Diverse mitotic and interphase functions of condensins in *Drosophila*

Neville Cobbe, Ellada Savvidou and Margarete M. S. Heck *

Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom

* Corresponding author

Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession numbers AJ543652, AJ543653, AJ543654, AJ543655 and AJ635208.
The condensin complex has been implicated in the higher order organization of mitotic chromosomes in a host of model eukaryotes, from yeasts to flies and vertebrates. Although chromosomes appear paradoxically to condense in condensin mutants, chromatids are not properly resolved, resulting in chromosome segregation defects during anaphase. We have examined the role of different condensin complex components in interphase chromatin function, by examining the effects of various condensin mutations on position effect variegation in *Drosophila melanogaster*. Surprisingly, most mutations affecting condensin proteins were often found to result in strong enhancement of variegation, in contrast to what might be expected for proteins believed to compact the genome. This suggests that the role of these proteins in interphase may differ from their expected roles in mitosis.
INTRODUCTION

Condensins are multi-subunit protein complexes that are conserved in all eukaryotes for which adequate sequence data is available, where they play vital roles in mitotic chromosome assembly and segregation as well as influencing interphase processes such as gene silencing and checkpoint responses (Hirano 2005). Each condensin complex contains a heterodimer of SMC2 and SMC4 proteins, both of which are members of the highly conserved SMC (structural maintenance of chromosomes) family (Cobbe and Heck 2004), in addition to between two and three regulatory non-SMC proteins. However, there may be at least two different condensin complexes among various eukaryotes, each containing a unique set of non-SMC subunits (Hagstrom and Meyer 2003; Ono et al. 2003). In vertebrates, the condensin II complex appears to participate in an early stage of chromosome condensation within the prophase nucleus, whereas the condensin I holocomplex appears to assemble on mitotic chromosomes only after the nuclear envelope breaks down, and is thought to cooperate with condensin II to facilitate metaphase chromosome compaction and sister chromatid resolution (Hirota et al. 2004; Ono et al. 2004).

In addition to influencing mitotic chromosome structure, condensin proteins are known to play roles during interphase (Hagstrom and Meyer 2003). A functional link between mitotic chromosome condensation and global regulation of gene expression was initially demonstrated in Caenorhabditis elegans, based on the involvement of an SMC2/4 heterodimer in dosage compensation. Transcription from each of the X chromosomes is reduced twofold in hermaphrodites (XX) of this organism, to match the level of X-linked gene expression in males (XO). The discovery that a variant SMC4 type protein (DPY-27) is an essential regulator of dosage compensation (through its association with the X chromosome) provided the first clue that SMC proteins might be involved in this process (Chuang et al. 1994; Chuang et al. 1996). Subsequently, MIX-1 was identified as an SMC2-type protein required for both mitosis and dosage compensation, whose restricted localisation to the X chromosome was shown to depend on that of DPY-27 (Lieb et al. 1998). The dosage compensation complex also consists of at least two non-SMC subunits, including DPY-26 and DPY-28 (Hagstrom and Meyer 2003; Lieb et al. 1996). On the other hand, the mitotic function of MIX-1 requires its association with a more conventional SMC4-type protein (Hagstrom et al. 2002). It has therefore been suggested that MIX-1 may have been enlisted to the dosage compensation
complex through the evolution of DPY-27 as a highly specialised SMC protein, altering the higher-order structure of X chromosomes by a mechanism potentially related to that involved in mitotic chromosome condensation.

Strikingly, the same dosage compensation complex is also recruited to the autosomal her-1 gene (a male sex-determination gene) to repress its transcription more than 20-fold and thereby elicit hermaphrodite differentiation (Chu et al. 2002). This therefore demonstrates a link between the roles of condensin SMC proteins in gene-specific and chromosome-wide transcriptional repression. Various non-SMC condensin subunits also appear to be required for transcriptional silencing in both *Saccharomyces cerevisiae* (Bhalla et al. 2002) and *Drosophila melanogaster* (Lupo et al. 2001). However, it remains to be seen if these proteins function during interphase as part of the canonical condensin complex or other alternative SMC-containing complexes. Similarly, Cnd2/CAP-H (a non-SMC subunit of condensin) was recently shown to be required for the activity of Cds1 (a G2 checkpoint kinase) in *Schizosaccharomyces pombe* (Aono et al. 2002). Although all the other condensin components in *S. pombe* were also required for full Cds1 activity, the condensin SMC proteins (Cut3 and Cut14) differed from Cnd2/CAP-H as they were not required for viability in the presence of hydroxyurea during S phase (Aono et al. 2002). The contrasting interphase requirements for different condensin proteins in *S. pombe* therefore suggest that these proteins also may not necessarily act in the same complex during interphase as during mitosis.

In this paper, we further explore the varied activities of condensin proteins in *D. melanogaster* by analysing multiple alleles of gluon, encoding the *Drosophila* orthologue of SMC4, together with various mutations affecting other condensin components. A large number of gluon alleles were previously generated through imprecise excision of the P element in glu1 (Figure 1A), resulting in additional embryonic lethal lines (glu17C, glu88-37 and glu88-41B) displaying similar chromatin segregation defects to those described in glu88-82 mutant embryos in which chromatin bridges were most frequently observed (Steffensen et al. 2001). We have therefore exploited these different gluon alleles, together with mutations affecting other components of the condensin I complex in *Drosophila* (Savvidou et al. 2005), to explore possible functions of SMC4 in interphase as well as mitosis. These include the embryonic lethal barr1305 allele, which is considered to be a null mutation of the barren gene (Bhat et al. 1996) encoding the *Drosophila* orthologue of the CAP-H subunit (Hirano et al.
1997) and the embryonic lethal red sea64 mutant (Philp 1998) which was subsequently shown by complementation analysis to be allelic to the \textit{Drosophila} gene encoding CAP-G (referred to hereafter as the \textit{dcap-g}64 allele). Lastly, a larval lethal mutation affecting SMC2, known as \textit{smc2}jsl2, was discovered when a collection of EMS mutants generated by Jeff Sekelsky (University of North Carolina at Chapel Hill) was screened using an antibody raised against SMC2 in \textit{Drosophila} (Savvidou et al. 2005). By examining the effect of each of these mutations on position effect variegation (PEV) at different loci, we demonstrate further effects of different condensin components in modulating interphase gene expression (with the exception of CAP-D2, for which there are currently no mutants available) in addition to regulating the structure and behaviour of mitotic chromosomes.
MATERIALS AND METHODS

Creation of a *gluon:prospero* double mutant line

A multiply balanced *L*²/*CyO*; *MRS/TM6B* stock was initially crossed with +/+; *pros¹⁷*/TM6B flies. The *L*² and *CyO* progeny were collected and crossed with each other to generate *L*²/*CyO*; *pros¹⁷*/MRS flies. These were then crossed against the multiply balanced *glu¹*/CyO; *MRS/TM6B* line and the *glu¹*/CyO; *pros¹⁷*/TM6B progeny were collected. These were finally crossed with *In(2LR)Gla, wg* ^⁵^ Gla, *Bc¹/T(2;3)TSTL* flies to create a stock of *glu¹;pros¹⁷*/T(2;3)TSTL flies.

Selection of homozygous mutant animals

Embryonic lethal condensin mutations were maintained over *CyO* balancer chromosomes expressing GFP under control of the *Krüppel* gene (Casso et al. 2000) and homozygous mutant embryos were selected based on the absence of fluorescence in the amnioserosa or the Bolwig’s organs by sorting in halocarbon oil, as described previously (Savvidou et al. 2005; Steffensen et al. 2001). As the *gluon* and *prospero* genes are on the 2nd and 3rd chromosomes respectively, the double mutants were maintained over *T(2;3)TSTL*, a translocation balancer chromosome allowing simultaneous isolation of homozygotes at both loci. The homozygous *glu¹;pros¹⁷* mutant embryos were then identified based on the elevated number of mitotic nuclei in their central nervous system (resulting from the *pros¹⁷* mutation). As a control, the *pros¹⁷* mutation was balanced over the *TM3-5* balancer chromosome expressing GFP under control of the *Krüppel* gene (Casso et al. 2000) and *pros¹⁷* homozygous embryos were selected based on their lack of GFP expression. The larval lethal *smc²^jsl²* allele was maintained over a *CyO-GFP* balancer and homozygous larvae were similarly selected based on the absence of GFP fluorescence.

