MATERNAL AND ZYGOTIC SEX-SPECIFIC GENE INTERACTIONS IN DROSOPHILA MELANOGASTER

THOMAS W. CLINE

Department of Biology, Princeton University, Princeton, New Jersey 08544

Manuscript received August 8, 1980
Revised copy received November 4, 1980

ABSTRACT

Sex-lethal (Szl) is a vital, X-chromosome gene involved in Drosophila sex determination. The most striking aspect of the phenotype of daughterless (da), an autosomal maternal-effect mutation, may be explained by effects on the functioning of the Sxl gene in the zygote. In this paper, new aspects of interactions between various combinations of Sxl and da alleles are explored in order to understand better the complex da phenotype. The study focuses on the relationship between maternal and zygotic da+ gene functions, and on the relationship between aspects of the da phenotype that are sex-specific and aspects that are not. The SxlM#1 allele, which counteracts the female-specific maternal effect of da, is shown to have no effect on two other aspects of the da phenotype (one maternal, one primarily zygotic) that are not sex-specific. The female-lethal da maternal effect is shown to kill daughters even when the progeny are entirely wild-type with respect to da. Recessive mutant alleles of the two genes can interact synergistically when both are heterozygous with their wild-type alleles, disrupting the development of most of the daughters. Surprisingly, even a deficiency of the da+ locus can produce a dominant, temperature-sensitive, female-lethal maternal effect. A new class of subliminal SxlM alleles is described. These spontaneous mutations can confuse analysis of both da and Sxl if their presence is not appreciated. Finally, conditions are described that facilitate the study of the Enhancer of daughterless mutation.

Maternal-effect mutations identify genes that function in the mother during oogenesis to produce materials that are subsequently required for the normal development of her progeny (representative screens for such mutants are described in Kaplan et al. 1970; Bakken 1973; and Gans, Audit and Massignon 1975). In the most extreme cases, the phenotype of the progeny is not influenced by their own genotype with respect to the mutation, but depends instead on the genotype of their mothers. Maternal-effect mutations are potentially useful for understanding at the molecular level the control of developmentally regulated genes, including those genes that are involved in the early determinative processes by which cell fates become restricted. Unfortunately, it is generally difficult on the basis of developmental phenotype alone to identify maternal genes whose products may be directly involved in the regulation of specific embryonic genes.

In the case of the autosomal mutation daughterless (da; 2-41.5) it may be possible to explain the most striking aspect of this maternal-effect mutant's phenotype in terms of effects on regulation in the progeny of a specific X-linked gene.

Above 22°, all diplo-X progeny (daughters) of da/da mothers die, regardless of paternal genotype with respect to da, yet the viability of haplo-X progeny (sons) can be quite high, even for individuals that are homozygous for the mutant da allele (Bell 1954; Sandler 1972; Mason 1973; Cline 1976). Sex-lethal (Sxl; t-19.2) is a gene which controls sex determination (Cline 1979 a,b) and perhaps X-chromosome dosage compensation as well (Cline, manuscript in preparation). A relationship between maternal functioning of da+ and functioning of Sxl+ in progeny was first suggested by the discovery that a mutant allele, SxlM#1, could rescue diplo-X progeny from the otherwise lethal maternal effect of da (Cline 1978).

The only apparent effect of SxlM#1 in diplo-X progeny is to counteract the da maternal effect, but in haplo-X progeny, SxlM#1 acts as a dominant zygotic lethal. A mutant site previously determined by Muller and Zimmering (1960) to cause female-specific zygotic lethality is closely linked to the mutant site causing male-specific lethality. This female-specific allele was initially called Females-lethal, but was renamed Sxl#1 to indicate its relationship to SxlM#1 (Cline 1978). Recent analysis of double-mutant combinations in cis and trans has confirmed that Sxl#1 and SxlM#1 are alleles, despite their radically different phenotypes (Cline manuscript in preparation).

Previous analysis of the interaction between da and Sxl led to the hypothesis that the Sxl+ gene product is essential for development of diplo-X tissue, but deleterious to haplo-X cells, and that the Sxl+ gene is therefore normally active only in diplo-X (female) animals (Cline 1978). It was further proposed that the da+ maternal gene product is required to activate the Sxl+ gene in daughters following fertilization. Subsequent analysis of the effects of the male-lethal and female-lethal Sxl alleles on development of genetically mosaic individuals suggested that the Sxl+ product causes cells to follow a female-specific morphogenetic sequence, while in the absence of Sxl+ gene activity, cells follow a male-specific developmental path (Cline 1979 a,b).

Although daughterless derived its name from its effect on diplo-X progeny, the da mutation itself is clearly not a sex-specific lethal (Sandler 1972; Mange and Sandler 1973), even though it interacts with a gene, Sxl, that is sex specific. At 29°, not even haplo-X progeny of da/da mothers survive. Furthermore, da is a temperature-sensitive zygotic lethal in both sexes, even in the absence of the maternal effect. Based on circumstantial evidence obtained before the discovery of the interaction between Sex-lethal and daughterless, I suggested (Cline 1976) that the mutant da allele might be autonomously pleiotropic (see Stern and Tokunaga 1968), interfering with three separate developmental functions: one requiring da+ gene expression during zygotic development and two others requiring da+ gene expression during oogenesis.

Pleiotropy may be obvious when it results in a variety of morphological alterations in the adult fly. When each separate developmental effect of a mutation can result in lethality, pleiotropy may be more difficult to recognize and characterize. Only with some appreciation of the possible multiple lethal effects of a mutation, however, is it possible to focus on one aspect of the phenotype, while still using
the crude but efficient experimental measure, viability. The hypothesis of multiple developmental functions for da+ reconciles the lack of overall sex specificity of the da phenotype with the apparently sex-specific function of the Sxl+ locus. An important aim of the work reported in this paper is to explore further this hypothesis of multiple, vital functions of da+, and the correlate that the da-Sxl interaction involves only the sex-specific maternal function of da+. In the course of this work, certain additional aspects of the relationship between da and Sxl were discovered that are important for proper design and interpretation of future studies of these two genes.

MATERIALS AND METHODS

Flies were raised under uncrowded conditions on a medium described by CLINE (1978). The criterion for survival was eclosion. Refer to LINDSLEY and GRELL (1968) for mutant designations and descriptions, except as noted below and in notes to the tables. Binsinsky is an X-chromosome female-sterile balancer: In(1)sc61sc8R + In(1)dl-49, y sc81 w sn8B sc8 see BRYANT and ZORETZER 1973). Stocks used for the experiment in Table 1 were constructed as follows: (1) a C(2L), cl da chromosome was recovered following mating of virgin cl da cn bw females treated with 4000 rad of gamma radiation to C(ZL)RM, C(2R)RM males (HOLM, 1976). (2) Sxl#1 was introduced into the C(2) stocks by mating virgin y w SxlM#1 sn/y w+/sn; da/da females treated with 4000 rad of gamma radiation to C(2L), cl da; C(2R)RM males and recovering the phenotypically clot-eyed daughters. The markers y, w and sn were eventually removed by recombination, and the stock was maintained homozygous for da. (3) The marker v was introduced into the C(2) stocks by mating virgin cv v Bx females maintained for 10 days at 10° (TOKUNGA 1970 a,b) to C(ZL), cl da; C(2R)RM males, and recovering phenotypically Bx, cl sons. The markers cv and Bx were eventually removed by recombination, and the stock was used to introduce v into the SxlM#1; C(2) stock.

