure 3 shows the decay of D' with distance and compares this curve to what is expected using our genome-wide estimate. LD disappears after approximately 100 kb which is comparable to humans. The ratio between mutation and crossing-over rates is estimated at around 10 in exons and 15 elsewhere. These numbers are consistent with theoretical expectations in a selfing organism (Nordborg, 2000).

Variation along the genome: The median distance between fragments is too high to provide reliable estimates of the local variation of the recombination rate. Given our data set it can only be done in the nine regions sequenced with a higher density. Each region consists of approximately twenty fragments whose length varies between 450 bp and 600 bp.

For each region we computed an estimate of ρ using Hudson’s composite likelihood (which showed better properties than the least square fitting methodology when the amount of data is limited). Results are shown in Table 2, with the location of the regions and the number of fragments in each of them. We also compared these estimates with the genetic distance obtained from recombinant inbred lines. Estimates are based on the data provided in Lister and Dean (1993).
Both genetic map and population genetics estimates are very noisy. In order to limit the noise we smoothed the genetic map by fitting a third degree polynomial on each arm of each chromosome.

For the population genetics estimates we excluded the most polymorphic fragments for two reasons. First the high number of SNPs give them a disproportionate weight. Second, high levels of polymorphism might be indicative of an unusually high mutation rate (including recurrent mutations), or perhaps lower sequencing quality. We set the cutoff at 10% of the fragment (fragments with 34 of more segregating sites were excluded).

We found a weakly significant correlations between the genetic map and our estimates ($\hat{\rho}_{map} = 16 \times \hat{\rho}_{CL}$, F-test P-value: 0.09). This correlation is not very strong but this is expected given the noise in the data. Moreover, potential short range variation of the recombination rate make the estimation more difficult. Our estimates are for 500 kb regions on average, and the average recombination rate seems to vary up to four-fold between different regions.

We then looked for correlations between the variation of ρ and the short-range pattern of LD, which could indicate correlations between rates of gene conversion and crossing over. We found no correlation between the estimate of ρ based on SNP pairs within fragments and the estimates presented above. However in the regions where the estimate of ρ is high, we found on average higher values of R_{min}. It is however not clear how to interpret those results because these high R_{min} values are increased only for a few fragments and many factors such as highly mutating loci or alignment issues can cause such a pattern.

Evidence for gene conversion: Gene conversion is believed to be relatively frequent in *A. thaliana* (Haubold et al., 2002). In this section, we first demonstrate the evidence of gene conversion in this data set before estimating its rate.

To do so we used the clear conversion statistic (see Material and Methods and Appendix). This summary statistic is designed to be characteristic of conversion events. We found four fragments in the data set with this property (chr 1, pos 8,682,419; chr 2, pos 10,617,536; chr 3 pos 22,229,907, chr 5, pos 18,666,458). This may seem very few but it is clear that even in the presence of conversion events the required pattern is unlikely to be observed: excess of crossing-over, conversion, recurrent mutations, or simply having few segregating sites can prevent us from observing such fragments.
Given the estimated recombination and recurrent mutation parameters we found that in the absence of gene conversion less than 1% of simulated data sets have four or more clear conversions. Slightly more than half of the simulated data sets have none. Hence our summary statistic provides evidence that there must have been gene conversion in the data. For these four fragments the potential conversion tracts would be approximately 190, 400, 55 and 200 bp long (because longer tracts are easier to find these numbers are very biased estimates of the average tract length).

Average conversion rate: The statistic presented in the previous section demonstrates that gene conversion has indeed occurred. However this statistic is too stringent to estimate the rate of gene conversion and we now estimate this rate using different statistics.

To measure the level of LD between nearby markers we find that the most appropriate statistic is the number of incompatible fragments (as described earlier). We excluded the most polymorphic fragments (10% of the fragments, with 34 or more segregating sites) because of the likely excess of recurrent mutations. We found 227 incompatible fragments out of 1213 remaining fragments in the data set (hence 103 out of the 134 fragments with 34 or more segregating sites are incompatible).

It has been observed that there is too much short range inconsistency in *A. thaliana* given the amount of crossing-over inferred from long range LD (Haubold et al., 2002). The total number of incompatible fragments is a measure of the amount of short range inconsistencies. Using coalescent simulations we investigated the distribution of this statistic for different values of \(f \), the ratio between conversion and crossing-over rates.

We used the crossing-over and population growth parameters estimated above. For each simulated data set we computed the number of incompatible fragments. We report the 5% and 95% quantile of the distribution of number of incompatible fragments for a range of different values of \(f \) between zero and ten in Figure 4.

[Figure 4 approximately here.]

Our simulation scheme assumed that the mean length of a conversion tract is 100 bp. A ratio of conversion rate to crossing-over rate around one fits our data well, with a 95% confidence interval between 0.5 and 1.2. Thus the conversion rate is estimated at around 0.3 per kb, approximately equal to the crossing over rate. This implies an average of two recombination events in the history of each fragment, each being as likely to be a crossing-over or a gene conversion. This estimate is lower than found in previous studies (Haubold et al., 2002).
Hudson’s pseudo-likelihood estimate is 0.6, at the lower bound of the confidence interval we obtained using the number of incompatible fragments. This value was obtained by setting the crossing-over rate to the value estimated earlier and then estimating the pseudo-likelihood on a grid of values for \(f \). This method does not take into account recurrent mutations or the way the data is divided in different fragments. However, there is a good agreement between both estimates, which indicates that Hudson’s pseudo likelihood seems very robust to such perturbations.

