Multiple bromodomain genes are involved in restricting the spread of heterochromatic silencing at the *S. cerevisiae* HMR-tRNA boundary.

Nithya Jambunathan, Adam W. Martinez, Elizabeth C. Robert, Nneamaka B. Agochukwu, Megan E. Ibos, Sandra L. Dugas, and David Donze.

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
Running header: Bromodomains and boundary function.

Keywords: Chromatin boundaries, bromodomains, heterochromatin, silencing.

Corresponding author:

David Donze
Louisiana State University
Department of Biological Sciences
Office: A608 Life Sciences Annex
Lab: A659/A661 Life Sciences Annex
Baton Rouge, LA 70803
225-578-7391 (office)
225-578-7392 (laboratory)
225-578-2597 (FAX)
ddonze@lsu.edu
ABSTRACT

The transfer RNA gene downstream from the HMR locus in S. cerevisiae functions as part of a boundary (barrier) element that restricts the spread of heterochromatic gene silencing into the downstream region of chromosome III. A genetic screen was performed to identify additional genes that when mutated allow inappropriate spreading of silencing from HMR through the tRNA gene. YTA7, a gene containing bromodomain and ATPase homologies was identified multiple times. Previously, others had shown that the bromodomain protein Bdf1p functions to restrict silencing at yeast euchromatin-heterochromatin boundaries, therefore we deleted non-essential bromodomain containing genes to test their effects on heterochromatin spreading. Deletion of RSC2, coding for a component of the RSC chromatin remodeling complex, resulted in a significant spread of silencing at HMR. Since the bromodomain of YTA7 lacks a key tyrosine residue shown to be important for acetyllysine binding in other bromodomains, we confirmed that a GST-Yta7p bromodomain fusion was capable of binding to histones in vitro. Epistasis analysis suggests that YTA7 and the HMR-tRNA function independently to restrict the spread of silencing, while RSC2 may function through the tRNA element. Our results suggest that multiple bromodomain proteins are involved in restricting the propagation of heterochromatin at HMR.
Proper regulation of gene expression is of utmost importance for development and survival of all forms of life, as regulated transcription of complex genomes is necessary for cellular energy economy and the precise patterns of gene expression required for cellular differentiation. Transcriptional regulation of genomes is regulated at multiple levels, which can involve large regions of chromosomes, individual nucleosomes, or by direct effects on the transcription machinery at individual promoters (Kimura and Horikoshi 2004). At the level of chromatin in eukaryotes, active euchromatic, and predominately inactive heterochromatic chromosomal domains alternate along chromosomes, and mechanisms must exist to prevent regulatory elements from each domain from influencing gene expression patterns of adjacent domains. Chromatin boundary elements (Donze 2004; Donze and Kamakaka 2002; Kimura and Horikoshi 2004; West et al. 2002) serve this purpose, as boundaries can either prevent a distal enhancer from activating gene expression inappropriately (insulators), or prevent the unrestricted spreading of heterochromatin (barriers).

The budding yeast S. cerevisiae contains limited heterochromatic regions at its telomeric and silent mating loci, and these chromosomal regions are important model systems for studying the establishment and propagation of silenced chromatin (Rusche et al. 2003), and also for the study of chromatin boundaries and global mechanisms that restrict heterochromatic propagation (Bi and Broach 1999; Donze et al. 1999; Fourel et al. 1999; Kimura et al. 2002; Ladurner et al. 2003; Meneghini et al. 2003; Suka et al. 2002; Tackett et al. 2005). Silenced chromatin in yeast is maintained by the targeted regional action of the Sir proteins (Silent information regulators), where the Sir2p histone deacetylase establishes the histone acetylation state required for heterochromatin formation as part of a proposed histone code (Jenuwein and Allis 2001), although the specificity of such a code is currently being debated (Dion et al. 2005; Kurdistani
et al. 2004). Deacetylation of histones allows higher affinity binding of Sir3p (CARMEN et al. 2002), which then recruits the Sir4p/Sir2p complex, allowing heterochromatin to propagate along nucleosomes (HOPPE et al. 2002; RUSCHE et al. 2002).

At the HMR silent mating locus, a transfer RNA gene and its associated RNA polymerase III complex functions as part of a boundary element that prevents spreading of Sir protein mediated heterochromatin (DONZE et al. 1999; DONZE and KAMAKAKA 2001). However, we found that while the HMR-tRNA alone is sufficient to act as a barrier to silencing in a plasmid-based assay (Donze and Kamakaka 2001), when integrated back into the chromosome, the tRNA alone shows only partial barrier function (our unpublished results), suggesting that additional proteins are required to completely block silencing. Other genes coding for chromatin associated proteins that can lead to a partial spreading of silencing through the tRNA have been identified, and include HTZ1, BDF1, and YTA7 (LADURNER et al. 2003; MENEGHINI et al. 2003; TACKETT et al. 2005), and the global level of histone acetylation regulated by SIR2 and SAS2 influences silencing spread (KIMURA et al. 2002; SUKA et al. 2002). Taken together, these results suggest that both local boundary associated factors and global chromatin modifications affect the formation of a true euchromatin-heterochromatin boundary (KIMURA and HORIKOSHI 2004).

In order to assess what other chromatin proteins participate in boundary formation, we used transposon mediated mutagenesis and direct gene knockouts in a yeast boundary element dependent reporter strain to identify mutations that led to a spread of silencing through the HMR-tRNA boundary element, which included approximately 400 base pairs to either side of the tRNA. In addition to identifying several factors known to be involved in regulating the spread of silencing, we identified a novel bromodomain-containing gene, YTA7, which additionally contains two separate AAA family ATPase domains. We also find that mutation of several
different bromodomain genes leads to a general loss of boundary function. This suggests that bromodomains may be key effectors that recognize and maintain euchromatic histone modification patterns necessary for boundary integrity. Epistasis analysis implicates independent roles for \textit{YTA7} and the \textit{HMR}-tRNA in restricting silencing, while \textit{RCS2} may be functioning through the RNA polymerase III complex.