Fixation of embryos and larval brains

A fast formaldehyde fix was used to preserve cortical cytoskeletal structures such as microtubules, based on protocols described elsewhere (Rothwell and Sullivan 2000; Therkauf...
Dechorionated embryos were promptly rinsed in filter sterilized EBR (130 mM NaCl, 4.7 mM KCl, 1.9 mM CaCl$_2$, 10 mM Hepes pH 6.9) and flushed into a small glass vial using heptane. The embryos were then fixed in equal volumes of heptane and 40% EM grade formaldehyde (Electron Microscopy Sciences, PA) with extremely gentle rocking for 3 minutes, ensuring that the embryos were spread in a monolayer at the interface between the two phases. The lower formaldehyde phase was then removed carefully using a long tipped glass Pasteur pipette and replaced with an equal volume of Merck ARISTAR methanol to remove the vitelline membrane. The vial was capped again, shaken vigorously, vortexed for 15 seconds and then left to stand upright for one minute. The devitellinised embryos which had sedimented to the bottom of the vial were removed using a long tipped glass Pasteur pipette and transferred to a 1.5 ml microcentrifuge tube. The methanol was replaced with fresh Merck ARISTAR methanol four times to remove any remaining formaldehyde or heptane, mixing in between. Fixed embryos were stored in methanol at -20º before processing for immunofluorescent detection as described previously (Rothwell and Sullivan 2000; Therkauf and Heck 1999). Brains from third instar larvae were fixed and processed for immunofluorescence as described previously (Bonaccorsi et al. 2000; McHugh et al. 2004).

Antibodies

Primary antibodies were used for immunofluorescence or immunoblotting as follows: α-tubulin (mouse monoclonal antibody B5-1-2 used at 1:1,000; Sigma), phosphohistone H3 (P-H3; rabbit polyclonal used at 1:500; Upstate Biotechnology), phosphohistone H3 (P-H3; mouse monoclonal used at 1:500; New England Biolabs), lamin (rabbit polyclonal used at 1:500; provided by Paul Fisher, State University of New York at Stony Brook, Stony Brook, NY), Barren rabbit polyclonal used at 1:500 (Bhat et al. 1996), SMC2 rabbit polyclonal used at 1:500 (Savvidou et al. 2005), SMC4 rabbit polyclonal used at 1:500 (Steffensen et al. 2001), SCC1 rabbit polyclonal used at 1:500 (Warren et al. 2000), CAP-D2 rabbit polyclonal used at 1:10,000 for immunoblotting (Savvidou et al. 2005). All fluorescent or horseradish peroxidase conjugated secondary antibodies (Molecular Probes, Jackson ImmunoResearch Laboratories and Amersham Biosciences) were used according to the manufacturer’s instructions.
TUNEL labelling of staged embryos

Combined antibody staining and TUNEL labelling of staged embryos was performed using the Appligene Oncor Apotag kit, with modifications detailed below. Fixed embryos were permeabilised for one hour in PBS with 1% Triton X-100 and washed for 2 minutes in PBSTx (PBS with 0.05% Triton X-100), until all samples were ready for the Apotag reaction. The PBSTx was removed by careful aspiration and at least 100 µl Equilibration buffer per sample was applied for two minutes. The buffer was then removed and at least 100 µl of working TdT enzyme solution (150 µl TdT enzyme with 350 µl reaction buffer) was immediately applied before the embryos were incubated for one hour at 37° with rotation on a mixer. The embryos were then washed in Stop/Wash solution with gentle agitation for 15 seconds and incubated for 10-15 minutes. The embryos were washed thrice for ten minutes in PBSTx and blocked in PBS + 3% bovine serum albumin (BSA; Sigma) for 30 minutes at room temperature. They were next washed for five minutes in PBSTx and incubated overnight at 4° in mouse anti-digoxigenin antibody (Boehringer) diluted 1:100 in PBSTx. The embryos were then washed six times for five minutes each time before performing any additional antibody incubations as described earlier or staining of DNA with 0.05 µg/ml DAPI. The mouse anti-digoxigenin antibody was detected using an Alexa Fluor 594 conjugated anti-mouse antibody (Molecular Probes).

Microscopy

All preparations were examined with an Olympus Provis microscope, equipped with epifluorescence optics. Images were captured with an Orca II CCD camera (Hamamatsu) and Smart Capture 2 software (Digital Scientific). Fixed embryos were mounted in 90% glycerol/10% PBS. Image analysis was performed using IPLab Spectrum version 3.1 and Adobe Photoshop® version 4.0.

Preparation of larval brain samples for SDS-PAGE

10-20 brains were suspended in 50 µl lysis EBR (130 mM NaCl, 4.7 mM KCl, 1.9 mM CaCl₂, 10 mM Hepes pH 6.9, 10 mM EDTA, 10 mM dithiothreitol, 1:100 dilutions of each of the
protease inhibitors PMSF, CLAP and Trasylol). The material was immediately homogenized after adding 25 µl of warm (65°) 3X SDS-PAGE sample buffer with DTT (6% SDS, 150 mM trizma base, 30% glycerol, 0.03% bromophenol blue, 6 mM EDTA, 100 mM dithiothreitol), using a Kontes pestle and mini-motor. A hole was then pierced in the top of tube and it was heated at 100° for 10 minutes. Finally, the tube was spun briefly and the sample was loaded onto a polyacrylamide gel or stored at -20°.

Immunoblotting

Protein extracts were separated by SDS-PAGE and transferred onto nitrocellulose membranes (Schleicher and Schuell) in a Trans-Blot apparatus. Membranes were blocked in PBS+0.1% Tween 20 (PBSTw) and 5% semi-skimmed milk for 1 hour at room temperature (RT) and then incubated for 1-1.5 hours with the primary antibody in PBSTw. After washing three times for 5, 15 and 10 minutes with PBSTw, the membranes were incubated in a horseradish peroxidase-linked (HRP) secondary antibody for 1 hour in PBSTw at RT. Finally the membranes were washed as above in PBSTw and immunocomplexes were detected by enhanced chemiluminescence (ECL; Amersham Biosciences). The nitrocellulose was then exposed to Kodak XAR-5 film for autoradiography and films were developed using a Konica SRX-101A developer.

Phosphorimager analysis

Samples were processed as described for immunoblotting but instead of using an HRP secondary, a Cy5-conjugated secondary antibody (Jackson ImmunoResearch Laboratories) was used at a dilution of 1:200. The intensity of the signal was measured by using the STORM 860 scanning phosphorimager and calculated using the ImageQuant program (Amersham). The intensity was finally normalised by using α-tubulin as a loading control. Values were corrected by subtracting the background of the corresponding lane from each band.
Analysis of Position Effect Variegation

Male flies from each mutant line (balanced over CyO) were crossed against \(w^{mdh} \) virgin females at 25° and the resultant straight-winged male progeny were selected and allowed to age for four days after eclosion. The flies were then frozen at -80° and the heads were decapitated by vortexing. The fly heads were isolated by repeated sieving through nylon meshes and 100 fly heads were counted and placed in a 1.5 ml microfuge tube. The drosopterin pigments were extracted as previously described (Ashburner 1989), using the heads of similarly treated \(w^{1118} \) flies as a blank. Crosses between gluon virgin females and male flies carrying \(SUPor-P \) transposon insertions on the Y chromosome (Yan et al. 2002) or between condensin mutant males and virgin females carrying \(hsp70-w^+ \) transgenes on the fourth chromosome (Cryderman et al. 1999) were similarly performed as described above. Crosses with \(w^{1118} \) flies were used as controls for all reporters of PEV to generate hemizygotes in an otherwise wild type background, thereby avoiding potential complications associated with background modifiers of PEV on balancer chromosomes (Wallrath and Elgin 1995).