RESULTS

I. Effect of zygotic da+ gene dose on the daughterless maternal effect

Recessive maternal-effect mutations have been grouped according to whether a wild-type allele contributed by the sperm can or cannot overcome the effect of mutant alleles in the mother (KAPLAN et al. 1970; GANS, AUDIT and MASSON 1975). Rescue of embryos by a paternal wild-type allele indicates that the gene product required for a particular developmental step in the embryo can be provided by either the maternal alleles during oogenesis or by the embryo’s own allele(s) functioning after fertilization. Lack of rescue is more ambiguous. It may reflect a strict requirement for only maternal gene expression, with no participation of the embryo’s alleles. Alternatively, it may reflect a requirement for both maternal and embryonic gene expression in which neither individually can provide sufficient gene activity for normal development.

Since neither da/da nor da/da+ daughters of da/da mothers survive at 25°, the da maternal effect appears to be of the nonrescuable type (BELL 1954; Sandler 1972). The discovery of the temperature-sensitive nature of this mutation allowed a more accurate determination of the effect of zygotic da genotype on the ability of daughters to survive the maternal effect (CLINE 1976). Under semipermissive conditions where 7% of da/da daughters survived, the presence of a wild-type da
allele increased daughter viability to 19%. Thus, the da maternal effect appears to be rescuable, but only weakly so. The three-fold viability increase by a paternal da^+ allele is modest indeed when compared to the increase seen with most other rescuable maternal-effect mutants. Rudimentary is good example (COUNCE 1956; CARLSON 1971), the only one for which the molecular basis of the maternal effect is known (NORBY 1970; JARRY and FALK 1974; OKADA, KLEINMAN and SCHNEIDERMAN 1974; RAWLS and FRISTROM 1975).

The three-fold viability increase was observed under conditions where 81% of the daughters died even with one da^+ allele. In order to determine whether zygotic da^+ gene activity was still limiting daughter survival under these semi-permissive conditions, the effects of adding yet another da^+ allele to the embryos was ascertained by the experiment indicated in Table 1.

In the absence of a duplication of da^+, compound second chromosomes were used to produce progeny homozygous for one autosomal allele from mothers homozygous for a different allele. The effect of two wild-type doses of da^+ relative to none in this experiment could then be compared to the effect of a single wild-type dose relative to none in previous experiments.

From the data of Table 1, row 1, it can be seen that even daughters with two doses of the da^+ allele die from the maternal effect at 22°. At 17°, some daughters survive, even those homozygous for da. As before, presence of wild-type da alleles in daughters at 17° does increase survival, but the difference in viability between the two progeny genotypes in this experiment (55% viability of the “no dose” daughters relative to their sisters with “two doses”) is even less than in the previous experiment (30% for “no dose” relative to “one dose”; Table 1 in CLINE 1976). Even with two doses of da^+, at least 45% of the daughters fail to complete development. Under these conditions, which are sufficiently permissive to allow a substantial fraction of homozygous mutant daughters to survive, the availability of da^+ maternal gene activity still limits the survival of even da^+ progeny. The data in the third and fourth rows show that the progeny sex ratios are normal in the absence of the maternal effect, and that the two types of compound 2L chromosomes have no significant effect on progeny viability at these temperatures when the mothers are wild-type for daughterless.

The data in the fifth row of Table 1 are a control of a different sort, and serve to introduce the da-Sxl interaction. In this case, the mothers were heterozygous for the X-linked, male-specific lethal allele of Sxl, which rescues daughters of da females. Whereas no daughters survived at 22° without Sxl#1 (row 1), da^+/da^+ daughters with Sxl#1 were fully viable relative to their da^+/da^+ brothers (who necessarily did not carry Sxl#1). Curiously, even when the sex-ratio maternal effect of da was completely suppressed by Sxl#1 in the daughters, the recessive lethal effect was significantly greater ($p < .001; 2 \times 2 x^2$) among progeny of da/da mothers than among the progeny of da^+/da^+ mothers (0.75 vs. 1.11). Thus, it seems that the magnitude of the recessive lethal effect may depend somewhat on the maternal genotype with respect to da, independent of the sex-ratio maternal effect of da that is absolutely lethal to Sxl+ daughters at 22° regardless of their genotype with respect to da.
TABLE 1

Effect of da\(^+\) gene dose on progeny survival from da/da mothers

<table>
<thead>
<tr>
<th>Cross</th>
<th>Maternal genotype with respect to da</th>
<th>Temp(^\circ)C</th>
<th>Progeny sex and genotype with respect to da</th>
<th>Recurrent lethal effect: Viability of da/da progeny relative to their +/+ siblings of the same sex</th>
<th>Sex-ratio da maternal effect: Viability of +/+ daughters relative to +/+ sons</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>da/da</td>
<td>22</td>
<td>Sons: da(^+/+) 600 611 Daughters da(^+/+) 0 0</td>
<td>0.55 0.86 0.57</td>
<td><0.002</td>
</tr>
<tr>
<td>A-2</td>
<td>da/da</td>
<td>17</td>
<td>Sons: da(^+/+) 495 425 Daughters da(^+/+) 282 156</td>
<td>0.55 0.86 0.57</td>
<td><0.002</td>
</tr>
<tr>
<td>B-1</td>
<td>da(^+/+)/da(^+/+)</td>
<td>22</td>
<td>Sons: da(^+/+) 781 843 Daughters da(^+/+) 752 831</td>
<td>1.11 1.08 0.96</td>
<td>1.01</td>
</tr>
<tr>
<td>B-2</td>
<td>da(^+/+)/da(^+/+)</td>
<td>17</td>
<td>Sons: da(^+/+) 298 266 Daughters da(^+/+) 301 302</td>
<td>1.00 0.89 1.01</td>
<td>1.01</td>
</tr>
<tr>
<td>C</td>
<td>da/da</td>
<td>22</td>
<td>Sons: da(^+/+) 188 191 Daughters da(^+/+) 213 160</td>
<td>0.75 1.02 1.13</td>
<td>1.13</td>
</tr>
</tbody>
</table>

*Progeny were from the following crosses:

A: \(v; C(2L), cl \text{ da}\); \(C(2R) \varphi \times v/Y; C(2L), +; C(2R) \delta \delta\)

B: \(v; C(2L), +; C(2R), +; \varphi \delta \times v/Y; C(2L), \text{ cl da}; C(2R), \delta \delta\)

C: \(Sx\(\#\#\#\)\(\text{I}^{+/+}\); v; C(2L), cl da; C(2R), \varphi \delta \times v/Y; C(2L), +; C(2R), \delta \delta\)

Vermilion was included to facilitate the scoring of cl, which is otherwise difficult to distinguish from \(cl^+\) at 17\(^\circ\). A comparison at 29\(^\circ\) was not included due to temperature sensitivity of the \(C(2L), +\) chromosome obtained from the Bowling Green Drosophila stock center.

\(\dagger\) Temperature at which eggs were laid by parents conditioned to the temperature for at least 6 days. Progeny were raised at indicated temperature for at least 5 days, then shifted to 25\(^\circ\) to complete development.
In summary, while a da+ allele in daughters can counteract the maternal effect, it does so to only a very limited extent. Furthermore, the zygotic dose of the da+ alleles is not what limits the ability of da/da+ daughters to survive the maternal effect. Put another way, what was discovered to be a recessive lethal effect of da among the progeny of da+ mothers is shown to remain a strictly recessive lethal effect even when the female-lethal maternal effect is severe. The experiments also rule out the possibility that zygotic dominance of the mutant da allele is responsible for the death of daughters from da/da mothers.