MATERIALS AND METHODS

All yeast strains used in this study were isogenic to W303-1a. The parent boundary reporter strain used in the mating assays (DDY277) was derived from a cross of a similar strain, ROY962, previously described (DONZE et al. 1999). The yeast transposon mutagenized library was obtained from Mike Snyder (Yale University), and mutagenesis was performed as described (BURNS et al. 1994; ROSS-MACDONALD et al. 1999; ROSS-MACDONALD et al. 1997). All transposon insertion strains were created in DDY277, and identification of mutagenized genes was performed using the vectorette PCR method as described (ROSS-MACDONALD et al. 1999). Mating assay strains containing specific mutations were constructed by direct homologous recombination mediated replacement using standard methods, or by crossing previously constructed mutant alleles into the DDY277 background. Mating assays were performed as described (DONZE et al. 1999).

The schematic diagram of \textit{YTA7} and amino acid positions of AAA ATPase and bromodomains was based on query of the Conserved Domain Database (MARCHLER-BAUER et al. 2005). The alignment of \textit{S. cerevisiae} bromodomains was created using ClustalW (CHENNA et al. 2003), and was manually adjusted to fit a structural based alignment of bromodomains (ZENG...
and Zhou 2002). The GST-Yta7p bromodomain fusion was made by PCR cloning the coding sequence of \textit{YTA7} from amino acids 1000-1101 into the glutathione-S-transferase vector pGEX-2TK (Amersham Biosciences), and the fusion protein was expressed and purified according the manufacturers instructions. Purified chicken core histones were purchased from Upstate (catalog #13-107). Histone pull-down assays were performed as described (Ladurner et al. 2003), and the recovered samples were run on an 18% SDS-PAGE gel, and stained with Bio-Safe Coomassie stain (Bio-Rad Laboratories, Inc.). Briefly, core histones were dissolved in water at 1 mg/ml, and 500 µl binding reactions contained 1X HEMG buffer (25 mM HEPES-KOH, pH 7.6, 0.2 mM EDTA, 12.5 mM MgCl_2, 10% glycerol, diluted from a 5X stock), 50 µg core histones, 150 mM KCl, 15 µl glutathione-Sepharose (Amersham Biosciences) equilibrated in 1X HEMG plus 150 mM KCl, and 15 µg GST-Yta7p fusion protein, or equimolar amount of GST in the controls. Binding reactions were incubated for 4 hours at 4C, beads were collected by centrifugation, then washed 4 times in 500 µl 1X HEMG, 150 mM KCl, 0.01% NP-40. 125 µl 1X Laemmli loading buffer was added directly to the beads for gel analysis, and unbound fractions were precipitated with trichloroacetic acid, redissolved in 25 µl 0.1 N NaOH, and brought to 125 µl in 1X Laemmli loading buffer.

To construct the HMR-ADE2 reporter strains, a plasmid containing the 8.2 kb Sac I-Sal I HMR fragment was mutagenized to create a Bam HI site 180 base pairs downstream of the HMR-trRNA (pDD657). The 2.5 kb Bgl II fragment of ADE2 (Stotz and Linder 1990) was cloned into this site such that ADE2 was transcribed away from HMR, to create plasmid pDD659. HMR-trna\Delta-ADE2 was constructed by site directed mutagenesis of pDD659 to delete the tRNA coding sequence (pDD661). Plasmid pDD833, hmr\Delta-ADE2 was created by subcloning the Sac I-Sal I fragment of pDD659 into Bluescript cut with Sac I and Xho I to destroy the polylinker Xho I site.
creating pDD833. The resulting plasmid was digested with SnaBI and XhoI to remove HMR, ends blunted with Klenow polymerase, then religated to create pDD837. Each of these ADE2 plasmids were linearized and transformed into yeast strain DDY142, which contains an hmrΔ::URA3 allele. Transformants were selected on minimal media lacking adenine, and individual colonies were patched and replica plated onto minimal media lacking uracil and media containing 5-FOA to identify isolates that had become Ade+ and uracil auxotrophic. Proper integration was then confirmed by Southern blot analysis.

Mutant alleles of genes affecting the spread of silencing through the boundary were then crossed into each of these ADE2 parent strains (DDY811, DDY814, and DDY2114). Colony color assays were performed by streaking representative strains onto minimal media containing 3 µg/ml adenine, which is 10% of the normal level in this medium. Colonies were grown for three days, and held at 4°C for one week prior to photography on a dissecting microscope equipped with a digital imaging system. Colony color was assessed for three independent isolates for each mutant, one representative strain is shown for each.

RESULTS

Identification of mutations in genes coding for potential boundary proteins. We used a MATα boundary reporter strain (DDY277) that harbors a modified HMR locus deleted for the HMR-I silencer, and that also contains the downstream boundary sequence cloned into the HMRα2 gene (Figure 1A). This strain is non-mating, as the boundary blocks the spread of silencing from HMR-E, allowing the a1 gene to be expressed in the MATα background (DONZE et al. 1999). To identify genes involved in restricting the spread of silencing, we subjected this
strain to a transposon mutagenesis protocol (ROSS-MACDONALD et al. 1999) and selected transposon insertion mutants that acquired an α mating phenotype, indicating that silencing was now able to spread through the boundary into aI. 20,000 Leu+ transformants were replica plated onto MATa tester lawns to identify mutants that lost boundary function at the modified HMR locus as judged by their ability to mate.

α-mating isolates were confirmed by backcrossing to a MATa strain containing the same reporter construct, and only tetrad isolates where the transposon encoded LEU2 marker completely co-segregated with the mating phenotype (20 tetrads analyzed) were studied further. After this analysis, mutations in only four separate genes were confirmed as leading to a spread of silencing: SAS4 and SAS5, encoding subunits of the SAS acetyltransferase complex, RPD3, a histone deacetylase, and YTA7, a little studied gene containing a weak bromodomain homology and two domains of AAA family ATPase homology. The mating phenotypes of each independent mutant isolate are shown in Figure 1. A single mutant of the SAS4 gene resulted in increased mating, along with two independent insertions into SAS5 and two independent insertions into RPD3. Mutations in the SAS complex were previously shown to increase the silencing efficiency of a defective hmra-e** locus (EHRENHOFER-MURRAY et al. 1997; XU et al. 1999), and sas2 mutations were first identified as leading to increased silencing in sir1 mutants (REIFSNYDER et al. 1996). Since hmra-e** lacks the boundary element, it is likely that mutations in the SAS complex globally affect the robustness of silencing by affecting cellular levels of histone H4 lysine 16 acetylation (KIMURA et al. 2002; MEIJING and EHRENHOFER-MURRAY 2001; SHIA et al. 2005; SUKA et al. 2002), as opposed to specifically affecting the integrity of the boundary element. Mutations in RPD3 are also well documented to lead to a global increased of silencing at all three yeast heterochromatin loci (mating loci, rDNA, and telomeres) by an
unknown mechanism (Kim et al. 1999; Rundlett et al. 1996; Smith et al. 1999; Sun and Hampsey 1999; Vannier et al. 1996).