Frequency distributions of variegated eye colour in different mutant backgrounds were generated by photographing both eyes of individual four day old male progeny against a uniform white background with an Olympus C-2020 Z digital camera. The level of pigmentation was then quantified using the histogram feature of Adobe Photoshop® 4.0 to measure the mean pixel intensity of eye colour in the images. To correct for any possible variations in ambient illumination during image capture, the luminosity of the traced eyes was subtracted from that of the white background. The resulting values were then rounded and a frequency distribution was plotted, using the ratio of the mean absorbance to the mean pixel intensity in each genetic background to calibrate the respective frequencies in terms of absorbance.

To examine the dominance relationships between mutant alleles identified as strong enhancers or suppressors of variegation, the \(\text{In}(1)w^{mdh} \) chromosome was crossed into each of the mutant lines using \(w^{mdh};L/CyO \) virgin females. Reciprocal crosses between strong enhancers of variegation and strong suppressors of variegation were then performed and the absorbance of 100 heads from four day old straight-winged male progeny was measured as described above.
RESULTS

Mitotic defects in gluon and dcap-g mutant embryos

As cells undergoing mitosis in gluon mutant embryos were shown to either accumulate in metaphase or progress to anaphase with chromatin bridges (Steffensen et al. 2001), we attempted to determine the ultimate fate of these defective divisions in different gluon mutant alleles. One possible consequence might be that a metaphase delay would lead to an elevated mitotic index as fewer cells would be exiting mitosis, or else a large number of defective mitotic divisions might lead to increased levels of apoptosis. These possibilities were tested by measuring the levels of apoptosis and mitosis after dual labelling of fixed embryos with TUNEL and immunofluorescent detection of histone H3 phosphorylated at serine 10 (Wei and Allis 1998). By counting the number of TUNEL positive and phosphohistone H3 positive cells in sections of staged embryos, we observed that gluon alleles have both reduced levels of mitosis and apoptosis (Figure 2A). Since cell losses are no longer regulated by compensatory divisions during these postblastoderm mitotic cycles and supernumerary cells can be disposed of by apoptosis (Busturia and Lawrence 1994; Li et al. 1999; Namba et al. 1997), the ratio of mitosis to apoptosis should reflect the relative frequency of successful nuclear divisions. Indeed, we observed that the gluon mutant embryos have a lower ratio of mitosis to apoptosis compared to wild type Canton-S embryos (Figure 2B). Furthermore, this mitosis/apoptosis ratio appeared to decrease as the mutants aged (in contrast to wild type embryos), with the most extreme trends observed in homozygous gluon embryos. We therefore concluded that mutations affecting SMC4 result in both decreased mitotic activity and an increased number of defective mitotic divisions. However, the reduced mitotic index itself does not seem to be a consequence of elevated absolute levels of apoptosis, suggesting either that the mutant cells unable to properly resolve their chromosomes might somehow reverse through the cell cycle (Rieder and Cole 1998) or that the number of cells initially able to enter mitosis is reduced. As there is relatively little mitotic activity in either stage 14 or 15 mutant embryos, the mitotic phenotypes of gluon mutant alleles were therefore examined in a genetic background with elevated mitotic activity.

Unlike the previously described gluon allele, mitotic phenotypes were less frequently observed in the original gluon P element insertion allele and most other excision alleles, even
though the frequency of mitotic nuclei was similar in glu^{88-82} and glu^I homozygous embryos. By contrast, barren (Bhat et al. 1996) and dcap-g (Dej et al. 2004; Jäger et al. 2005) mutants present phenotypic defects earlier in embryogenesis (Bowne’s stage 11) and display chromosomal defects in mitotic domains during cycles 15 or 16. However, SMC4 is highly expressed in Drosophila ovaries (Steffensen et al. 2001) and maternally loaded stockpiles of the protein persist throughout embryogenesis, such that phenotypes are not observed in any embryonic lethal gluon mutants until Bowne’s stage 14. If the relative lack of mitotic phenotypes observed in most gluon mutants might be due to the slower turnover of SMC4 compared to Barren and dCAP-G, then increasing the number of mitotic divisions might locally deplete maternal SMC4 more rapidly and allow mutant phenotypes to be observed more readily. This was achieved by introducing a mutation in prospero, which encodes a pan-neural transcription factor that normally inhibits cell proliferation during neuroblast divisions by repressing transcription of several cell cycle regulatory genes, such as cyclin A, cyclin E and string, the Drosophila homologue of cdc25 (Li and Vaessin 2000). The original glu^I mutation was therefore combined with $pros^{17}$, an amorphic allele resulting from a small deletion within the prospero locus (Gertler et al. 1993) and mitotic chromosomes from $glu^I;pros^{17}$ homozygous embryos were compared with $pros^{17}$ controls.

As with glu^{88-82} homozygotes, no easily discernible effect was observed before metaphase in $glu^I;pros^{17}$ mutant embryos, although 11% of metaphase figures appeared abnormal, containing more than the usual chromosome complement (Figure 3A). These aneuploid or polyploid metaphases presumably resulted from segregation defects in a previous mitotic cycle and are consistent with the giant aneuploid nuclei observed when SMC4 is depleted by RNAi in C. elegans (Hagstrom et al. 2002). Furthermore, chromatin bridges were observed in $glu^I;pros^{17}$ mutant embryos at anaphase and telophase (Figure 3C) with similar frequencies to those previously observed in glu^{88-82} homozygotes (Steffensen et al. 2001). Therefore, the high frequency of segregation defects observed in glu^{88-82} mutant embryos can be reproduced by increasing the mitotic activity of glu^I mutants and presumably depleting wild type SMC4 levels more quickly than in glu^I mutants alone. Previously, we described how the proportion of mitotic cells in metaphase was significantly greater in embryos homozygous for the glu^{88-82} allele (Steffensen et al. 2001). Although somewhat obscured by the greater proportion of cells in prophase/prometaphase when all mitotic stages are represented (Figure 3B), we were similarly able to detect a twofold increase in the proportion of mitotic cells in
metaphase relative to anaphase in glu1;pros17 mutant embryos and a more than fourfold increase in the proportion of metaphase figures in dcap-g64 embryos (Figure 3C), in contrast to wild type or pros17 controls in which the proportion of metaphase and anaphase figures are roughly equal.

In contrast to most gluon mutant alleles, mitotic defects were more readily observed in dcap-g64 embryos as similarly aged mutant homozygotes appeared to delay at earlier developmental stages with higher mitotic activity (Bowne’s stages 11-13). As shown in Figure 3A, dcap-g64 homozygous embryos also displayed obvious chromatin bridges in anaphase and telophase, in addition to demonstrating an even greater accumulation of mitotic cells at prophase/prometaphase and metaphase than observed in gluon mutants (Figure 3B & C). As previously described for various condensin mutants (Dej et al. 2004; Steffensen et al. 2001), we consistently observed phospho-H3 persisting most strongly on the lagging chromatid arms or chromatin bridges in telophase. When dcap-g64 homozygous mutant embryos were labeled with antibodies against lamin, we also observed delayed lamin reassembly around chromatin bridges (Figure 3D), suggesting that the failure in anaphase chromosome segregation may delay dephosphorylation events prior to mitotic exit.