II. The SxlM#1 allele counteracts just one of three aspects of the da phenotype

The data in Table 2 show that the SxlM#1 allele, which rescues zygotes from the sex-ratio maternal effect of da, has no significant effect on the recessive lethal effect of da. The recessive lethal effect is measured as the viability of da/da progeny relative to their da/da+ siblings. At 22°, there is no indication of a recessive lethal effect, but at 29° the relative viability of da/da daughters is down to less than 3%, irrespective of the male-lethal Sxl allele.

A third aspect of the da phenotype is characterized by the fact that homozygous da females kept at 29° for several days continue to lay fertilized eggs, but fail to produce progeny of either sex. I referred to this as the female-sterile da effect (Cline 1976). The most straightforward hypothesis for this observation would be that the higher temperature simply exacerbates the lethal maternal effect suffered only by daughters at lower temperatures, so that neither sex of progeny can survive. By this hypothesis, the embryonic function disrupted by the maternal da mutation would involve a quantitative rather than qualitative developmental difference between the sexes. But a number of aspects of the earlier study led me to suspect that the situation was not so simple and to propose that there were two separate maternal effects: a sex-ratio effect specifically lethal to diplo-X progeny and a female-sterile effect equally deleterious to both sexes of progeny.

The hypothesis of separate maternal effects would be supported if SxlM#1 were found to counteract only the maternal effect of da on the progeny sex ratio, but not the sterility effect lethal to both sexes of progeny at 29°. To test for an effect of SxlM#1 acting in the mothers on the da sterility maternal effect, independent of its effects on progeny sex ratio, one must focus on the survival of Sxl+/Y sons from da/da mothers. Either egg counts or fecundity (with regard to Sxl+/Y son production per mother per day) can provide a measure of this. To avoid complications arising from the temperature-sensitive recessive lethal aspect of the da phenotype, one must focus on da/da+ sons. This is the purpose of the experiment described in the top panel of Figure 1.

For the experiment in Figure 1, da+ females (▲) and da/da females with (■) and without (●) the SxlM#1 allele were conditioned to 18° for at least four days prior to the start of progeny collections. Progeny were collected at 18° for three successive days. The numbers of Sxl+/Y; da/da+ sons obtained is indicated by the first three data points in the top panel.

SxlM#1/Sxl+ females are expected to produce only half as many Sxl+/Y sons as Sxl+/Sxl+ females, regardless of any maternal effects on fecundity. To facili-
TABLE 2

Lack of effect of SxlM#1 on the recessive lethal aspect of the da phenotype

<table>
<thead>
<tr>
<th>Temperature at which eggs were laid and progeny were raised °C</th>
<th>Daughters' genotype with respect to Sxl and da</th>
<th>Recessive lethal effect of da: Viability of da/da daughters relative to their da/da+ sibs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Sxl^+)/(Sxl^+)</td>
<td>(Sxl^+)/(Sxl^+)</td>
</tr>
<tr>
<td>22</td>
<td>279</td>
<td>292</td>
</tr>
<tr>
<td>29</td>
<td>584</td>
<td>17</td>
</tr>
</tbody>
</table>

Progeny are from the cross: \(Binsincyo/Sxl^{M#1}; da\ cn\ bw/In(2L\ + 2R)Cy\) \(\Phi\ \Phi \times sn^2/Y\); \(da\ cn\ bw\ \delta\ \delta\ \) (\(XXY\) matroclinous exceptions are excluded from totals.)
FIGURE 1.—Lack of effect of SxlW# on the temperature-sensitive, female-sterile aspect of the daughterless phenotype. The progeny indicated were obtained from daily transfers of the following adults: Sxl+/Y; da cn bw/In(2L+2R), Cy males mated to (△) 60 wild-type (Oregon-R) females, (■) 307 da cn bw females, or (▲) 345 SxlW#+/+; da cn bw females. The scale adjustment in fecundity for (△) takes account of the fact that half of the sons in this cross will die due to the dominant, male-lethal effect of SxlW#. The measure is also corrected for the day-to-day loss of parental females during the course of the experiment. By the end of the 16th day, 93% (△), 43% (■), and 54% (▲) of the initial number of females remained. “Survival” refers to the percent recovery of adult Sxl+/Y; da/+ sons from sample egg collections on the days indicated. The temperatures indicated are those at which the parents laid the eggs and at which the progeny developed. Interpretation of the value for progeny sex ratio requires an understanding of what classes of progeny are expected to survive and why (see text).

To make comparisons between the two types of females, the scale for fecundity for (▲) females is adjusted accordingly. Survival of Sxl+/Y; da/da+ sons on the third day at 18° was 79%, as determined by egg counts. This is consistent with previous reports that the viability of sons from da/da mothers can be quite high (Mason 1973).
On the fourth day, parents were shifted to 29°. Progeny were collected for four days at this temperature; then the parents were shifted back down, but to 22° rather than to the original temperature of 18°. Progeny were collected at 22° for eight days following the shift down. For all data points, progeny were raised at the same temperature at which the eggs had been laid, the temperatures indicated at the top of the figure (with the exception that for the 18° points, progeny were shifted to 25° after three days to complete development, simply to expedite data collection).

The shift from 18° to 29° gave increased fecundity for da+ control females, but gave a precipitous drop in fecundity for da/da mothers, regardless of their genotype with respect to Sxl. The drop in fecundity at 29° primarily resulted from a decline in the survival of sons, rather than a decrease in the rate of oviposition. One day after the return to lower temperature, egg to adult survival of Sxl+/Y; da/da+ sons from Sxl+/Sxl+; da/da mothers was only 6%, but it rose to 72% during the next four days at 22°. Clearly there was a maternal effect of da on survival of sons, but the effect was not modified by the presence of SxlW1 in the mothers.

The failure of SxlW1 acting in mothers to overcome the sterility aspect of the da phenotype is perhaps not surprising, since it was a zygotic rather than maternal action of SxlW1 that counteracted the sex-ratio maternal effect of da (Cline 1978). Nevertheless, the data in the top panel of Figure 1 are important, since they allow a determination to be made of the possible effects of SxlW1 acting in zygotes on the sterility aspect of the da phenotype. The sex ratio among da/da+ progeny is the relevant parameter for this determination, indicated in the bottom panel of Figure 1.

To interpret the significance of the progeny sex-ratio data, it is important to note that the SxlW1/Sxl+; da/da mothers (■) will produce four types of zygotes in equal numbers; SxlW1/Y sons will invariably die due to the male-lethal effect of SxlW1; Sxl+/Y sons will survive depending on the magnitude of the da maternal sterility effect; Sxl+/Sxl+ daughters will all die due to the da sex-ratio maternal effect, except at low maternal and zygotic temperatures where a fraction can escape; and SxlW1/Sxl+ daughters will survival depending on the extent to which the SxlW1 allele can rescue them from both the sex-ratio and the sterility maternal effects of da.