Interestingly, eight independent isolates containing transposon insertions in YTA7 were isolated in the screen, representing five different insertion sites. It is not clear why yta7 mutants would occur so frequently in the library compared to other genes. It should be noted that the screen, while calculated to be saturating, was not, as mutations in genes previously known to induce a mating phenotype in this reporter system were not recovered, such as the acetyltransferase subunit of SAS, SAS2, and the bromodomain-acetyltransferase GCN5 (Donze and Kamakaka 2001). Additionally, insertions into other genes known to be required for restriction of silencing at HMR, BDF1 (Ladurner et al. 2003) and HTZ1 (Meneghini et al. 2003) were also not recovered. However, as discussed below, direct deletion of BDF1 or HTZ1 does lead to a spread of silencing in this reporter assay (Figure 3). The Sir protein dependence of the observed spread of silencing is shown for a yta7 mutant (DDY2078, Figure 1), and was also confirmed for rpd3 and SAS mutants (our unpublished data).

YTA7 contains AAA family ATPase domains and a single bromodomain module, schematically depicted in Figure 2A. Since bromodomains have been demonstrated to be acetyllysine binding modules (Dhalluin et al. 1999; Hudson et al. 2000; Jacobson et al. 2000; Owen et al. 2000) and have been suggested to mediate their functions by binding to acetylated histones and other chromatin associated proteins (De la Cruz et al. 2005; Yang 2004; Zeng and Zhou 2002), it seemed likely that Yta7p may be functioning through histone recognition. The bromodomain protein Bdf1p is also known to have an anti-silencing function at HMR, as bdf1 mutants show decreased gene expression and increased Sir3p association in regions adjacent to yeast silenced loci (Ladurner et al. 2003). Alignment of the YTA7 bromodomain with other
yeast bromodomains (Figure 2B), however, reveals that YTA7 lacks a critical conserved tyrosine residue required for acetyllysine recognition by P/CAF, Gcn5p and Bdf1p via a key hydrogen bond formation within the binding pocket (Dhalluin et al. 1999; Ladurner et al. 2003; Owen et al. 2000). Yta7p does contain a serine and threonine at the same location.

Due to the absence of this key tyrosine residue, we wished to test whether the Yta7p bromodomain module was able to bind to histones. We cloned the coding sequence of the YTA7 bromodomain into a GST (glutathione-S-transferase) fusion vector, and purified the GST-Yta7p fusion protein from E. coli cells. This fusion protein was used in a pull-down assay with purified chicken erythrocyte core histones. Figure 2C shows that GST-Yta7p efficiently binds to histones H3 and H4, compared to no binding of GST alone to the histones. This result shows that despite lacking the conserved tyrosine, the Yta7p bromodomain is a functional histone binding domain in vitro.

The bromodomain protein Bdf1p has also been shown to restrict the spread of silencing in yeast (Ladurner et al. 2003), and the histone binding domain of the transcription factor CTF-1 is essential for its heterochromatin barrier activity (Ferrari et al. 2004), suggesting a role for histone binding proteins in blocking silencing. The S. cerevisiae genome contains 10 genes with bromodomain homologies (aligned in Figure 2B). Two of these genes are essential for viability, the RSC complex genes STH1 and RSC4. Since loss of Bdf1p and Yta7p functions lead to an apparent spreading of silencing, we asked if bromodomain proteins in general contain boundary and/or anti-silencing functions. We created a set of strains containing deletions or disruptions of each non-essential bromodomain containing gene in strain DDY277 to assess spreading of silencing across the boundary element using the mating assay described in Figure 1. The results shown in Figure 3 demonstrate that loss of function of several bromodomain proteins lead to a
spreading of silencing. Deletion of RSC2, YTA7, or BDF1 lead to the greatest loss of boundary function, while deletion of RSC1, GCN5, or BDF2 shows a weaker phenotype. Deletion of SPT7 or SNF2 do not show spreading of silencing as determined by this assay. As controls for spreading of silencing at HMR, we assayed mutations in SAS2 and HTZ1, and observed the expected spreading of silencing as indicated by increased mating compared to the control strain DDY277 (Figure 3). The htz1 mutants showed a consistently variegated phenotype in this assay, with patches derived from some colonies mating and others not.

We next wanted to test epistatic relationships among bromodomain factors and the HMR-tRNA boundary element. Since deletion of the HMR-tRNA leads to a near complete mating phenotype in the mating assay, we developed second system for assessing the effects of tRNA deletion on heterochromatin spread at HMR. The S. cerevisiae ADE2 gene was integrated downstream of HMR (referred to here as HMR-ADE2), and isogenic strains were created that were HMR-trnaΔ-ADE2 or hmrΔ-ADE2. Repression of ADE2 expression leads to the accumulation of a red pigment derived from the Ade2p substrate (FISHER 1969). Phenotypes of these parent strains are shown in the top row of Figure 4: strains containing a normal HMR locus, or a deletion of HMR (including both silencers) give rise to all white colonies, demonstrating expression of ADE2 at this integration site; deletion of only the HMR-tRNA gives rise to a variegated phenotype with some sectored pink colonies arising due to epigenetic silencing of ADE2.

These ADE2 reporter strains were crossed to strains containing mutations that resulted in spreading of silencing in the mating assay. Mutation of RPD3 resulted in completely red colonies with or without the tRNA present. This complete penetrance of the rpd3 phenotype prevented any epistatic analysis using this assay. Mutation of SAS5 resulted in a variegated but mostly
pink-red colony phenotype, which was unchanged when the \textit{HMR}-tRNA gene was deleted. Again, based on the qualitative nature of this assay, it was impossible to determine epistatic effects of \textit{sas5}\textbackslash t\textbackslash tr\textbackslash na}\Delta mutations.