Primers flanking the original P element insertion site in the glu1 allele were used to amplify the remaining P element from homozygous mutant embryos. These PCR products were then sequenced and the nature of the lesion in each of these mutant alleles was determined (Figure 1). Like the original glu1 allele, each of these excision alleles contained stop codons in all reading frames at the 5' end of the P element, so the mutants are predicted to be nulls. In each of these mutant alleles, a 122 residue truncated protein containing only the first 119 amino acids of SMC4 could be produced, lacking even the Walker A motif (Figure 1A). The sequence for the molecular lesions explains why the red eye colour resulting from the mini-white transgene is absent in each of these excision alleles, as the entire coding sequence is deleted in most alleles (with the exception of glu88-41B, in which only the 3' half of the mini-white transgene is present). However, the sequence data also suggest that the glu88-82 allele might possibly be a neomorph, in which the Hsp70 promoter might drive expression of a truncated SMC4 protein containing amino acids 195 to 1409, though we have been unable to verify the presence of such a truncated protein as previously generated antibodies were raised against the N-terminus of the protein (Steffensen et al. 2001). Sequencing of the molecular
lesion in glu^{17C} revealed a large deletion of approximately 31 kb resulting in a knockout for SMC4. Although a number of other genes were also removed by the deletion, the glu^{17C} allele was found to affect PEV in the same way as most other gluon alleles (as described below).

Sequencing of the dcap-g⁶⁴ allele confirmed that the gene encoding CAP-G was indeed affected in these mutants by revealing a G954T transversion, resulting in a D254Y substitution. This mutation is significant as it affects a residue that is invariant among CAP-G sequences from different organisms and is found in a predicted HEAT repeat in the most conserved region of the protein. The discovery of HEAT repeats in CAP-G and CAP-D2 orthologues from <i>S. pombe</i>, <i>S. cerevisiae</i> and <i>Xenopus</i> was previously thought to signify possible regions of interaction between condensin proteins (Neuwald and Hirano 2000), as these tandemly repeated bichelical structures are thought to play roles in protein-protein interactions (Andrade and Bork 1995). Indeed, such interactions were subsequently confirmed by co-immunoprecipitation experiments in which the HEAT repeat containing N-terminal moiety of CAP-D2 was shown to be required for interactions with other condensin proteins whilst the CAP-D2 C-terminal region interacted specifically with CAP-G (Ball et al. 2002). We therefore speculate that the replacement of an invariant aspartate residue with a tyrosine in a highly conserved region of CAP-G may disrupt a salt bridge required for formation of the bichelical HEAT repeat structure, thereby rendering the protein unable to interact normally with other condensin subunits.

Mitotic defects in smc2 mutant larvae

A larval lethal mutation affecting SMC2, known as smc2^{jst12}, was discovered among a collection of EMS mutants after immunoblotting larval protein extracts with an antibody generated against the N-terminal region (amino acids 24-309) of SMC2 (Savvidou et al. 2005), in order to detect lines in which the protein showed reduced expression or altered mobility. Unlike the previously characterised condensin mutant alleles, we did not detect mitotic phenotypes in smc2^{jst12} embryos and the associated hatching frequencies were not consistent with embryonic lethality. However, the brains in smc2^{jst12} homozygous third instar larvae are much smaller than either wild type or heterozygous brains (Figure 4B), suggesting a proliferation defect. When third instar larval brains from heterozygous (control) and
homozygous larvae were stained for phosphorylated H3, α-tubulin and DNA, the percentage of mitotic cells in \textit{smc}2jsl2 homozygous mutant brains (0.26\%) was found to be significantly lower than in heterozygous or wild type controls (1.62\%). Similarly, the percentage of mitotic cells in second instar \textit{smc}2jsl2 homozygous mutant brains was only 0.4\%, compared to 1.3\% in controls. Analysis of the few mitotic cells that were present in homozygous brains showed several defects in chromosome morphology. Chromosomes often appeared fuzzy with almost no sister chromatid resolution whilst cells in telophase showed extensive chromatin bridges (Figure 4A). However, the stage of many mitotic cells (up to 56\% in the case of third instar larval brains) could not be easily determined as the chromosome structure was so abnormal, whereas control cells from heterozygous brains showed normal chromosome morphology and segregation (Figure 4A). All telophase or anaphase-like cells in \textit{smc}2jsl2 homozygotes had chromosome bridges. Furthermore, 2.66\% of interphase cells in \textit{smc}2jsl2 homozygotes were also joined by chromosome bridges (forming apparently bi-nucleate or tri-nucleate cells), compared to 0.06\% in control brains, presumably reflecting defective chromosome segregation and failed cytokinesis in previous mitotic cycles. Nevertheless, no obvious delays in mitotic progression were apparent in \textit{smc}2jsl2 mutant brains, although quantitation was limited by the significantly reduced mitotic index and not easily classifiable mitotic figures.

The mutation in \textit{smc}2jsl2 was identified by sequencing the \textit{smc}2 locus from homozygous second instar larval genomic DNA, revealing a premature stop codon at residue 827 caused by a C2482T transition (Figure 4C). This should result in the synthesis of a truncated SMC2 protein lacking the C-terminal globular domain and part of the adjacent coiled-coil sequence, which are expected to be essential for functional activity. However, we were unable to detect a 94 kDa band corresponding to the estimated size of the mutant protein in \textit{smc}2jsl2 larval or embryonic protein extracts, suggesting that the truncated SMC2 protein may be unstable. As no band corresponding to wild type SMC2 could be detected in protein extracts from \textit{smc}2jsl2 homozygotes, the stability of the remaining condensin components was also tested (Figure 4D). Quantitation of protein levels by phosphorimaging revealed that SMC4 was decreased 6.5-fold, CAP-D2 8.2-fold and Barren 14-fold compared to wild type brain extracts, suggesting that the stability of these proteins is greatly affected by the absence of SMC2. By contrast, the Scc1/Rad21 subunit of the cohesin complex was largely unaffected, similar to the α-tubulin loading control.
The effect of condensins on gene expression

Although the various subunits of the condensin complex are clearly essential for proper resolution of separating chromatids during mitosis (Bhat et al. 1996; Hagstrom et al. 2002; Hudson et al. 2003; Lieb et al. 1998; Saka et al. 1994; Savvidou et al. 2005; Stear and Roth 2002; Steffensen et al. 2001; Sutani et al. 1999), it seemed plausible that they might also play a role in chromatin behaviour during interphase as condensin SMC proteins have long been known to play a role in dosage compensation in *C. elegans* (Chuang et al. 1994; Lieb et al. 1998). Moreover, chromatin bridging phenotypes similar to those of *gluon* mutants had been observed in *Su(var)205* embryos (Kellum and Alberts 1995), which are null mutants for the gene encoding heterochromatin protein 1 (HP1) with dosage-dependent effects on PEV (Dorn et al. 1993; Eissenberg et al. 1992). Therefore, it appeared likely that various components of the condensin complex might also be active during interphase, possibly influencing chromatin structure in a manner similar to their effects on mitotic chromosome structure. To explore the possible interphase role of condensin components, the various mutant alleles shown to display a consistent mitotic phenotype were crossed against *white mottled 4* (*wm4h*) flies to examine their effect on PEV, together with reporters of PEV at other loci (Figure 5). The *In(1)wm4h* inversion in these flies places the *white* gene (conferring red eye colour) near a region of pericentric heterochromatin on the X chromosome (Tartof et al. 1984) and suppression of PEV by expansion of euchromatin typically results in flies with increased expression of the *white* gene and thus a higher proportion of red ommatidia. On the other hand, enhancement of PEV by expansion of heterochromatin leads to decreased expression and more white-eyed flies (Sass and Henikoff 1998). In addition to performing crosses with condensin mutants, established suppressors and enhancers of variegation were also examined in order to contextually evaluate the strength of effects on PEV seen with the different condensin mutants (aside from the original *glu1* allele, as an intact *white* reporter gene in the P element precluded its use in these analyses).