Under conditions where none of the Sxl+/Sxl+ daughters survive, the sex ratio reflects the ratio of surviving SxlW1/Sxl+ daughters to Sxl+/Y sons. Under these conditions, the range of values possible for the progeny sex ratio depends upon the relationship between the aspect of the da maternal effect that kills sons and the aspect of the da maternal effect that is counteracted by SxlW1 in daughters. If the effect that is lethal to Sxl+/Y sons is also suffered by daughters, and can be counteracted by SxlW1 in these daughters, then the sex ratio among the surviving progeny could exceed 1. On the other hand, if SxlW1 counteracts an aspect of the da phenotype that is suffered only by daughters (the putative sex-ratio maternal effect), an aspect distinct from a maternal effect on all progeny regardless of sex (the da sterility effect, which is manifested by the death of Sxl+/Y sons), then the sex ratio could never exceed 1. Even if SxlW1 were 100% effective at counteract-
ing the sex-specific aspect of the phenotype, daughters would still suffer from the non-sex-specific maternal effect that would be lethal to their brothers as well.

The most significant part of the sex-ratio curves in the bottom panel of Figure 1 is that seen after one day at 29°. After this time, the relative viability of daughters from Sxl+/Sxl+ mothers (●) never exceeded zero, even following the subsequent shift down to 22°. Consequently, in this part of the curve, the sex ratio among the progeny of Sxl#'/Sxl+ mothers (■) reflects only the viability of Sxl#'/Sxl+ daughters relative to their Sxl+/Y brothers. Sxl#1 rescued daughters even at the extremely nonpermissive temperature of 29°, though its effectiveness was somewhat reduced compared to that at lower temperatures.

Immediately following the shift down to 22°, the sex-ratio among the progeny of Sxl#1/Sxl+ mothers (■) was 0.65, indicating that Sxl#1/Sxl+ daughters survived nearly as well as their Sxl+/Y brothers. Not only was there very little change in this parameter following the shift to 22°, but the value never exceeded 1. During the same period, the viability of the Sxl+/Y sons increased more than one order of magnitude: from 6% to 72%. Thus, while an increasing fraction of Sxl#1/Sxl+ daughters survived the da maternal effect after the shift to 22°, the progeny sex ratio remained nearly constant. The result could be explained by increased effectiveness of Sxl#1 at rescuing daughters, balanced almost exactly by increased survival of Sxl+/Y sons. A much simpler explanation is that the sex-specific lethal maternal effect was effectively counteracted by Sxl#1 even immediately after the shift down, but the sterility maternal effect was not. Consequently, the absolute number of daughters surviving rose in concert with the increase in Sxl+/Y son survival, keeping the sex ratio nearly constant and below its maximum value of 1. The sex-ratio above 1 found for the three days at the start of this experiment (■) simply reflects the survival of some Sxl+/Sxl+ daughters who escaped the maternal effect a 18°, escapers also evident in the curve for Sxl+/Sxl+; da/da mothers (●).

III. A new class of female-specific Sxl alleles.

The dominance properties of Sxl and da alleles depend strongly on genetic modifiers, some characterized and some not. A novel type of Sxl allele has been discovered in the course of investigating such modifiers.

Regardless of genetic background, Sxl#1 is always lethal to females when homozygous, but when initially characterized, it seemed to behave as a semi-dominant lethal (MULLER and ZIMMERING 1960). ZIMMERING and MULLER (1961) subsequently showed that this dominance was caused by a maternal effect of unidentified modifiers on all three major chromosomes of the stock in which the mutant allele arose. Like Sxl#1, da can also behave in a semidominant fashion, depending on modifiers. MANGE and Sandler (1973) isolated a 2;3 translocation which they named Enhancer of daughterless, E(da), because it caused da to behave as a semidominant with respect to its sex-ratio maternal effect. As with Sxl#1 dominance, the phenotypic effect of da with E(da) was rather sensitive to both genetic background and specific growth conditions.

While investigating the effect of E(da) on survival of daughters carrying Sxl#1, I found that Sandler's E(da) stock was homozygous for an Sxl allele that
is viable and fertile when homozygous, yet lethal when heterozygous with \(\text{Sx} l^{l1} \) or with a deficiency for the \(\text{Sx} l \) locus. Independently, I isolated a line in which \(\text{da} \) appeared to be dominant, much as it was with \(E(\text{da}) \). The behavior of this line was extremely erratic. The enhancement of the \(\text{da} \) allele was not due to a single, simple genetic factor. Like Sandler's \(E(\text{da}) \) stock, this stock was also homozygous for the "subliminal" type of female-specific \(\text{Sx} l \) allele. Apparently, in both cases, selection (by the investigators) for strong (dominant) expression of the \(\text{da} \) maternal effect simultaneously resulted in selection for alterations at the \(\text{Sx} l \) locus.

The characteristic phenotype of such \(\text{Sx} l \) alleles is detailed in Table 3 for the allele found in the \(E(\text{da}) \) line, identified here as \(\text{Sx} l^{l1} \) (female-specific, homozygous viable allele number 1). The allele is fully viable when homozygous (first row, experimental daughters, viability relative to \(\text{Sx} l^{l1} / \text{Y} \) brothers, 104%), but nearly lethal in compound with the strong \(\text{Sx} l^{l1} \) allele (second row, experimental daughters, viability relative to \(\text{Sx} l^{l1} / \text{Y} \) brothers, 1%). Those few heteroallelic daughters that survived were often malformed, similar to daughters that escape the \(\text{da} \) maternal effect at low temperatures, or that escape the semidominant effect with \(E(\text{da}) \). The malformations were also similar to those of \(\text{Sx} l^{l1} / \text{Sx} l^{l1} \) daughters that escape when genetic background causes semidominance of \(\text{Sx} l^{l1} \). Third leg and sixth sternite defects are most characteristic. Mapping that shows this complementation pattern to be due to a change at the \(\text{Sx} l \) locus is indicated in Table 4. The markers carmine and cut closely flank \(\text{Sx} l \). The observed \(\text{cm} - \text{ct} \) distance was 1.2 map units, compared to the standard value of 1.1 map units, showing that there is no significant effect of the mutant allele on recombination in the interval. The position of \(\text{Sx} l^{l1} \) was 19.1, which agrees well with previous mappings of \(\text{Sx} l \) alleles.

In this experiment, the heteroallelic combination was less viable than in Table 3. There is variability in this parameter, though the viability of \(\text{Sx} l^{l1} / \text{Sx} l^{l1} \) individuals is always less than 5% at 29°.

Like \(\text{Sx} l^{l1} \) (Cline 1978), \(\text{Sx} l^{l1} \) alleles reduce the ability of females to survive the \(\text{da} \) sex-ratio maternal effect. This explains why stocks selected for a semidominant \(\text{da} \) maternal effect were likely to carry this class of \(\text{Sx} l \) allele. \(\text{cm} \ \text{Sx} l^{+} \ \text{ct} / \text{Y} \) and \(+ \ \text{Sx} l^{l1} / + / \text{Y} \) sons from the mapping cross of Table 4 were mated to \(\text{Sx} l^{+} \); \(\text{da} \ \text{cn} \ \text{bw} \) females in order to quantitate this effect. The viability of \(\text{Sx} l^{+} / \text{Sx} l^{+} \) daughters was 12.3% relative to their brothers (2,156) at 17°. The viability of the \(\text{Sx} l^{l1} / \text{Sx} l^{+} \) daughters under the same conditions was only 4.4% (2,247 brothers). Thus, the subliminal \(\text{Sx} l \) allele caused a 65% reduction in female survival when introduced from the fathers. A third \(\text{Sx} l^{l1} \) allele was discovered by chance in a \(\text{da}^{+} \) stock on the basis of just such a reduction in the survival of daughters from \(\text{da} / \text{da} \) mothers. In an attempt to find additional alleles of this type, C. Field (unpublished) screened 40 laboratory mutant stocks chosen at random, but failed to discover any.