Deletion of \textit{YTA7} in \textit{HMR-}\textit{ADE2} strains yielded a variegated pink-white phenotype, similar in magnitude to the \textit{HMR-}\textit{tRNA}\Delta-\textit{ADE2} strain, however in \textit{yta7}\textbackslash \textbackslash \textbackslash t\textbackslash r\textbackslash n\textbackslash a}\Delta strains, a darker red color was observed in a greater percentage of colonies, including some completely red colonies, demonstrating a more robust spread of silencing when both mutations are present (Figure 4, row 4, center). This additive effect suggests that \textit{YTA7} functions independently of the \textit{HMR}-tRNA in restricting the spread of silencing. \textit{RSC2} deletion shows a weakly variegated phenotype in the \textit{HMR-}\textit{ADE2} background, with rare silenced colonies that were somewhat darker red. Deletion of the \textit{HMR}-tRNA in the \textit{rsc2}\Delta background did not increase the severity of the phenotype, suggesting that \textit{RSC2} and the \textit{HMR}-tRNA may function through the same pathway in restricting the spread of silencing. We attempted to determine epistatic relationships among bromodomain containing genes, but we were unable to obtain \textit{yta7-rsc2} or \textit{yta7-bdf1} double mutants both by crosses of single mutant strains and by homologous recombination, suggesting a synthetic lethality of these mutant combinations in our W303 background (our unpublished results).

Importantly, when \textit{HMR} was deleted in each of these mutant backgrounds (Figure 4, right column), all white colonies were observed. This confirms that phenotypes observed for each of these mutations is due to the spread of silencing from \textit{HMR}, and not due to global histone acetylation effects or spreading of silencing from the telomere of chromosome III. Deletion of \textit{SIR2} or \textit{SIR4} in these backgrounds also results in completely white colonies, confirming the Sir dependence of the phenotype (our unpublished data). Also, it should be noted
that the spreading of silencing observed in all experiments described here are due to normal levels of Sir proteins, no overexpression of Sir3p was employed to obtain the observed phenotypes.

DISCUSSION

YTA7 encodes a histone binding chromatin boundary protein. The mutational analysis of boundary function described here revealed that the AAA family ATPase/bromodomain protein Yta7p plays a role in the integrity of the euchromatin/heterochromatin boundary at the *S. cerevisiae* HMR locus. *YTA7* contains a region of bromodomain homology from amino acids 1003 to 1091, and two separate AAA family ATPase domains from amino acids 449 to 580 and 771 to 957 (Figure 2A). Comparison of the homology of the *YTA7* bromodomain to other yeast bromodomains (Figure 2B) revealed *YTA7* lacks a key tyrosine residue (conserved in most bromodomains) which makes a critical water-mediated hydrogen bond to acetyllysine in Gcn5p, and is required for the interaction of acetylated histones with Bdf1p (DhALLUIN et al. 1999; Ladurner et al. 2003; Owen et al. 2000). However, the results shown in Figure 2C demonstrate that the *YTA7* bromodomain is a functional histone binding module. The *YTA7* sequence contains tandem serine and threonine residues at the position of the conserved tyrosine, which may contribute the necessary hydrogen bonding potential within the bromodomain binding pocket. Bioinformatic anlysis of *YTA7* orthologs in related yeast species *S. paradoxus*, *S. mikatae*, and *S. bayanus*, and less related *Debaryomyces hansenii* and *Yarrowia lipolytica*, revealed that these *YTA7* orthologs have the same serine-threonine substitutions in their respective bromodomains (Christie et al. 2004), and
the same substitution is seen in both human and mouse Tif1β (ZENG and ZHOU 2002). Yta7p is also a confirmed nuclear protein, as determined in a genome-wide analysis of yeast protein localization (HUH et al. 2003).

While this work was in progress, Tackett et al. (TACKETT et al. 2005) published a proteomic study that also implicated Yta7p in boundary function. They found Yta7p associated with complexes containing Dpb4p, a component of the DNA polymerase ε and ISW2/CHRAC chromatin complexes, and both of these complexes are involved in regulating telomeric silencing (IIDA and ARAKI 2004). Tackett et al. also showed that deletion of YTA7 led to spreading of silencing at HMR, and most significantly, they localized Dpb4p-Yta7p complexes to sites near HMR, HML, chromosome ends, and near the conditionally expressed and epigenetically regulated FLO genes, suggesting a specific targeted role for Yta7p in restricting repression from multiple loci. The results presented in this manuscript confirm the role of Yta7p in preventing the spread of silencing, and extend these results to demonstrate independent functions of Yta7p and the HMR-tRNA with an epistasis analysis (discussed below).

Additionally, the study by Tackett et al. identified roles for DNA polymerase ε, Isw2, and Sas3-Spt16 chromatin remodeling complexes in boundary function. We had previously tested mutations in SAS3 (DONZE and KAMAKAKA 2001) and SPT16 (our unpublished results), and saw no spreading of silencing in our mating assay. Their analysis of the effect of SAS3 deletion showed a reduction in transcript levels of genes adjacent to HMR (GIT1 and YCR095C), but is unknown if this reduction is Sir protein dependent, as expression of these genes was not reported in a sirΔ or hmrΔ background.

Our genetic analysis also uncovered a role for RSC (Remodels the structure of chromatin) complex proteins in boundary function. RSC is a multi-subunit, highly abundant, and
essential chromatin remodeling complex first purified from *S. cerevisiae* cells (CAIRNS et al. 1996). Genome wide analysis of the location of the RSC complex has demonstrated that RSC is targeted to many tRNA genes *in vivo* (Ng et al. 2002), suggesting a potentially direct connection between the function of the *HMR*-tRNA and the RSC complex in heterochromatin boundary function. Our epistasis analysis demonstrating no difference in phenotype between *rsc2Δ* and *rsc2Δ trnaΔ* strains shown in Figure 4 is consistent with this proposed connection.