Note that fitting the decay of \(D' \) using markers within a fragment was not effective. We first found some very high estimates for \(f \), before we understood that the average \(D' \) between markers no more than 500 bp apart depends heavily on the amount of recurrent mutation in the data set. Simulations confirmed that this statistic is greatly affected by recurrent mutations.

Relationship between crossing-over and conversion: We now investigate the relationship between gene conversion and crossing-over rates in our dataset. This issue has been addressed previously in *Drosophila* by Langley et al. (2000) and Andolfatto and Wall (2003). Given the kind of data we have, it is not clear whether we have the power to infer this relationship. Although they are far from being conclusive, the following results show some features of our dataset addressing this issue.

We picked 14 large windows of size 2 Mb along chromosome I with nearly 18 fragments on average and tested three different models of rate variation:

- **In model I,** \(\rho \) and \(\gamma \) (the conversion rate) are identical for all windows as well as within windows.
- **In model II,** \(\rho \) and \(\gamma \) vary only between windows but \(f \) is a constant.
- **In model III,** \(\rho \), \(\gamma \) and \(f \) vary between windows but are constant within windows.

To distinguish between these models, we used Hudson’s composite likelihood method. For any two models, we define a summary statistic \(z \) as the absolute difference between the total log composite likelihoods under the best fitting parameter choices for those two models divided by the total number of SNP pairs. A high value of \(z \) indicates that the data fits one of the models better than the other. As expected, because model III has more parameters, we find that model III fits the overall data better than models I and II. We computed \(z \) for models I and III, and for models II and III. The corresponding values are 0.03 and 0.0082 respectively.

To check if these observed summaries are significant, we simulated 100 data sets (of
14 windows each) under the best fitting parameters choices for models I and II and computed \(z \). Each window was simulated independently and we added mutations only within locations corresponding to each fragment. Values of \(z \) as high as the observed values were never seen in any of these simulated data sets. Thus, model III fits our data significantly better than models I and II and this supports the idea that \(f \) varies across the Arabidopsis genome. We also note here that estimates of crossing-over and gene conversion rates for 43 large windows (2 Mb) across this genome were not significantly correlated (\(R = -0.029, p \text{ value}=0.8455 \)).

It should be emphasized that our results can be easily affected by fine-scale variation in crossing-over and gene conversion rates within windows as well as by the uncertainty in the levels of recurrent mutations.

DISCUSSION

The scale of decay of LD in our data is comparable to humans and is much larger than that observed in *Drosophila*. A major difference from humans is the greater level of polymorphism for a comparable level of LD. This higher ratio of mutation rate to recombination rate is consistent with theoretical expectations in a selfing organism (Nordborg, 2000).

We fitted a coalescent model to the data and used it to show that for the observations to be consistent with the model the ratio between conversion and crossing-over rate must be approximately equal to one. The rates seem to vary on a short scale and we were not able to detect any correlation between them.

Model fitting: We also found that the data deviate from the standard neutral model. Simple modifications of the coalescent model can improve the fit considerably, but not fully explain the data.

One source of these deviations is the population structure observed by Nordborg et al. (2005). The obvious effects of population structure can be considerably reduced by removing eight outliers (accessions too closely or too distantly related). The reduced sample of 88 accessions shows only relatively weak evidence of population structure. The \(F_{ST} \) measures presented in Nordborg et al. (2005) show that the level of differentiation between populations is only slightly higher than in human populations.

However, some features of the data still cannot be explained: for example the unexpectedly large variance in the level of polymorphism and Tajima’s D. It is likely that some of these patterns are also due to the demographic history of *A. thaliana*; however, it is very difficult to model this. We have no prior knowledge of the demographic history.
of *A. thaliana*, with the exception of American accessions for which we have evidence of a very recent expansion (*Nordborg et al.* (2005)). The scenarios we investigated to explain the data involved two populations and different combinations of admixture and migrations between them. The fact that we could not find a simple model fitting the data well suggests that the demography is more complex, or that other factors are involved.

Reliability of estimates: Nonetheless, we believe that our estimates of crossing-over and gene conversion rates are reasonably robust to these problems, mostly because of the very large amount of data and the fact that the estimates appear to be insensitive to removing outliers.

Another source of uncertainty is recurrent mutations. Our study also shows that recurrent mutations are frequent and any estimation procedure must account for this phenomenon. We believe that we have done this successfully.

A greater source of worry is the spacing of the fragments. Given the range over which LD decays, an ideal design would consist of a higher density of fragments, in the range of 10 kb apart (even denser than the nine candidate regions we use in this paper). There is little doubt that better estimates would have been obtained with denser data.