IV. Now dominant interactions between \(\text{da} \) and \(\text{Sx} l \)

Since relatively minor changes at the \(\text{Sx} l \) locus could be identified on the basis of their interaction with strong \(\text{Sx} l^{l1} \) alleles, or with a strong \(\text{da} \) maternal effect, it seemed possible that previously undetectable weak maternal effects of the \(\text{da} \)
TABLE 3

Complementation analysis of a homozygous viable, female-specific Sxl allele

<table>
<thead>
<tr>
<th>Cross (29°)</th>
<th></th>
<th>Experimental daughters</th>
<th></th>
<th>Control daughters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sons</td>
<td></td>
<td>Viability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sxl genotype (allele combination)</td>
<td></td>
<td>relative to Sxl<sup>hsc#1</sup> brothers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Sxl<sup>hsc#1</sup>/Binsinsey ♀ ♀ × Sxl<sup>hsc#1</sup>/Y ♀ ♂</td>
<td>422</td>
<td>fhv<sup>1</sup>/fhv<sup>1</sup></td>
<td>440</td>
<td>1.04</td>
</tr>
<tr>
<td>B. Sxl<sup>hsc#1</sup>/Binsinsey ♀ ♀ × cm Sxl<sup>hsc#1</sup>/ct/Y ♀ ♂</td>
<td>542</td>
<td>fhv<sup>1</sup>/f<sup>1</sup></td>
<td>5</td>
<td>0.01</td>
</tr>
</tbody>
</table>
TABLE 4

Mapping of a homozygous viable, female-specific Sxl allele

<table>
<thead>
<tr>
<th>Sex of progeny</th>
<th>Parental types</th>
<th>Recombinant types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenotype</td>
<td>Males</td>
<td>Males</td>
</tr>
<tr>
<td>Sxl genotype (alleles)</td>
<td>cm ct</td>
<td>$cm^+ ct^+$</td>
</tr>
<tr>
<td>Number recovered</td>
<td>2468</td>
<td>2541</td>
</tr>
</tbody>
</table>

Progeny of the cross at 29°: $cm^+ct^+/S\text{Sxl}^{f\text{h}1}; + \varphi \times cm^+ct^+/S\text{Sxl}^{f\text{h}1}; + \delta \delta$.

Calculated cm-ct distance = 1.24 m.u. (90/7269).

Position of $f\text{h}1$ = 19.06 ([4/27 X 1.1] + 18.9).

* Of the five, four died prematurely without laying eggs (probably escapers), while one proved to be a matroclinous exception ($S\text{Sxl}^{f\text{h}1}; +/Y$).
locus might be revealed by their consequences for progeny who carry strong Szl' mutations. Zimmering and Muller's (1961) earlier discovery that the dominant character of Szl'^+ depended on an undefined maternal effect was also suggestive.

With respect to its maternal effect on progeny sex ratio, da is recessive as long as the progeny are Szl^+. The data in the A crosses of Table 5 confirm this. The viability of Szl^+/Szl^+ daughters did not differ significantly from mothers who did (A-1) or did not (A-2) carry a mutant da allele (see column Y). In contrast, the viability of Szl'^+/Szl^+ daughters in the A crosses was very strongly dependent on the da maternal genotype. The relative viability of Szl'^+/Szl^+ daughters (Column X) was only 4% if their mothers were heterozygous for da, but was 120% if their mothers were wild type with respect to da. Presence or absence of a single da allele in the progeny did not seem to matter (6% relative viability for $Szl'^+/+; da+/+$ daughters vs. 4% for their $da^+/+$ sisters). Thus, the effect of da seems to be strictly maternal. The mothers in crosses A-1 and A-2 were sisters, which minimized extraneous effects of genetic background.

The series A crosses in Table 5 served as a pilot experiment that was followed by a more extensive study that minimized the use of balancer chromosomes and genetic markers and included an investigation of effects of temperature on the dominant maternal effect of da. Recall that the recessive da maternal effect is temperature dependent (Table 1). The results of this second study—the progeny from cross B—were considerably less dramatic than the results from the series A crosses; nevertheless, they did confirm and extend the initial observations.

Again, relative viability of Szl'^+/Szl^+ daughters from da/da^+ mothers was significantly reduced at 29° (57% viability) and 25° (63%), but not at 17° (98%). A control cross (not shown) confirmed that the reduced Szl'^+/Szl^+ viability in the cross B progeny was due to the maternal da allele, since viability of Szl'^+/Szl^+ daughters from $da^+; In(2L+2R), Cy da^+$ sisters of the mothers used in B was 97% at 25° (622 daughters vs. 641 Szl'^+/Y sons). Although many Szl'^+/Szl^+ daughters of da/da^+ mothers in series B survived at the higher temperatures, they were clearly not healthy. Even at 25°, 20% of the Szl'^+/Szl^+ daughters of da/da^+ mothers became stuck on the food surface soon after eclosion and died, while only 1% of their Szl^+/Szl^+ sisters became stuck. At 17°, in contrast, less than 1% of either genotype became stuck, even several days after eclosion.

Exposure of da/da mothers to a higher temperature affects their ability to produce viable daughters even if the daughters themselves develop entirely at a lower temperature; only after several days at 17° do da/da mothers begin to produce substantial numbers of daughters that survive to adulthood (Cline 1976). A similar, though shorter-lasting effect of maternal exposure to higher temperatures was observed for the $Szl'^+/Szl^+; da/da^+$ mothers of cross B in Table 5. Parents that had been conditioned at 29° for many days were shifted down to 17°. The viability of Szl'^+/Szl^+ daughters produced during the first day at 17° was 53% (227/361), but rose to 99% (175/176) during the second day. Both groups of daughters developed entirely at 17°, so that the difference in via-
TABLE 5

Dominant interactions between da and Sxl

<table>
<thead>
<tr>
<th>Cross*</th>
<th>Genotype of parents with respect to Sxl and da:</th>
<th>Temp† (°C)</th>
<th>Progeny genotype with respect to da</th>
<th>Progeny genotypes with respect to Sxl: Sons</th>
<th>Progeny genotypes with respect to Sxl: Daughters</th>
<th>% Viability of daughters relative to SxlY brothers</th>
</tr>
</thead>
</table>
| A-1 | da+/da+ δ δ δ × φ φ : | 28 | +/+ | Sxl**Y**/Y | Sxl**Y**/Y | X
| | Sxl**#**/Sxl**#** | | | 198 | (60)† | 4
| | da/da+ | | | 209 | (109)† | 6
| | +/+ | | | 96 | (47) | 100
| A-2 | Sxl**#**/Sxl**#** | 28 | | Sxl**#**/Sxl**#**/Sxl**#**/Sxl**#** | Sxl**#**/Sxl**#**/Sxl**#**/Sxl**#** | 120
| | da+/da+ | | | 8 | 151 | 90
| B | Sxl**#**/Sxl**#** | 29 | n.d. | Sxl**#**/Sxl**#**/Sxl**#**/Sxl**#** | Sxl**#**/Sxl**#**/Sxl**#**/Sxl**#** | 57
| | da/da+ | 25 | n.d. | 898 | 1002 | 107
| | +/+ | 17 | n.d. | 1236 | 1329 | 63
| | | | | 917 | 979 | 100