As shown in Figure 6, crosses between *gluon* mutants and *wm4h* females predominantly yielded white eyed male progeny for most of the excision alleles, with the exception of *glu*88-82. Most mutations affecting condensin proteins resulted in strong enhancement of variegation (decreased red eye colour) comparable to the dominant enhancer of variegation *Mod(mdg4)* (Büchner et al. 2000), suggesting that the wild type function might be to enhance
gene expression by establishing or maintaining an open chromatin conformation. The exceptions included the \textit{glu}^{88-82} allele (Figure 6C), which appeared to behave as a strong suppressor of variegation, and the \textit{smc}^{2HL2} allele (Figure 6B), which had little effect on PEV (possibly because this larval lethal mutation is less severe than those resulting in embryonic lethality). The strong enhancement of variegation due to the \textit{dcap-g}^{64} allele differs from the weak suppression of PEV in a \textit{w}^{mdh} background previously described with \textit{dcap-g}^{K1} and \textit{dcap-g}^{K2} alleles (Dej et al. 2004). However, the latter alleles contained point mutations that generate premature stop codons in the \textit{dcap-g} coding region, while the D254Y substitution identified in \textit{dcap-g}^{64} is predicted to disrupt interactions with other condensin subunits, so differences in the behaviour of these alleles may reflect differences in their ability to impair the functional activity of a complex active in interphase. We also observed weak enhancement of variegation with the \textit{barr}^{L305} allele, in contrast to previous reports that this allele suppresses variegation of \textit{w}^{mdh} (Dej et al. 2004) and also alleviates repression of \textit{mini-white} gene expression due to Polycomb-mediated silencing (Lupo et al. 2001). However, our study is the first that we are aware of in which the effects of condensins on interphase gene expression are described using quantitative analyses.

In addition to measuring the effects on PEV by spectrophotometric quantitation of eye pigments (extracted from multiple flies), the frequency of eyes with different levels of pigmentation was also measured by image analysis of individual fly heads. These values were calibrated against the mean eye colour suggested by absorbance readings, resulting in the frequency distribution shown in Figure 6D. The frequency distribution reveals that the \textit{glu}^{88-82} allele has a bimodal distribution, showing both enhancer and suppressor effects, although overall the mutant behaves as a suppressor of variegation. The behaviour of the \textit{glu}^{88-82} allele is therefore consistent with its classification as a potential neomorphic mutant (suggested by its sequence), in which opposing effects on gene expression may be caused by both reduced wild type SMC4 functional activity and translation of a truncated C-terminal protein.

Finally, several alleles of different condensin genes identified as particularly strong enhancers or suppressors of variegation were crossed against each other in a \textit{w}^{mdh} background to test for possible epistatic effects. Visual inspection of the predominantly red fly eyes in the resulting male progeny initially suggested that suppressors of variegation such as \textit{Su(var)205} and \textit{glu}^{88-82} might be partially dominant over enhancers of variegation such as \textit{glu}^{17C}, \textit{dcap-g}^{64}
and $barr^{L305}$. If $Su(var)^{205}$ proved to be dominant over glu^{17C}, $dcap-g^{64}$ or $barr^{L305}$, then this might have suggested that the interphase function of condensins acts upstream of HP1 to modulate transcription. Conversely, if these mutant alleles proved to be dominant over $Su(var)^{205}$, this might imply that condensin function may be downstream of HP1 activity, possibly reflecting HP1-regulated transcription of condensins as with other cell-cycle regulators (De Lucia et al. 2005). However, spectrophotometric measurements revealed intermediate eye pigment levels in these male fly heads (supplemental data), indicating instead that the effect of the different mutant alleles on PEV was approximately dose dependent, with their independent influences combining additively in the assay. Similarly, intermediate eye pigment levels were observed in crosses between glu^{88-82} and $dcap-g^{64}$ or $barr^{L305}$ in a w^{m4h} background, suggesting that any suppressor effects potentially due to expression of a neomorphic SMC4 C-terminal truncation in glu^{88-82} were not dominant over the enhancer activity of other condensin mutants, consistent with the observation of both predominantly red and white eyed glu^{88-82} heterozygotes (Figure 6A & D).

The effect of condensin mutations on PEV at other loci

The effect of the different condensin mutations on PEV was also examined at several other loci, including the bw^D (brown-Dominant) allele (Henikoff et al. 1995; Slatis 1955), the Sb^V (Stubble-Variegated) allele (Hayashi et al. 1990) and the Fab-7 repressed $mini-white$ reporter gene in $5F24(25.2)$ flies (Zink and Paro 1995). However, none of the crosses showed any effect of condensin mutations on PEV. This contrasts with previously published results in which the $barr^{L305}$ allele was shown to suppress $5F24(25.2)$ variegation in adult female progeny (Lupo et al. 2001) but is nonetheless consistent with more recent findings concerning the lack of any discernible effect of $dcap-g$ mutations on regulation of gene expression by the Fab-7 Polycomb-group response element (Dej et al. 2004). However, as the w^{m4h} inversion places the $white$ gene near the $bobbed$ multicopy rDNA array within pericentric heterochromatin, it is possible that the PEV assay performed with w^{m4h} flies may be more sensitive to mutations affecting condensin components if such proteins are enriched at rDNA loci as in other species (Bhalla et al. 2002; Cabello et al. 2001; D’Amours et al. 2004; Freeman et al. 2000; Uzbekov et al. 2003; Wang et al. 2004) and since various condensin proteins in *Drosophila* have been shown to be concentrated at mitotic centromeres (Savvidou et al. 2005;
Steffensen et al. 2001). In order to evaluate whether the effect of condensin mutations on PEV were specific to particular chromosomal regions, additional crosses were performed between selected alleles and flies carrying transgenic white reporter genes at different chromosomal loci.

The potential specificity of effects at rDNA-proximal loci was further explored by performing crosses between selected gluon alleles and flies carrying insertions of the SUPor-P transposon at various intervals on the Y chromosome (Yan et al. 2002), which carries a white reporter gene flanked by su(Hw) binding regions (Roseman et al. 1995). Interestingly, no effect on PEV was seen with KV168 (J448) or KV81 (C882) lines, in which the SUPor-P transposon respectively maps to the h10 and h11–13 Y chromosomal “h” bands, though each of the different gluon alleles tested were shown to affect PEV in the KV128 (D285) and KV113 (B947) lines, in which the SUPor-P transposon respectively maps to the h20 and h22–24 Y chromosomal “h” bands and thus relatively close to the Y-bobbed rDNA locus (h20-21).

In the case of crosses performed with the KV128 insertion (which maps closest to the rDNA locus), the glu17C and glu88-37 alleles clearly suppressed variegation of the white reporter gene in the SUPor-P transposon, though suppression of variegation was evidently weaker with the glu88-82 allele (Figure 7A & B). By contrast, each of the different gluon alleles were found to enhance variegation in crosses with KV113 flies (Figure 7C), in which the mean and median number of pigmented ommatidia in controls were found to be 10.2 (± σ = 17.5) and 3 respectively but the number of pigmented ommatidia was consistently zero for each of the gluon mutant heterozygotes. Together, these results further suggest that the rDNA proximal loci may be more sensitive to the effect of condensin mutations.

In order to test whether the effects of condensin mutations on PEV were exclusive to rDNA proximal loci on the sex chromosomes, additional crosses were performed between selected alleles and flies carrying autosomal centromere and telomere proximal hsp70-white+ transgenes (Cryderman et al. 1999; Wallrath and Elgin 1995). However, we failed to detect obvious effects on hsp70-white+ expression with pericentric transgene insertions on the second or third chromosome (39C-4 and 118E-12), although derepression of an additional hsp26-pt-T reporter transgene has been reported in crosses between these lines and Su(var)205 (Wallrath and Elgin 1995). In agreement with previous findings for Su(var)205 (Cryderman et al. 1999; Wallrath and Elgin 1995), we also did not detect effects on PEV for telomeric transgene
insertions on both arms of the second chromosome (39C-5 and 39C-27), only observing effects on PEV of both \textit{Su(var)205}5 and condensin mutants with insertions on the fourth chromosome. As shown in Figure 8, each of the gluon alleles and the \textit{dcap-g}64 allele enhanced PEV in crosses with 118E-10 flies, in which the \textit{hsp70-white}+ transgene is inserted near the centromere of the fourth chromosome (Sun et al. 2000; Wallrath and Elgin 1995). Enhancement of variegation was often more readily apparent in female progeny (Figure 8A), possibly because the Y chromosome is itself known to be the most potent suppressor of PEV (Maggert and Golic 2002). Consequently, spectrophotometric comparisons of pigment levels were only performed using male fly heads in order to more sensitively detect differences due to enhancement of variegation (Figure 8B). By contrast, strong suppression of variegation was observed following crosses with \textit{Su(var)205}5 flies, whilst the eye pigmentation of progeny heterozygous for \textit{barr}L305 did not appear significantly different to controls. Similarly, each of the gluon alleles and the \textit{dcap-g}64 allele enhanced PEV in crosses with 39C-72 flies (Figure 9), in which the \textit{hsp70-white}+ transgene is inserted near the telomere of the fourth chromosome (Cryderman et al. 1999). As with hemizygotes for the 118E-10 \textit{hsp70-white}+ insertion, enhancement of variegation was more readily apparent in the 39C-72 female progeny (Figure 9A). Although the eyes of progeny heterozygous for \textit{barr}L305 did not generally differ significantly in appearance from those of controls, weak enhancement of variegation was nevertheless apparent by spectrophotometric analysis of homogenised male fly heads (Figure 9B).
DISCUSSION