Yta7p appears to function independently of the *HMR*-tRNA, as deletion of both the cis-element and trans-factor leads to a more silenced phenotype (Figure 4). We could not determine the epistatic relationships between the *HMR*-tRNA and *BDF1, BDF2, RSC1*, or *GCN5* in this assay, as strains containing deletions of these genes grew as all white colonies in the *HMR-ADE2* background, and had no apparent effect on colony color when in the *HMR-trnaΔ-ADE2* background (our unpublished results). Mutations in *BDF2, RSC1*, and *GCN5* all exhibited a weaker phenotype in the mating assay, an effect that may be too weak to affect the *ADE2* promoter. However, we observed a strong increase in silencing upon deletion of *BDF1* in the mating assay, but this mutation did not give rise to pigmented colonies in the *HMR-ADE2* background. It should be noted that *bdf1* strains are very slow growing, and it is uncertain how growth rate might affect the accumulation of pigment in *ADE2* silenced strains.

The role of multiple chromatin associated proteins in maintaining euchromatin-heterochromatin boundaries. Since the discovery and characterization of a discrete heterochromatin boundary downstream of the *HMR* locus (DONZE et al. 1999; DONZE and KAMAKAKA 2001; LOO and RINE 1994), many mutations have been uncovered that alter the integrity of the convergence point of heterochromatin with downstream euchromatin at this locus. As described here and in other studies, in addition to mutation of the *HMR*-tRNA or its
associated RNA polymerase III complex proteins, loss of function of chromatin associated complexes containing Yta7p, Rsc2p, Rpd3p, Sas2, 4, or 5 proteins, Htz1p, or Bdf1p lead to spreading of silencing through the *HMR* boundary element. These effects appear to be either targeted to the boundary region in the case of the RNA polymerase III complex, Yta7p, and Bdf1p (DONZE and KAMAKAKA 2001; LADURNER et al. 2003; TACKETT et al. 2005), or may act more globally to affect histone acetylation levels, as has been suggested for the SAS complex (KIMURA et al. 2002; SUKA et al. 2002).

Several recent studies have demonstrated that direct targeting of transcription factors or components of chromatin modifying complexes can act as a barrier, preventing the spread of SIR mediated heterochromatin in yeast (CHIU et al. 2003; DONZE and KAMAKAKA 2001; FOUREL et al. 2001; JACOBSON and PILUS 2004; OKI et al. 2004). The barrier effect created by acetyltransferase targeting was not necessarily due to the enzymatic activity of acetyltransferase fusions, but did require the presence of other components of the respective complexes (CHIU et al. 2003; JACOBSON and PILUS 2004; OKI et al. 2004), suggesting that targeting of a specific factor results in the recruitment of multiple proteins. Global models of heterochromatin barrier function suggest that acetyltransferases and deacetylases establish “negotiable borders” or “fuzzy boundaries” by convergence of the effects of their activities, without the need for a specific barrier element or localized targeting (FOUREL et al. 2004; KIMURA and HORIKOSHI 2004). However, while both targeted and negotiable models are consistent with current data, the effects of global genome alteration (such as in a *sas2* background) on the normal targeting of chromatin-associated proteins is not well defined. Any natural targeting of proteins occurs within the context of normal cellular chromatin acetylation. Therefore while domains of global histone acetylation may be negotiable in mutant strains, such genome-wide effects may lead to specific
alterations in acetylation state dependent localization of proteins, such as the targeting of bromodomains.

Taken together, the current evidence suggests that euchromatin-heterochromatin boundaries are determined by both site-specific interactions and global influences. Sir protein dependent silencing in yeast appears to propagate by successive Sir2p deacetylation, Sir3p binding to deacetylated nucleosomes, and recruitment of Sir4p-Sir2p complex, allowing spreading of the heterochromatic chromatin along a nucleosomal array after initial targeting of the SIR complex at silencers or telomeres (Hoppe et al. 2002; RuscHe et al. 2002). In certain cases, simply excluding nucleosomes by binding of LexA to multimerized sites can block the spread of Sir protein mediated heterochromatin propagation in *S. cerevisiae* (Bi et al. 2004), perhaps by simply distancing the next nucleosome from the previous Sir2-3-4-nucleosome complex. Part of the function of the *HMR*-tRNA may involve creating such a nucleosomal gap, as fully assembled RNA polymerase III complexes footprint close to 150 base pairs (Chedin et al. 1998; Kassavetis et al. 1998), approximately the length of DNA occupied by a nucleosome. However, since the *HMR*-tRNA alone cannot provide full boundary function in a chromosomal context (our unpublished results), other chromatin-associated factors are clearly involved.

Additional studies will be required to identify the roles of bromodomains and other histone binding proteins like CTF-1 (Ferrari et al. 2004) in establishing heterochromatin-euchromatin boundaries. Bdf1p has been shown to protect histone H4 from Sir2p deacetylation *in vitro* (Ladurner et al. 2003), suggesting one possible mechanism of bromodomain action in restricting silencing. However, bromodomains are known to bind to acetylated proteins other than histones (De La Cruz et al. 2005; Yang 2004), therefore the effects on boundary establishment reported in this study may involve more than bromodomain-histone interactions.
The results presented here suggest that the RSC complex may be acting through the *HMR*-tRNA, which is supported by the fact that RSC preferentially associates with tRNA genes *in vivo* (Ng et al. 2002). However, it is currently unknown whether RSC is targeted to assembled RNA polymerase III genes, or if prior RSC binding promotes RNA polymerase III complex assembly. Yta7p appears to be targeted to a limited set of chromosomal sites (TACKETT et al. 2005), and while the mechanism of this targeting is unknown, it may involve the histone acetylation state near the boundary. The variability of bromodomain mutant phenotypes on boundary function may reflect a varied array of target proteins for bromodomain binding, or could be a function of varied effects on the different multi-subunit complexes in which most bromodomain factors have been identified. It will be of interest to determine the acetylation requirements for Yta7p binding at heterochromatin boundaries, and how mutations that cause specific or global alterations in the acetylation states of histones, or possibly other chromatin associated proteins, affect the targeting and function of boundary associated bromodomain factors.
ACKNOWLEDGEMENTS