Finally, we note that the noise in the estimate of the recombination rate can easily bias our estimate of the ratio of conversion to recombination for two reasons. First, a different level of recombination directly affects how much conversion is needed to explain the data. Second, a bias in the estimate of recombination mechanically affects the estimated ratio.

Appendix: clear conversion statistic

We say that we see a clear conversion event when the genealogy of a fragment is consistent with a unique conversion event, with at least two SNPs in the conversion tract. Also we require that a single crossing-over, or conversion event involving only one SNP, cannot explain the genealogy.

The computation of the clear conversion statistic uses ideas presented in *Gusfield* (2005) and *Gusfield et al.* (2005). We summarize here a simple way to compute this statistic (Dan Gusfield, personal communication).

First two sites are said incompatible if they fail the four gametes test. Let us consider a fragment in our dataset. The first step of the computation consists of clustering SNPs within a fragment such that any pair of incompatible sites belong to the same set. *Gusfield et al.* (2005) showed that the number of recombination events or recurrent mutations needed in the history of the sequences is at least the number of sets of SNPs
defined in this way. Hence to obtain a clear conversion event it is necessary that there is only one set of incompatible SNPs.

Now we consider the restriction of the haplotypes to that unique set of SNPs. At this step we remove the duplicated haplotypes. If a single recombination event is sufficient to explain the history of these fragments one must be able to enumerate all haplotypes but one so that when one considers a given SNP it mutates only once during the enumeration. Moreover the haplotype excluded from the enumeration must be the recombinant product of the first and last enumerated haplotypes.

The type of recombination event used to produce the excluded haplotype from both enumerated ones depends on what one is looking for. For our clear conversion statistic we test for crossing-over and gene conversion. If a gene conversion can explain the genealogy it is straightforward to see how many SNPs are part of the conversion tract.

The data analyzed in this paper were generated with support from NSF (DEB-0115062) and the W. M. Keck Foundation to M.N. The analysis was supported by an NIH CEGS grant (1 P50 HG002790-01A1) to P.M. and M.N. We thank S. Tavaré for helpful comments.

LITERATURE CITED

AGUADÉ, M., 2001 Nucleotide sequence variation at two genes of the phenylpropanoid pathway, the FAH1 and F3H genes, in Arabidopsis thaliana. Mol. Biol. Evol. 18: 1–9.

Relative frequencies of mutation for each pair of bases. The entry π_{xy} is the estimated probability to mutate from x to y. The last column, labeled π, indicates the relative frequencies of each base in the data set.
Table 2

<table>
<thead>
<tr>
<th>Chr.</th>
<th>Start</th>
<th>End</th>
<th># frag.</th>
<th>(\hat{\rho}_{CL})</th>
<th>Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>28700</td>
<td>29300</td>
<td>18</td>
<td>0.31</td>
<td>5.3</td>
</tr>
<tr>
<td>2</td>
<td>8300</td>
<td>8800</td>
<td>17</td>
<td>0.16</td>
<td>4.6</td>
</tr>
<tr>
<td>2</td>
<td>17700</td>
<td>18300</td>
<td>16</td>
<td>0.24</td>
<td>3.3</td>
</tr>
<tr>
<td>3</td>
<td>6200</td>
<td>6800</td>
<td>20</td>
<td>0.32</td>
<td>3.8</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
<td>400</td>
<td>17</td>
<td>0.43</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>800</td>
<td>1400</td>
<td>16</td>
<td>0.47</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>8900</td>
<td>9500</td>
<td>20</td>
<td>0.56</td>
<td>5.4</td>
</tr>
<tr>
<td>5</td>
<td>2700</td>
<td>3500</td>
<td>23</td>
<td>0.19</td>
<td>4.5</td>
</tr>
<tr>
<td>5</td>
<td>4000</td>
<td>4600</td>
<td>19</td>
<td>0.14</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Variation of the estimate of \(\rho\) for nine regions. The positions of the regions are in kb and the map estimates in cM per Mb. The fourth column indicates the number of fragments in this region.
FIGURE 1:
FIGURE 2:
FIGURE 3: Observed and theoretical decay of D'.

Distance in bp

Average D'
FIGURE 4:

Distribution of incompatible fragments

Ratio of conversion by recombination rates f

Nb of incompatible fragments

Hudson's CL
FIGURE LEGENDS

FIGURE 1: The observed frequency spectrum in exons and non-coding regions, compared to coalescent expectations with and without growth.

FIGURE 2: Difference between expected and observed decay of D' as a function of the crossing-over rate ρ. The black line indicates the least square distance and the dashed line indicates Hudson’s composite likelihood. The minimum of the squared distance and maximum of the composite likelihood (which both estimate the average ρ) are approximately equal to 0.3 per kb.

FIGURE 3: Decay of D', observed (dashed line) and expected (solid line) for $\rho = 0.3$ per kb which minimizes distance between expectation and data.

FIGURE 4: 5% and 95% quantiles of the distribution of the number of incompatible fragments for different values of f. The horizontal line shows the number observed in the data (227). The dashed line indicates the value of Hudson’s pseudo-likelihood.