* Progeny from the following crosses:
A-1: Sxl**#**/ oe ptg v/Binsinsey; da cn bw/In (2L+2R)Cy φ φ × 1/Y δ δ .
A-2: Same as above except females da+/In(2L+2R), Cy.
B: cm Sxl**#**/ct/+; cl da cn bw/+ × φ φ × ct/Y δ δ .
† Temperature at which parents were conditioned for at least 5 days, and at which progeny were laid and developed.
†† The low value for Sxl**#** sons is due to mutations on the balancer X chromosome unrelated to Sxl.
bility must reflect effects of temperature on oogenesis. In a reciprocal shift, cross B mothers who had been conditioned to 17° were shifted to 29°, and their progeny were grown entirely at the higher temperature. The relative viability of the \textit{Sxl^+} daughters was 104\% (291/279) at 17° the day before the shift. In successive days following the shift to 29° it was 77\% (302/391), 64\% (189/297); 62\% (270/440), 61\% (225/371), 56\% (173/309), 65\% (123/188) and 62\% (119/191). Thus viability of the \textit{Sxl^+} daughters dropped substantially as soon as the temperature was raised, and quickly plateaued. This shift up does not allow one to distinguish between temperature effects on zygotes themselves and temperature effects on oogenesis, but the results are consistent with the rapid reduction in daughter viability observed previously in shifts up of \textit{da/da} mothers (see Figure 1 also), and contrast with the effects of temperature shifts on the progeny of \textit{da/da} mothers to be discussed below.

V. Genetic and environmental conditions that greatly increase expressivity of Enhancer of daughterless

\textsc{Mange} and \textsc{Sandler} (1973) isolated \textit{E(da)} as a mutation (translocation) that caused \textit{da} to exhibit a modest, semi-dominant maternal effect. If mothers carried one dose of \textit{E(da)}, and one dose of \textit{da} either \textit{cis} or \textit{trans} to \textit{E(da)}, then viability of their daughters was reduced by 16 to 24\%. In view of the findings reported here of a semidominant maternal effect of \textit{da} alone on \textit{Sxl^+} daughters, an effect that was strongly temperature dependent, it seemed worthwhile to re-examine the \textit{E(da)-da} interaction with respect to maternal and zygotic \textit{Sxl} genotype and with respect to temperature. The data shown in Table 6 indicate that both factors very strongly influence the phenotype of \textit{E(da)}.

Enhancement of the \textit{da} maternal effect by \textit{E(da)} was considerable when parents and progeny were kept at 29°, even when both generations were truly wild type with respect to \textit{Sxl} (recall that previous work with \textit{E(da)} may have been complicated by "subliminal" \textit{Sxl} alleles of the type described above in section III). Relative to sons, only 21\% of daughters survived at 29°, but when parents and progeny were kept at 17°, daughters were fully viable (103\%). Although the cross does not allow one to distinguish progeny that carry \textit{E(da)} from those that do not, it is clear that both \textit{E(da)/E(da)} and \textit{E(da)+/E(da)+} daughters suffer from the enhanced maternal effect of \textit{da}, since the overall reduction in viability is considerably greater than 50\% at 29°.

While \textit{Sxl^+} daughters suffered from the enhanced maternal effect of \textit{da} at 29°, \textit{Sxl^+} daughters were far more sensitive still. Cross B differs from cross A only in that the mothers carried \textit{Sxl^+}. None of their daughters survived who received the mutant \textit{Sxl} allele (< 0.1\%). It is important to note, however, that their sisters with two functional copies of the \textit{Sxl} locus survived at a rate comparable (36\% vs. 21\%) to that of the \textit{Sxl^+} daughters from cross A. Thus, the grossly deleterious effect of \textit{Sxl^+} is a consequence of its action (or lack of action, since it is a hypomorphic or amorphic allele; see \textsc{Cline} 1978; \textsc{Marshall} and \textsc{Whittle} 1978) in the zygote, rather than in the mother.

As in cross A, the cross B results depended strongly on the temperature at
Table 6

Temperature-sensitive dominance of da and Sxl\(^{\#1}\) with Enhancer of daughterless

<table>
<thead>
<tr>
<th>Cross</th>
<th>Genotype of parents with respect to Sxl, da, and E(da)</th>
<th>Temp* (^{\circ})C</th>
<th>Progeny</th>
<th>Viability of daughters relative to their (+/Y) sibs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\delta \delta) (\delta \delta)</td>
<td>(\delta \delta)</td>
<td>(1) (Sxl^{#1}/Y) Sons</td>
<td>(2) (Sxl^{+}/Y) Sons</td>
</tr>
<tr>
<td>A.</td>
<td>(+/+); (+/Y); (da\ E(da)/++) (+/++)</td>
<td>29</td>
<td>—</td>
<td>720(\ddagger)</td>
</tr>
<tr>
<td>B.</td>
<td>(+/Sxl^{#1}) (\times) (+/Y); (da\ E(da)/++) (+/++)</td>
<td>29</td>
<td>1331</td>
<td>1279</td>
</tr>
<tr>
<td>C.</td>
<td>(+/Sxl^{#1}) (\times) (+/Y); (+/-)</td>
<td>17(\ddagger)</td>
<td>636</td>
<td>562</td>
</tr>
</tbody>
</table>

Progeny are from the following crosses:

A. \(+/Binsinscy; da\ E(da)\ cn\ bw/+\ ++\ ++\ ++\ \(\delta \delta\) \(\delta \delta\) \times cm\ ct/Y \(\delta \delta\) \(\delta \delta\)\.
B. \(+/++/-/cm\ Sxl^{\#1}\) \(ct; da\ E(da)\ cn\ bw/+\ ++\ ++\ ++\ ++\ \(\delta \delta\) \(\delta \delta\) \times cm\ ct/Y \(\delta \delta\) \(\delta \delta\)\.
C. \(+/++/-/cm\ Sxl^{\#1}\) \(ct; +/CyO\ \(\delta \delta\) \(\delta \delta\) \times cm\ ct/Y \(\delta \delta\) \(\delta \delta\)\.

The females in all three crosses are sisters to minimize possible genetic background effects.

\(\ddagger\) For the low temperature data, progeny developed at 17\(^\circ\) for 2 to 4 days, then were shifted to 25\(^\circ\) to complete development.

\(\ddagger\) Only includes progeny produced at least 4 days after the shift down to 17\(^\circ\).
which parents and progeny were raised. At 17°, the viability of even \(Sx^{l+}E^{s}T^{s}e^{s}t^{s}l^{a}r^{n}g^{e}t^{y}c^{e}r^{e}d^{a}d^{s}i^{r}e^{s}r^{y}c^{e}c^{e}d^{e}t^{y}c^{e}a^{t} ^{s}l^{+} \) daughters increased to 46% and their \(Sx^{l+}/Sx^{l} \) sisters were fully viable.

The response of \(daE(da)/da^{+} E(da)^{+} \) mothers and their \(Sx^{l+}/Sx^{l} \) daughters to a temperature shift from 29° to 17° was remarkably similar to that found previously for \(Sx^{l+}/Sx^{l} \) daughters of \(da/da \) mothers. In both cases, several days were required following the shift down before daughter viability reached a maximum. For \(Sx^{l+}/Sx^{l} \) daughters from cross B, relative viability during the first, second and third two-day periods following a shift down was 2.2% (3/137), 22% (38/173), and 41% (73/178). This result indicates that maternal temperature is at least as important a factor as zygotic temperature in determining viability of \(Sx^{l+}/Sx^{l} \) daughters. Recovery of their \(Sx^{l+}/Sx^{l} \) sisters was more rapid, rising from 55% (78/143) immediately before the shift down, to 100% (132/131) from the first two-day collection at 17°.