We would like to thank David Stillman (University of Utah Health Sciences Center) for the gcn5 allele, Rohinton Kamakaka (National Institute of Child Health and Human Development, Bethesda) for the snf2 and htz1 alleles, and Andreas Ladurner (European Molecular Biology Laboratory, Heidelberg) for the bdf1 and bdf2 alleles. Research in the Donze laboratory is generously supported by grants from the Human Frontier Science Program (RGY11/2002) and the National Science Foundation (MCB-0342113).
Figure 1.- Mating assay to identify extragenic mutations that lead to spreading of silencing through the *HMR* right boundary. (A) The 1.0 kb region downstream of *HMR* containing the boundary tRNA was cloned into the *a2* gene, and the resulting construct was integrated back into chromosome III in a *MATα* strain. The boundary element blocks the spread of silencing into *a1*, resulting in a non-mating phenotype (DDY277). The mating assay was performed essentially as described previously (DONZE et al. 1999). DDY277 was mutagenized by transformation with a yeast genomic DNA library containing random transposon-*LEU2* insertions (ROSS-MACDONALD et al. 1999), and Leu+ recombinants were tested for mating. (B) Thirteen independent isolates that showed increased silencing were confirmed, representing mutations in four different genes, *YTA7*, *SAS5*, *SAS4*, and *RPD3*. All strain genotypes are listed in TABLE 1.

Figure 2.- *YTA7* encodes a histone binding bromodomain protein. (A) Schematic diagram of the predicted *YTA7* open reading frame, showing the relative locations of the two AAA family ATPase domains (amino acids 449-580 and 771-957), and the single bromodomain (amino acids 1003-1091) as determined by query of the Conserved Domain Database (MARCHLER-BAUER et al. 2005). (B) Alignment of yeast bromodomain sequences reveals that *YTA7* lacks a key conserved tyrosine residue (arrow, shown in red) that is critical for histone binding in other bromodomains, but contains a tandem serine-threonine in the same position (green). (C) GST-Yta7p pulldown assay reveals that the bromodomain of Yta7p specifically retains histones H3 and H4. Reactions and washes were carried out in 150 mM KCl (see METHODS). Increasing
KCl to 500 mM in binding and wash steps reduced the level of histone binding by approximately 50% (data not shown).

Figure 3.- Mutation of multiple bromodomain containing genes results in spreading of silencing through the *HMR* boundary. Specific deletions or insertions were created or crossed into DDY277 to test their effects on boundary function in the mating assay described in Figure 1. Null mutations in *YTA7*, *BDF1*, *RSC2*, and *SAS2* led to a significant spread of silencing, while mutation of *GCN5*, *RSC1*, *BDF1*, and *HTZ1* showed a weaker phenotype. Mutation of *SPT7* or *SNF2* showed no phenotype.

Figure 4.- *YTA7* and the *HMR*-tRNA function through different pathways to restrict the spread of silencing at *HMR*. (A) The *ADE2* gene was inserted into chromosome III downstream of *HMR* in *S. cerevisiae* (*HMR-ADE2*). Isogenic strains lacking the *HMR*-tRNA (*HMR-trnaΔ-ADE2*), or lacking *HMR* (*hmrΔ-ADE2*) were also constructed. (B) Each strain was crossed into *rpd3*, *sas5*, *yta7*, or *rsc2* mutant backgrounds, and silencing was assessed by the degree of pigmentation exhibited by the presence or absence of *ADE2* expression. The combination of *yta7Δ trnaΔ* leads to a more silenced phenotype (more and darker red colonies), suggesting that each functions independently. No difference in phenotype is seen between strains containing *rsc2Δ* and *rsc2Δ trnaΔ*. Strains depicted in each row are: first row (wild type) DDY814, DDY811, DDY2114; second row (*rpd3*) DDY2093, DDY2143, DDY2128; third row (*sas5*) DDY2106, DDY2156, DDY2142; fourth row (*yta7*) DDY2205, DDY2200, DDY2198; fifth row (*rsc2*) DDY2496, DDY2489, DDY2450.
TABLE 1