Condensins are essential for mitotic progression at various stages

The \textit{glu}^1, \textit{glu}^{88-82} and \textit{glu}^{17C} homozygotes all have reduced levels of mitosis and a lower ratio of mitosis to apoptosis compared to wild type individuals, suggesting that many of these mitotic nuclear divisions may be defective. In particular, the \textit{glu}^{88-82} homozygous embryos displayed chromatin bridges in the majority of cells reaching anaphase, as well as a pronounced accumulation in prometaphase and metaphase. Although the sequence data suggest that the \textit{glu}^{88-82} allele might be a neomorphic mutant (expressing a truncated SMC4 protein lacking the first 194 amino acids), the observed segregation defects are not unique to this allele and the high frequency of segregation defects observed in \textit{glu}^{88-82} mutant embryos can be reproduced in \textit{glu}^1 mutants by increasing the mitotic activity in postblastoderm embryos. Lastly, the same chromosome segregation defects have also been observed in \textit{glu}^2 and \textit{glu}^1/\textit{glu}^2 larval neuroblasts (Steffensen et al. 2001) as well as the \textit{barr}^{L305} allele (Bhat et al. 1996), various \textit{dcap-g} alleles (Dej et al. 2004; Jäger et al. 2005) and depletion of condensin subunits by RNA interference (Coelho et al. 2003; Savvidou et al. 2005). Therefore, it is clear that condensin is critically required for the orderly segregation of sister chromatids during mitosis in \textit{Drosophila}. Although it was previously reported that pericentric heterochromatin appeared longer in neuroblasts of \textit{dcap-g} mutant larvae (Dej et al. 2004), measurements of the chromosome arm lengths in \textit{glu}^2 larval neuroblasts have shown that \textit{glu}^2 mutant chromosomes are the same length as those from wild type larvae (Steffensen et al. 2001) and we did not observe any clear difference in mitotic chromosome lengths for any of the condensin mutant alleles described here. In addition, we did not observe any differences in the overall structure or banding pattern of polytene chromosomes whilst attempting to uncover the potential impact on interphase function of larval lethal condensin mutations, such as \textit{glu}^2 (Steffensen et al. 2001) or \textit{smc2jsl2} (supplemental data). It therefore appears that the failure of mitotic chromosomes to resolve in condensin mutants results from a lack of orderly architectural changes, rather than a complete absence of chromosome condensation \textit{per se} (Cuvier and Hirano 2003; Hudson et al. 2003; Lavoie et al. 2002; Steffensen et al. 2001).

It is also worth noting that mitotic spindles appear normal in both \textit{gluon} and \textit{dcap-g}^{64} mutant embryos, in contrast to the spindle defects observed with different condensin mutations.
in *S. cerevisiae* (Lavoie et al. 2002; Lavoie et al. 2000; Ouspenski et al. 2000). Normal mitotic spindles are also observed in the *Drosophila barr* mutant (Bhat et al. 1996), chicken DT40 cells depleted of SMC2 (Hudson et al. 2003) and also when SMC4 is depleted by RNAi in *C. elegans* (Hagstrom et al. 2002), so it appears that the condensin proteins do not affect spindle assembly in metazoans. Therefore, the segregation defects in *gluon* mutants do not appear to be due to defective spindle formation but are more consistent with a role for condensins in preventing chromosome entanglement. By contrast, abnormal mitotic spindles were frequently observed in the *smc2* allele, although this might be partly explained by the difficulty in preparing neuroblast squashes from significantly smaller larval brains.

Consistent with our previous findings (Steffensen et al. 2001), quantitation of the mitotic phenotypes in condensin mutant embryos suggests that most cells are delayed in prophase/prometaphase and metaphase, whereas the majority of cells reaching anaphase display chromatin bridges. The observation that embryonic lethal *gluon* and *dcap*-g alleles accumulate in metaphase whilst larval alleles do not is possibly because the former are more severe (Steffensen et al. 2001), whilst the absence of any similar mitotic delay in cultured cells depleted of condensin components (Coelho et al. 2003; Hudson et al. 2003) might reflect checkpoint differences in cultured cells from various species, as a metaphase delay together with chromatin bridges have also been observed in *C. elegans mix-1* mutant embryos, in which the orthologue of SMC2 is affected (Lieb et al. 1998). A roughly threefold greater number of prometaphase figures was previously reported for *dcap*-g mutant embryos compared to wild type (Dej et al. 2004), though the criteria used to classify prometaphase figures in this study varied for different genotypes and only the morphology of the chromosomes (but not the mitotic spindle or nuclear lamina) was scored for the purposes of quantitation. Nevertheless, our analyses based on consistent classification of both mitotic spindle and chromosome behaviour confirm the accumulation of mitotic cells in prophase/prometaphase in both embryonic lethal *gluon* and *dcap*-g alleles. Based on our observations and previous findings that mitotic chromosome condensation is delayed but not abolished in condensin mutants (Hudson et al. 2003; Steffensen et al. 2001), we speculate that condensation checkpoints may exist in intact cells, similar to previously reported topoisomerase II and DNA damage checkpoints (Downes et al. 1994; Giménez-Abián et al. 2002; Mikhailov et al. 2004; Rieder and Cole 1998) or possible monitoring of kinetochore tension through the spindle checkpoint (Musacchio and Hardwick 2002). If so, the presence of such a checkpoint may prevent the
most extreme condensation defects from occurring, so segregation defects are the main phenotypes usually observed in whole organisms with reduced condensin activity (Hagstrom et al. 2002; Lieb et al. 1998; Stear and Roth 2002; Steffensen et al. 2001). By contrast, more extreme chromosome structural defects or compromised kinetochore–microtubule interactions may only be apparent in cultured cells from different species (Coelho et al. 2003; Hirota et al. 2004; Hudson et al. 2003; Ono et al. 2004; Savvidou et al. 2005).