The results from cross C in Table 6 shown once again that \(Sx^{l+}f^{l}l^{a} \) is not a dominant lethal at low or high temperatures in the absence of additional \(da \) or \(Sx^{l} \) mutations in the mother or the zygote. For this reason, throughout this paper I have used the lower case \((f^{l}l^{a}) \) to designate what is actually a recessive \(Sx^{l} \) allele in the absence of genetic modifiers.

VI. Dominant temperature-sensitive effects of a \(da \) deficiency

All aspects of the \(da \) phenotype are temperature dependent. The most straightforward explanation for these temperature effects is that they reflect temperature sensitivity of the mutant \(da \) gene product. An earlier paper (CLINE 1976) gave several arguments in favor of the hypothesis that the \(da \) mutation renders that gene's product thermally unstable. The similarity between the phenotypic effects of temperature on the recessive \(da \) maternal effect (suffered by \(Sx^{l+}/Sx^{l} \) daughters) and the effects on the dominant \(da \) maternal effect (suffered by \(Sx^{l+}/Sx^{l} \) daughters) reported here seemed to further support the earlier hypothesis. The discovery of the strong dominant \(da \) effect allows a more direct test of this hypothesis. If temperature dependence of the dominant effect were due to thermal instability of the mutant \(da \) gene product, the phenotype of a \(da \) deficiency should not be temperature sensitive. A deficiency should alter only the level of wild-type \(da \) gene product, not its thermal character. Thus, the deficiency phenotype at both 17° and 29° should be the same as that of the mutant \(da \) allele at 29°.

The experiment described in Table 7 shows that the \(da \) deficiency does exhibit a dominant maternal effect at 29° comparable to that caused by the mutant \(da \) allele at 29°; however, the maternal effect of the deficiency, like that of the mutant allele, is temperature dependent. With parents and progeny at 29°, only 14% of the \(Sx^{l+}/Sx^{l} \) daughters survived (cross A, first row) from mothers carrying the deficiency. As with the \(da \) mutation, their \(Sx^{l+}/Sx^{l} \) sisters were fully viable (95%). But at 17°, the viability of both classes of daughters from the deficiency mothers was normal. The control, cross B, showed that the dominant maternal effect at 29° was due to the maternal \(da \) deficiency. The deficiency and the \(da \) allele did differ somewhat with respect to the effect of a
TABLE 7

A dominant, temperature-sensitive, female-lethal maternal effect of a deficiency of the da locus

<table>
<thead>
<tr>
<th>Cross</th>
<th>Temp°C</th>
<th>Progeny genotypes w/respect to Sxl</th>
<th>Relative viability of daughters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sons</td>
<td>Daughters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sxl#1/Y</td>
<td>Sxl+/-Y</td>
</tr>
<tr>
<td>A.</td>
<td>29</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>da+/-da+</td>
<td>17</td>
<td>410</td>
<td>411</td>
</tr>
<tr>
<td>B.</td>
<td>29</td>
<td>274</td>
<td>282</td>
</tr>
<tr>
<td>da+/-da+</td>
<td>17</td>
<td>508</td>
<td>541</td>
</tr>
<tr>
<td>C.</td>
<td>29</td>
<td>586</td>
<td>632</td>
</tr>
<tr>
<td>da+/-da+</td>
<td>17</td>
<td>573</td>
<td>548</td>
</tr>
<tr>
<td>D.</td>
<td>29</td>
<td>465</td>
<td>247</td>
</tr>
<tr>
<td>da+/-da+</td>
<td>17</td>
<td>417</td>
<td>235</td>
</tr>
</tbody>
</table>

Progeny from the crosses:
A. —+ +/+ cm Sxl#1tct; Df(2L)I-der-27/— ♀ ♀ × cm ct/Y ♂ ♂.
B. —+ +/+ cm Sxl#1tct; —/In(2L+2R), Cy ♀ ♀ × cm ct/Y ♂ ♂.
C. —+ +/+ cm Sxl#1tct; Df(2L)I-der-27/— ♀ ♀ × cm Sxl#1tct/Y ♂ ♂.
D. +/+ Binsincy; Df(2L)I-der-27/ + ♀ ♀ × cm Sxl#1tct/Y ♂ ♂. The Binsincy X = Sxl+∗

To minimize differences in genetic background, all females used for crosses A through D were progeny from the same cross: Binsincy/cm Sxl#1tct ♀ ♀ × +/Y; Df(2L)I-der-27/In(2L+2R), Cy ♂ ♂. Effects of the deficiency on the development of progeny from this cross could be seen, but they appeared to be unrelated to the da-Sxl interaction. Both sexes of deficiency-bearing progeny eclosed 24-48 hr later than non-deficient siblings. Both sexes of deficiency-bearing progeny showed decreased viability (viability relative to nondeficient siblings at 29.5° was 85% for daughters, 52% for sons) but Sxl#1+/Sxl+; Df(2L)/+ daughters were actually more viable than their Binsincy/+; Df(2L)/+ sisters (198/162 = 1.22 at 29.5°).

+ Temperature at which parents were conditioned for at least 2 days (29°) or at least 4 days (17°), and at which the progeny were raised.
temperature shift. The following values for SxP#'/SxI+ daughter viability were observed the day immediately preceding and the five days following a shift of cross A parents from 17° 29°: 101% (165/163) preshift; 104% (70/67); 45% (44/98); 17% (26/157); 12% (11/93); and 19% (15/81). Recall that the viability of SxP#'/SxI+ daughters of da/da+ mothers dropped sharply on the very first day following shift up, while in this case (da/da+ mothers) the drop did not occur until the second day. The magnitude of the viability drop after several days was, however, greater than in the previous experiment.

In these studies of the dominant maternal effect, SxP#'/Sxl+ daughters received their single Sxl+ allele from their fathers. Although the data are not shown, crosses were also performed in connection with the experiments of Tables 5 and 6 in which the daughters received their single Sxl+ allele from their mothers instead. These daughters were consistently more viable, suggesting a possible functional difference between maternal and paternal Sxl+ alleles in the young embryo.

This effect can be seen in Table 7, cross C. The mothers in C were identical to those in A, but the fathers in C carried SxP#' rather than Sxl+. Thus the SxI+/SxP#' daughters in C differed from those in A with respect to which parent contributed the Sxl+ allele. At 29°, the patroclinous Sxl+ allele allowed only 14% relative viability, (cross A, column 5), while the matroclinous Sxl+ allele allowed 29% (cross C, column 5). As in A, daughters in C were not affected by the SxP#' allele at 17°.

Despite this consistent difference, the results must be interpreted with caution. It is clear from the data presented in Tables 5 and 6 that the actual magnitude of the dominant maternal effect is sensitive to elements of the genetic background other than da and Sxl. This is also evident from cross D, Table 7. The viability of SxI+/SxP#' daughters was 13% vs. 53% at 29° (column 5 vs. 6) depending on which specific SxP#'-bearing X chromosome they received. The difference appears to be due to factors on the X chromosome distinct from the Sxl+ gene itself. The daughters from crosses C and D whose viability is indicated in column 5 (29% vs. 13%) differ only with respect to whether or not their Sxl+ chromosome could freely recombine with its homologue outside the cm-ct interval (recombinants within the interval were not included in Table 7 since their genotype with respect to Sxl was ambiguous). The homologue of the Sxl+ chromosome in cross D was a balancer (Sxl++) that prevented recombination.