Strains of *S. cerevisiae* generated for this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDY277</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1</td>
</tr>
<tr>
<td>DDY282</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMRΔI</td>
</tr>
<tr>
<td>DDY799</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:yta7</td>
</tr>
<tr>
<td>DDY687</td>
<td>MATαADE2 his3 leu2 LY52 trp1 ura3 HMR-E-Boundary-a1 sas2Δ::TRP1</td>
</tr>
<tr>
<td>DDY695</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 gc5Δ::TRP1</td>
</tr>
<tr>
<td>DDY800</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:sas5</td>
</tr>
<tr>
<td>DDY802</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:sas5</td>
</tr>
<tr>
<td>DDY803</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:yta7</td>
</tr>
<tr>
<td>DDY811</td>
<td>MATα ade2 his3 leu2 LY52 trp1 ura3 HMR-trnaΔ-ADE2</td>
</tr>
<tr>
<td>DDY814</td>
<td>MATα ade2 his3 leu2 LYS2 trp1 ura3 HMR-ADE2</td>
</tr>
<tr>
<td>DDY1174</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:yta7</td>
</tr>
<tr>
<td>DDY1309</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:yta7</td>
</tr>
<tr>
<td>DDY1313</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:sas4</td>
</tr>
<tr>
<td>DDY1316</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:yta7</td>
</tr>
<tr>
<td>DDY1318</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:yta7</td>
</tr>
<tr>
<td>DDY1340</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:yta7</td>
</tr>
<tr>
<td>DDY1344</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:rdp3</td>
</tr>
<tr>
<td>DDY1345</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:rdp3</td>
</tr>
<tr>
<td>DDY1347</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:rdp3</td>
</tr>
<tr>
<td>DDY1348</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:rdp3</td>
</tr>
<tr>
<td>DDY1665</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 rsc2Δ::TRP1</td>
</tr>
<tr>
<td>DDY1893</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 rsc2Δ::URA3</td>
</tr>
<tr>
<td>DDY1997</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 yta7Δ::TRP1</td>
</tr>
<tr>
<td>DDY2078</td>
<td>MATαADE2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 Tn::LEU2:yta7 sir2Δ::TRP1</td>
</tr>
<tr>
<td>DDY2093</td>
<td>MATαade2 his3 leu2 lys2Δ trp1 ura3 HMR-ADE2 Tn::LEU2:rdp3</td>
</tr>
<tr>
<td>DDY2106</td>
<td>MATαade2 his3 leu2 lys2Δ trp1 ura3 HMR-ADE2 Tn::LEU2:sas5</td>
</tr>
<tr>
<td>DDY2114</td>
<td>MATαade2 his3 leu2 LYS2 trp1 ura3 hmrΔ::ADE2</td>
</tr>
<tr>
<td>DDY2128</td>
<td>MATαade2 his3 leu2 lys2Δ trp1 ura3 Tn::LEU2:rdp3 hmrΔ::ADE2</td>
</tr>
<tr>
<td>DDY2142</td>
<td>MATαade2 his3 leu2 LY52 trp1 ura3 Tn::LEU2:sas5 hmrΔ::ADE2</td>
</tr>
<tr>
<td>DDY2143</td>
<td>MATαade2 his3 leu2 LYS2 trp1 ura3 Tn::LEU2:rdp3 hmrΔ::ADE2</td>
</tr>
<tr>
<td>DDY2156</td>
<td>MATαade2 his3 leu2 LYS2 trp1 ura3 Tn::LEU2:sas5 hmrΔ::ADE2</td>
</tr>
<tr>
<td>DDY2198</td>
<td>MATαade2 his3 leu2, LYS2 trp1 ura3 hmrΔ::ADE2 yta7Δ::TRP1</td>
</tr>
<tr>
<td>DDY2200</td>
<td>MATαade2 his3 leu2, LYS2 trp1 ura3 HMR trnaΔ-ADE2 yta7Δ::TRP</td>
</tr>
<tr>
<td>DDY2205</td>
<td>MATαade2 his3 leu2, lys2Δ trp1 ura3 HMR-ADE2 yta7Δ::TRP</td>
</tr>
<tr>
<td>DDY2450</td>
<td>MATαade2 his3 leu2 LYS2 trp1 ura3 hmrΔ::ADE2 rsc2Δ::TRP1</td>
</tr>
<tr>
<td>DDY2489</td>
<td>MATαade2 his3 leu2 LYS2 trp1 ura3 HMR trna Δ-ADE2 rsc2Δ::TRP1</td>
</tr>
<tr>
<td>DDY2496</td>
<td>MATαade2 his3 leu2 lys2Δ trp1 ura3 HMR-ADE2 rsc2Δ::TRP1</td>
</tr>
<tr>
<td>DDY2514</td>
<td>MATαade2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 sp7Δ::URA3</td>
</tr>
<tr>
<td>DDY2596</td>
<td>MATαade2 his3 leu2 LYS2 trp1 ura3 HMR-E-Boundary-a1 bdf1Δ::HIS3</td>
</tr>
<tr>
<td>DDY2601</td>
<td>MATαade2 his3 leu2 lys2Δ trp1 ura3 HMR-E-Boundary-a1 bdf2Δ::LEU2</td>
</tr>
<tr>
<td>DDY2659</td>
<td>MATαade2 his3 leu2 LYS2 trp1 ura3 HMR-E-Boundary-a1 snf2Δ::LEU2</td>
</tr>
<tr>
<td>DDY2716</td>
<td>MATαADE2 his3 leu2 LYS2 trp1 ura3 HMR-E-Boundary-a1 hitz1Δ::KanMX</td>
</tr>
</tbody>
</table>
LITERATURE CITED

CHRISTIE, K. R., S. WENG, R. BALAKRISHNAN, M. C. COSTANZO, K. DOLINSKI et al., 2004 Saccharomyces Genome Database (SGD) provides tools to identify and analyze
sequences from Saccharomyces cerevisiae and related sequences from other organisms.

DE LA CRUZ, X., S. LOIS, S. SANCHEZ-MOLINA and M. A. MARTINEZ-BALBAS, 2005 Do protein
motifs read the histone code? Bioessays 27: 164-175.

DHALLUIN, C., J. E. CARLSON, L. ZENG, C. HE, A. K. AGGARWAL et al., 1999 Structure and

DION, M. F., S. J. ALTSCHULER, L. F. WU and O. J. RANDO, 2005 Genomic characterization

DONZE, D., 2004 Breaking the histone code of silence: The propagation and blocking of

DONZE, D., C. R. ADAMS, J. RINE and R. T. KAMAKAKA, 1999 The boundaries of the silenced

DONZE, D., and R. T. KAMAKAKA, 2001 RNA polymerase III and RNA polymerase II promoter
complexes are heterochromatin barriers in Saccharomyces cerevisiae. EMBO J 20: 520-531.

DONZE, D., and R. T. KAMAKAKA, 2002 Braking the silence: how heterochromatic gene
repression is stopped in its tracks. Bioessays 24: 344-349.

EHRENHOFER-MURRAY, A. E., D. H. RIVIER and J. RINE, 1997 The role of Sas2, an
acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC

FERRARI, S., K. C. SIMMEN, Y. DUSSERRE, K. MULLER, G. FOUREL et al., 2004 Chromatin
domain boundaries delimited by a histone-binding protein in yeast. J Biol Chem 279:
55520-55530.

Rundlett, S. E., A. A. Carmen, R. Kobayashi, S. Bavykin, B. M. Turner et al., 1996
HDA1 and RPD3 are members of distinct yeast histone deacetylase complexes that

Rusche, L. N., A. L. Kirchmaier and J. Rine, 2002 Ordered nucleation and spreading of

Rusche, L. N., A. L. Kirchmaier and J. Rine, 2003 The establishment, inheritance, and
function of silenced chromatin in Saccharomyces cerevisiae. Annu Rev Biochem 72:
481-516.

Shia, W. J., S. Osada, L. Florens, S. K. Swanson, M. P. Washburn et al., 2005
Characterization of the yeast trimeric-SAS acetyltransferase complex. J Biol Chem 280:
11987-11994.

Smith, J. S., E. Caputo and J. D. Boeke, 1999 A genetic screen for ribosomal DNA silencing
defects identifies multiple DNA replication and chromatin-modulating factors. Mol Cell
Biol 19: 3184-3197.