Unfolding the role of condensins during interphase

In contrast to previous reports consistently describing condensins primarily as suppressors of variegation (Dej et al. 2004; Lupo et al. 2001), we have found that the same mutant alleles can promote either suppression or enhancement of variegation at different loci on the same or different chromosomes (Table I). The observation that most mutations affecting condensin proteins resulted in strong enhancement of variegation at the \(w^{mth}\) locus was initially surprising, as one might expect that proteins which compact DNA would encourage expansion of heterochromatin, resulting in suppression of variegation as previously reported (Bhat et al. 1996; Dej et al. 2004). Nevertheless, one should also bear in mind the possibility that the different condensin proteins may not function in the same way or as members of the same complex during interphase, consistent with the contrasting requirements for different condensin proteins during interphase in \(S.\ pombe\) (Aono et al. 2002) and silencing at the mating-type loci in \(S.\ cerevisiae\) (Bhalla et al. 2002) or the different proteins associated with the SMC2/4 heterodimer in \(C.\ elegans\) that participate in dosage compensation (Chuang et al. 1994; Lieb et al. 1998; Lieb et al. 1996). We recently verified the existence of a canonical condensin I complex in \(Drosophila\) (Savvidou et al. 2005) but it is still unknown what sort of interphase complex might contain the various condensin proteins in this species. Although the various condensin proteins are enriched in actively dividing tissues such as larval brains (Savvidou et al. 2005; Steffensen et al. 2001), we were unable to detect these proteins in equivalently loaded extracts prepared from non-dividing tissues such as third instar larval salivary glands (supplemental data). However, it is possible that the interphase activity of condensin proteins may be specific to particular tissues or developmental stages and may require comparatively low protein levels to exert significant epigenetic effects.
Although we do not yet know the identity of sequence elements that might mediate the effects of condensins on gene expression, it is striking that we only observed effects with reporters of variegation close to the rDNA locus on the X and Y chromosomes and also on the fourth chromosome (Figure 5), as condensin proteins were shown to be enriched at rDNA loci in *S. cerevisiae* (Bhalla et al. 2002; D’Amours et al. 2004; Freeman et al. 2000; Wang et al. 2004) and localised to nucleoli during interphase in *Xenopus* cells (Cabello et al. 2001; Uzbekov et al. 2003). Among the various heterochromatic regions to which condensins bind preferentially during mitosis in *S. cerevisiae* (Wang et al. 2005), a specific functional connection with rDNA is also suggested by their cohesin-dependent role in establishment of rDNA condensation (Lavoie et al. 2002; Lavoie et al. 2004) and additional recruitment to the rDNA locus in anaphase to mediate rDNA condensation and resolution, dependent on Ipl1/aurora B kinase and Cdc14 phosphatase activity (Bhalla et al. 2002; D’Amours et al. 2004; Freeman et al. 2000; Lavoie et al. 2004; Sullivan et al. 2004; Wang et al. 2004).

The apparent specificity of condensin-mediated epigenetic phenomena to the fourth chromosome is less readily explained at present. However, the fourth chromosome of *Drosophila* is unlike other autosomes but similar to the X or Y chromosomes insofar as flies haploid for these chromosomes are viable, albeit sterile in the case of X0 males and usually sterile in the case of haplo-4 flies (Lindsley and Grell 1968). The fourth chromosome is also unusual among the autosomes as it is predominantly heterochromatic, though it also contains interspersed euchromatic and heterochromatic domains (Sun et al. 2000; Sun et al. 2004), whereas domains of constitutive heterochromatin are normally limited to pericentric and telomeric DNA in most metazoans. Similarly, the Y chromosome contains over three times more pericentric heterochromatin than either the second or third chromosome in *Drosophila* (Adams et al. 2000; Peacock et al. 1978). The behaviour of telomeric gene silencing on the fourth chromosome differs from that of other autosomes and appears to more closely resemble the general pattern of pericentric gene silencing dependent on HP1 (Cryderman et al. 1999; Sun et al. 2004). Other similarities between the fourth chromosome and the X chromosome seem to be revealed by the chromosomal specificity of POF (Painting of fourth) binding in different *Drosophila* species. For example, the POF protein only binds the fourth chromosome in males of *D. melanogaster* but decorates the entire X chromosome exclusively in *D. busckii* males, whilst POF binding to the male X chromosome as well as to the fourth chromosome in species such as *D. ananassae* further supports a suggested relationship between POF and
dosage compensation (Larsson et al. 2004). Lastly, it appears that the fourth chromosome may pair with the X or Y in meiosis as persistent associations between pericentric heterochromatin of the X chromosome and the fourth chromosome have been described in prophase I oocyte nuclei (Dernburg et al. 1996), whilst triplo-4 causes an increased frequency of X chromosome nondisjunction (Sandler and Novitski 1956) and duplications of the X chromosome can interfere with segregation of either the fourth chromosome or non-exchange X chromosomes (Hawley et al. 1992). On the basis of these various similarities, we envisage that the apparent chromosomal specificity of interphase condensin activities might reflect recognition of a particular chromatin structure or sequence elements common to heterochromatin of the fourth chromosome and rDNA-proximal loci on the sex chromosomes. Although such specific chromosomal targets remain to be identified, it is possible that these might include the Hoppel element/1360 transposon, as this appears to be associated with heterochromatin formation on the fourth chromosome (Cryderman et al. 1999; Sun et al. 2004) and also appears to be enriched in X chromosomal pericentric heterochromatin (Bartolomé et al. 2002).

Strikingly, we have observed both strong suppression and enhancement of variegation at the white gene in a w^{m4h} background in the case of the glu⁸⁸⁻⁸² allele. By contrast, the other gluon mutant alleles and dcap-g⁶⁴ seemed to behave only as strong enhancers of variegation at this locus, even though each of these other mutations yielded similar mitotic phenotypes to glu⁸⁸⁻⁸². If this allele proves to be a neomorph as suggested by sequence data, then the suppression of variegation caused by the glu⁸⁸⁻⁸² allele might be explained in terms of the activity of a C-terminal truncated protein, though the effects of this allele on PEV at other loci shows similar enhancer or suppressor behaviour to other gluon alleles. It therefore seems likely that condensins might affect gene silencing by regulating the spread of heterochromatin, possibly by exerting effects on chromatin boundary elements or insulators (Cuvier et al. 2002; Lupo et al. 2001). In the absence of full condensin function, gene expression might be either enhanced or repressed as developmentally regulated patterns of gene expression become locked (Francis and Kingston 2001; Pirrotta 1997; Ringrose and Paro 2004). It is also possible that the contrasting effects of the glu⁸⁸⁻⁸² allele on PEV at a given locus might reflect the relative ability of a truncated SMC4 protein to functionally interact with distinct subunits of the condensin I or condensin II complex, as non-SMC subunits of these different complexes in vertebrates display distinct localization patterns and appear to contribute differently to mitotic chromosome architecture (Ono et al. 2004; Ono et al. 2003). Similarly, differential behaviour
of distinct SMC4-containing condensin complexes at different loci might explain the contrasting effects of both glu^{88-82} and other gluon alleles at different loci on the Y chromosome. However, relatively little is currently known about the behaviour of the condensin II complex in Drosophila, aside from a possible role for the CAP-D3 subunit in male meiosis (Savvidou et al. 2005). Consequently, further analysis of the interplay between different condensin proteins and the transcriptional machinery will be required to elucidate mechanistic details of their potential involvement in epigenetic phenomena. Intriguingly, condensin mutants in S. cerevisiae were shown to relocalize telomeric Sir2p to the centromere proximal rDNA and displayed histone hyperacetylation at telomeres (Machín et al. 2004), whilst deletion of SIR2 increases instability of rDNA by impairing association of the Scc1 cohesin subunit (Kobayashi et al. 2004). As the sir2 gene appears to be similarly nonessential for viability in Drosophila yet has minor effects on position-effect variegation (Åström et al. 2003), it is tempting to speculate that the effects of condensins on gene expression might be also mediated at least in part by SIR2 in this species. In conclusion, it is clear that there is still much to discover about how these proteins might operate during interphase as well as during mitosis.
Acknowledgments

We are grateful to Jeff Sekelsky, Claudio Sunkel, Lori Wallrath, Gary Karpen, David Acevedo, Renato Paro, Inhua Chen, Terry Orr-Weaver, Kim Dej, Gunter Reuter and John Roote for sharing fly stocks and to Paul Fisher for the lamin antibody. Margarete Heck and the research in her laboratory is funded by a Wellcome Trust Senior Research Fellowship in the Biomedical Sciences. Ellada Savvidou has been supported by a PhD studentship from the Darwin Trust.
Table I. Summary of effects of gluon alleles on PEV with different reporters. Relative expression of the white reporter is indicated by a plus sign for increased eye pigmentation relative to controls (suppression of variegation) or a minus sign for increased silencing (enhancement of variegation). Among the other condensin components, the dcap-g64 allele appeared to show similar effects on PEV to that seen with glu88-37 and most other gluon mutant alleles tested, whereas relatively modest effects on PEV were observed with the barrL305 allele and little or no differences were observed between smc2jsl2 heterozygotes and controls.
FIGURE LEGENDS