DISCUSSION

The results presented here allow a distinction to be made between maternal and zygotic functions of the da+ gene, at least with respect to the sex-specific interaction between da and Sxl. This distinction has important practical implications, since it may allow one to separate the synthesis of a regulatory factor (in the mother) from its subsequent functioning (in the zygote) during embryogenesis. Furthermore, the zygotic gene regulated in this case is one that causes cells to choose between alternative developmental pathways related to sexual
dimorphism. An understanding of how genes such as these function is critical to our understanding of eukaryotic development and evolution.

While it is easy to imagine how two deleterious mutations can interact nonspecifically to further reduce viability, the existence of one mutation that suppresses the deleterious effects of another has generally been taken to indicate a specific functional relationship between the two elements, even when the molecular mechanism of the interaction is unknown (see Hartman and Rote 1973). For this reason, the behavior of $SxI^{M#1}$ seems particularly significant, as much for what it does not counteract of the da phenotype, as for what it does. Though $SxI^{M#1}$ effectively counteracts the diplo-X lethal maternal effect of da, it does not counteract two other aspects of the da phenotype that do not depend on the X chromosome: autosome balance: (1) the recessive lethal aspect that reduces the viability of da/da zygotes relative to their da/da^+ sibs, and (2) the female sterile aspect that grossly disrupts the structure of eggs of da/da mothers, killing progeny very early in development regardless of their $X:A$ balance. $SxI^{M#1}$ thus permits a distinction to be made between two lethal effects of the da mutation: one involving a disruption in a maternal function of da^+ that specifically kills diplo-X progeny by interfering with Sxl-mediated zygotic processes; the other killing progeny of both sexes by interfering with an essential zygotic function of the da^+ gene.

The distinction between maternal and zygotic functions of da^+ can be inferred somewhat less directly from the interactions between da and Sxl^I-type alleles, and from da^+ gene dose effects. Earlier work (Cline 1978) showed that a (strong) zygotic Sxl^I allele enhanced the already severe female-lethal effect of a maternal da mutant allele; the present report greatly extends that observation. da and Sxl mutations, which individually have no noticeable effect on viability, can combine to disrupt development of most daughters. Such strong, synergistic interactions are generally taken to indicate a common functional relationship between two genes, but the synergism observed in this case differs fundamentally from that typically observed with mutations of the maternal-effect, rescuable class where maternal and zygotic alleles of the same gene are thought to participate in the same developmental processes. In the case of da, the synergistic interaction is not between maternal and zygotic da alleles themselves, but rather between the maternal da alleles and the zygotic alleles of a different gene, Sxl. There is no equivalent dominant interaction between zygotic da and zygotic Sxl alleles or between maternal da and maternal Sxl alleles.

While there is certainly no synergistic interaction between maternal and zygotic da alleles, there may be a weak interaction between them. A clear distinction between maternal and zygotic da functions is further complicated by the fact that the recessive lethal (zygotic) aspect of the phenotype is consistently more severe for XX zygotes than for XY zygotes, suggesting a similarity between the recessive lethal and the sex-ratio maternal effect for which the gene was named. Mange and Sandler (1973) reasonably took this as evidence for a single, common maternal and zygotic function for da. This work suggests, however, that the situation is more complex, and that the complexities are due
to da^+ having several distinct maternal functions, one involving zygotic SxI gene regulation in response to the X-chromosome:autosome ($X:A$) balance. Sandler and coworkers (Sandler 1970, 1972, 1975, 1977; Mange and Sandler 1973; Parry and Sandler 1974) have studied the possible role of da^+ in regulating genes in the heterochromatic regions of the Drosophila genome. XX and XY individuals differ both with respect to their heterochromatin, and with respect to processes that depend on the $X:A$ balance. Dobzhansky and Schultz (1934) showed that euchromatic regions of the X chromosome, not heterochromatic, are important in determining the $X:A$ balance. Thus there could be two separate aspects of da gene function with effects that differ between the sexes.

Sandler discovered similarities between da and a mutation called abnormal oocyte (abo) located just 2.5 cM to its right. He subsequently identified several other nearby genes that might be functionally related to abo and da. In this connection, it is worth mentioning that SxI^{abs} does not interact with the abo maternal effect, and SxI^{ab} interacts little, if at all (Cline, unpublished observations). This lack of interaction between abo and SxI is certainly consistent with the failure of SxI to interact with aspects of even the da phenotype that are not sex-specific, since none of the mutations studied by Sandler have sex-specific effects.

The results of this study bear on the relationship between the maternal da locus and the component of the egg that is presumably required for the functioning of the SxI^+ locus in the embryo (Bownes, Cline and Schneiderman 1977). The ability of the egg to support diplo-X development depends on the dose of maternal da^+ alleles. Furthermore, the effect of temperature on the da maternal effect is similar in both homozygous and heterozygous mutant conditions. Combined with previous observations on da temperature sensitivity (Cline 1976), these two facts seem to support the idea that this gene codes for a maternally synthesized factor in the egg that functions after fertilization. The question of whether the product of the mutant gene is more thermolabile than that of the wild-type allele is complicated by the discovery that a deletion of the da locus manifests a dominant, temperature-sensitive phenotype not unlike that of the mutant allele.

The results of the present study have implications for future analysis of da and SxI mutations. First, synergism between da and SxI mutations and temperature sensitivity of the interaction can help in the identification and characterization of functionally related elements like Enhancer of daughterless, even if the effects of these elements on da or SxI individually are very weak. Second, complementation analysis of SxI alleles and further studies of their interaction with da should take into account possible differences in effectiveness between maternal and paternal SxI alleles in the zygote; such differences should not automatically be ascribed to maternal effects per se. Third, quantitative analysis of da maternal effects should include characterization of the SxI alleles present to exclude possible complications by subtle SxI mutations of the subliminal type described here. Finally, detailed investigation of da effects on progeny morphogenesis should be interpreted with the multiple maternal and zygotic effects of
da in mind. The gene dose studies do suggest that abnormalities exhibited by progeny that carry at least one da+ allele are unlikely to be related to effects on the zygotic expression of the da locus, a point that can somewhat simplify analysis of this pleiotropic mutation. It remains to be determined whether pleiotropy of the daughterless mutation is due to qualitatively different activities of the da+ gene product (see KIRSCHNER and BISSWANGER 1976) or is, instead, due to a single gene product activity that affects different developmental processes.

This study was supported by funds from Research Grant #GM-23468 from the Public Health Service. During preparation of the manuscript, it was partly supported by Swiss National Science Foundation grant No. 3.741.76 to ROLF NÖTHINGER, and I wish to thank him and the Swiss Government for their hospitality in this connection. CHARLES B. OLSON assisted in construction of the C(2) stocks while supported by National Science Foundation Undergraduate Research Participation Program Grant No. FMI 7683442. I am grateful to L. SANDLER for providing the E(da) and Df(2L)J-der-27 stocks, and to T. SCHÜPBACH, D. FALK, C. LOUIS and especially L. ROBBINS for helpful comments on the manuscript.

LITERATURE CITED

Corresponding editor: G. LEFEVRE