Stotz, A., and P. Linder, 1990 The ADE2 gene from Saccharomyces cerevisiae: sequence and

Suka, N., K. Luo and M. Grunstein, 2002 Sir2p and Sas2p opposingly regulate acetylation of

Sun, Z. W., and M. Hampsey, 1999 A general requirement for the Sin3-Rpd3 histone
deacetylase complex in regulating silencing in Saccharomyces cerevisiae. Genetics 152:
921-932.

VANNIER, D., D. BALDERES and D. SHORE, 1996 Evidence that the transcriptional regulators SIN3 and RPD3, and a novel gene (SDS3) with similar functions, are involved in transcriptional silencing in S. cerevisiae. Genetics 144: 1343-1353.

Jambunathan et al. Figure 1

Diagram of the HMR region showing the location of the a1 mutation and the effects on tRNA expression in different strains.

- **Normal chromosome**
 - HMR-E
 - a2
 - a1
 - HMR-I
 - Boundary
 - tRNA

- **DDY277**
 - HMR-E-Boundary-a1

- **DDY277** wild type

- **DDY799**
 - Tn:LEU2:yta7

- **DDY800**
 - Tn:LEU2:sas5

- **DDY802**
 - Tn:LEU2:sas5

- **DDY803**
 - Tn:LEU2:yta7

- **DDY1174**
 - Tn:LEU2:yta7

- **DDY1309**
 - Tn:LEU2:yta7

- **DDY1316**
 - Tn:LEU2:yta7

- **DDY1318**
 - Tn:LEU2:yta7

- **DDY1340**
 - Tn:LEU2:yta7

- **DDY1344**
 - Tn:LEU2:rpd3

- **DDY1345**
 - Tn:LEU2:rpd3

- **DDY1347**
 - Tn:LEU2:yta7

- **DDY2076**
 - Tn:LEU2:yta7

- **DDY2078**
 - Tn:LEU2:yta7
 - sir2Δ::TRP1
A.

YTA7

![Diagram of YTA7 protein with regions labeled as AAA, BD, ZA loop, and α_A helix]

B.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Sequence Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSC1-2</td>
<td>TLTLCFEKLPD-RNEEFTYYSVITDPICLMDIRKK</td>
</tr>
<tr>
<td>RSC2-2</td>
<td>GLTDLFERLPD-RHRDANYYIMIANPISLQDINKK</td>
</tr>
<tr>
<td>RSC1-1</td>
<td>BIYPIPVNLPP-KKKEYPDYYIIIRNPISLNLKRR</td>
</tr>
<tr>
<td>RSC2-1</td>
<td>EISPISHNVLP-KKDYPKYAVIKKPVSNFTLKR</td>
</tr>
<tr>
<td>SNF2</td>
<td>LSDIFSLK-PS-KALYPDYMYMIKYPVAFNDINTH</td>
</tr>
<tr>
<td>BDF1-1</td>
<td>DARPFQPVDPVKLDFFYPNYIHKRPMDLSTIERK</td>
</tr>
<tr>
<td>BDF2-1</td>
<td>DARPFQLPKPVPALNIPHPYPNVQPMDMSPSLITETK</td>
</tr>
<tr>
<td>BDF1-2</td>
<td>YNYPFLCPVDVFSPMLPTYKDFYKEMPMDLGTTIAKK</td>
</tr>
<tr>
<td>BDF2-2</td>
<td>INPPFLQPVDPVSNLVTPNYFPVVPNMDLGTISNNN</td>
</tr>
<tr>
<td>GCN5</td>
<td>AAWPFLQPVN-KKYPNYDFIKEMPMDLSTMIEIK</td>
</tr>
<tr>
<td>RSC4-2</td>
<td>LSEPFMELVD--KDELPEYEEIVHSMPALMIVKQN</td>
</tr>
<tr>
<td>RSC4-1</td>
<td>IFKDFIKLPS--RKHPQYYIQQPMSINEIKSR</td>
</tr>
<tr>
<td>SPT7</td>
<td>HSTPFLNKVSS--KREAPNYHQQIKKMSDNLTVKK</td>
</tr>
<tr>
<td>STH1</td>
<td>-RTSIFKEKLPS-KRDYPDKVPKVEKPMADINLKN</td>
</tr>
<tr>
<td>YTA7</td>
<td>NWQPAYIKDE--NMILEVSRTGRENMDLIDILEER</td>
</tr>
</tbody>
</table>

C.

![Image of gel electrophoresis showing proteins GST, GST-Ya7 BD, GST-Ya7p BD, MW markers, and Histones (H3, H2B, H2A, H4)]

Jambunathan et al. Figure 3

```
HMR-E  tRNA  a1  HMR-E-Boundary-a1
```

- DDY282
- DDY277
- DDY695 gcn5::TRP1
- DDY1665 rsc2Δ::TRP1
- DDY1893 rsc1Δ::URA3
- DDY1893 sas2Δ::TRP1
- DDY1997 yta7Δ::TRP1
- DDY2514 spt7Δ::URA3
- DDY2596 bdf1Δ::HIS3
- DDY2601 bdf2Δ::LEU2
- DDY2659 snf2::LEU2
- DDY1893 htz1Δ::KanMX

Jambunathan et al. Figure 4

A.

B.

<table>
<thead>
<tr>
<th></th>
<th>HMR-ADE2</th>
<th>HMR-trnaΔ-ADE2</th>
<th>hmrΔ-ADE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt</td>
<td>[Images]</td>
<td>[Images]</td>
<td>[Images]</td>
</tr>
<tr>
<td>Tn:rpΔ3</td>
<td>[Images]</td>
<td>[Images]</td>
<td>[Images]</td>
</tr>
<tr>
<td>Tn:sas5</td>
<td>[Images]</td>
<td>[Images]</td>
<td>[Images]</td>
</tr>
<tr>
<td>yta7Δ</td>
<td>[Images]</td>
<td>[Images]</td>
<td>[Images]</td>
</tr>
<tr>
<td>rsc2Δ</td>
<td>[Images]</td>
<td>[Images]</td>
<td>[Images]</td>
</tr>
</tbody>
</table>