Figure 1. Molecular characterisation of embryonic lethal condensin mutants. (A) Domain structure of SMC4 mapped onto the gluon coding sequence, showing the position of the glu1\,P element (not to scale) just upstream of nucleotides 352-375 corresponding to the Walker A motif residues 118-125. (B) Map of the pLacWP element inserted in glu1 and the remaining P element sequence in the glu88-82, glu88-41B and glu88-37 P element excision alleles. (C) Map showing position of the gluon gene and surrounding genes on chromosome 2L that lie between those known to complement the glu17C lesion. The large boxed area surrounding SMC4 shows the genes deleted in glu17C. The red boxed area denotes the region amplified by PCR and sequenced to confirm the lesion. (D) Alignment of residues 220-285 of dCAP-G with CAP-G orthologues from different species, highlighting the position of the D254Y substitution in dcap64 in a conserved region of the protein. The most conserved or invariant residues are boxed, whilst other conserved residues are displayed in colour (acidic residues in red, basic residues in blue, hydrophilic residues in green and hydrophobic residues or conserved glycines shown in ochre). The predicted locations of HEAT repeats are shown by shaded green lines below the alignment, whilst predicted alpha helices are shown by shaded yellow boxes.

Figure 2. Altered levels of mitosis and apoptosis in gluon mutant embryos. (A) Counts of cells positive for TUNEL or staining with an antibody to histone H3 phosphorylated at serine 10, showing the number of labelled cells per lateral section for wild type Canton-S (Ca-S, 353 embryos), glu1 (167 embryos), glu88-82 (186 embryos) and glu17C (175 embryos). (B) The ratio of mitotic cells to apoptotic cells in wild type and gluon homozygous mutant embryos at different stages of embryogenesis.

Figure 3. Mitotic phenotypes of embryonic lethal condensin mutants. (A) Mitotic figures of homozygous pros17 embryos (top row), glu1;pros17 double mutant embryos (middle row) and dcapg64 embryos (bottom row). Immunofluorescent labelling of embryos was performed with antibodies detecting mitotic phosphorylation of histone H3 on serine 10 (P~H3, red) and α-tubulin (green), whilst DNA was stained with DAPI (blue). Scale bar below is 5 \textmu m. (B) Quantitation of mitotic parameters in wild type (Canton-S, 834 nuclei) and mutant embryos. No defects in mitotic progression are apparent in homozygous pros17 embryos (1511 nuclei), whereas the condensin mutants appear to accumulate in prophase/prometaphase (1846...
glu¹;pros¹⁷ nuclei and 2592 dcap-g⁶⁴ nuclei). (C) Quantitation of mitotic defects in Canton-S (397 nuclei) and condensin mutant embryos (492 glu¹;pros¹⁷ nuclei and 537 dcap-g⁶⁴ nuclei).

In addition to a high frequency of anaphase and telophase chromosome bridges, the condensin mutants also appear to delay in metaphase. (D) Immunofluorescent labelling of homozygous dcap-g⁶⁴ embryos with antibodies detecting P-H3 (red) and lamin (green), with DAPI staining of DNA shown in blue in the merged image. Scale bar below is 10 µm.

Figure 4. Phenotypic characterisation of the larval lethal smc²jst2 mutant. (A) Mitotic figures from heterozygous smc²jst2/CyO-GFP controls (above) and homozygous smc²jst2-smc²jst2 second instar larval neuroblasts (below). Brains were squashed and stained for P-H3 (red), α-tubulin (green) and DNA (DAPI, blue). Scale bar is 10 µm. (B) Brains dissected from wild type (Canton-S), heterozygous smc²jst2/CyO-GFP (smc²jst2 +/-) and homozygous smc²jst2-smc²jst2 (smc²jst2 -/-) wandering third instar larvae. Scale bar is 400 µm. (C) Domain structure of SMC2 mapped onto the smc² coding sequence, showing the position of the premature stop codon in smc²jst2. (D) Immunoblot analysis of protein extracts from wild type (Canton-S), heterozygous smc²jst2/CyO-GFP (smc²jst2 +/-) and homozygous smc²jst2-smc²jst2 (smc²jst2 -/-) third instar larval brains using antibodies against different condensin subunits, showing how the protein levels of CAP-D2, Barren and SMC4 are greatly reduced in the absence of SMC2. Approximately two third instar larval brain equivalents were loaded for the wild type and heterozygous brain extracts and four brain equivalents from the smc²jst2 homozygous brain extracts, using α-tubulin as a loading control.

Figure 5. Typical karyotype of a male Drosophila melanogaster, showing approximate locations of hsp70-w⁺ transgenes on the fourth chromosome, SUPor-P transposon insertions on the Y chromosome and the approximate location of the white gene in flies carrying the In(1)w^{m4h} inversion on the X chromosome. Any heterochromatic white reporter genes that appeared sensitive to the dosage of condensin mutant alleles are shown by larger mottled triangles, whilst neighbouring SUPor-P transposon insertions on the Y chromosome that appeared unresponsive are shown by smaller solid grey triangles. No obvious effects of condensin mutant alleles on PEV were seen with reporters examined on the second or third chromosomes (not shown).
Figure 6. Mutations affecting condensin proteins modify position effect variegation (PEV). Virgin females from a w^{mh4} stock were crossed against males from gluon excision lines and other condensin mutants. (A) Examples of the resulting male progeny, together with similarly aged w^{mh4} male flies as a control. (B) Absorbance at 485 nm per 100 fly eyes in male w^{mh4} flies (control) and male progeny of crosses between w^{mh4} virgin females with male flies carrying mutations affecting various condensin subunits. Values for the $Mod(mdg4)$ mutant are also shown for comparison. (C) Absorbance at 485 nm for males heterozygous for glu^{88-82} compared to $Su(var)205^5$ heterozygotes and w^{mh4} control flies. (D) Distribution of pigment levels in condensin mutant heterozygotes and control flies in a w^{mh4} background. The number of eyes examined for each line were as follows: w^{mh4} control (679 eyes), glu^{17C} (121 eyes), $dca-g^{64}$ (451 eyes), bar^{L305} (272 eyes) and glu^{88-82} (425 eyes).

Figure 7. Suppression and enhancement of PEV on the Y chromosome. (A) Examples of the male progeny resulting from crosses between KV128 males and gluon virgin females. (B) Distribution of pigment levels in male progeny, comparing the spectrum of eye colour in gluon heterozygotes with controls hemizygous for the KV128 insertion. The number of eyes examined for each line were as follows: KV128 control (203 eyes), glu^{17C} (124 eyes), glu^{88-37} (126 eyes) and glu^{88-82} (206 eyes). (C) Examples of the male progeny resulting from crosses between KV113 males and gluon virgin females.

Figure 8. Mutations affecting condensin proteins modify PEV at pericentric heterochromatin on the fourth chromosome. (A) Progeny resulting from crosses between 118E-10 and various condensin mutants or controls. (B) Absorbance at 485 nm per 100 fly eyes in male progeny of crosses with 118E-10 females.

Figure 9. Mutations affecting condensin proteins modify telomeric PEV on the fourth chromosome. (A) Progeny resulting from crosses between 39C-72 and various condensin mutants or controls. (B) Absorbance at 485 nm per 100 fly eyes in male progeny.
LITERATURE CITED

A

KV128

glu^{88-82}

glu^{17C}

glu^{88-37}

B

\[\text{Pigmentation (} A_{485}/100 \text{ eyes) } \]

- KV128
- glu^{17C}
- glu^{88-37}
- glu^{88-82}

C

KV113

glu^{88-82}

glu^{17C}

glu^{88-37}

Cobbe et al. Figure 7