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T is convenient, for purposes of description and analysis, to consider the I phenotypic expression of a characteristic as a sum of an hereditary or geno- 
typic value and of an environmental value, If the actual joint results deviate 
from this linear description (i.e., if interaction effects exist) the breeder or 
geneticist must exercise caution in extrapolating from his results because in 
this case the hereditary and environmental values are defined specifically in 
terms of each other ( NELDER 1950). For some characteristics a transformation 
of scale may help in coming closer to additivity (WRIGHT 1950). 

With this linear description, the total or phenotypic variance may be con- 
sidered to consist of the hereditary, environmental and interaction variances, 
and also of covariance terms if the components are correlated in their occur- 
rence. The covariance between heredities and environments is often a trouble- 
some feature in human and livestock populations. For example, where dairy 
cattle are fed in proportion to their production, the better genotypes are pro- 
vided better environments. However, in designed experiments correlation in 
occurrence can, for the most part, be avoided by randomization devices. 

FISHER ( 1918) partitioned the phenotypic variance further by subdividing 
the hereditary variance into an additive portion resulting from average effects 
of genes, a portion resulting from dominance effects (allelic interactions) of 
genes and a portion resulting from epistatic effects (non-allelic interactions) 
of genes. FISHER showed the distribution of the additive and dominance por- 
tions in correlations between various relatives in a randomly mating popula- 
tion. The present paper shows the subdivision of the epistatic variance into 
components and gives the distribution of these epistatic components in the 
covariances or correlations between relatives. 

PARTITIONING THE HEREDITARY VARIANCE 

The partitioning of the hereditary variance of diploid organisms that have 
no multiple alleles can be illustrated by considering two loci, each with two 
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alleles (A ,  a and B, b )  . If the coupling and repulsion double heterozygotes are 
identical phenotypically, 9 genetic types, as in table 1, are possible. The Y's 
and f's in table 1 are the hereditary values and relative frequencies of the indi- 
cated types, respectively. The hereditary values are actually phenotypic values 
averagedl over all other loci and environments. The subscripts are related to 
the loci and to the number of genes present. A dot (.) indicates a marginal 
frequency or mean. 

If frequencies at one locus are uncorrelated with frequencies at another locus 
(algebraically, all f i j  = fi.f.j) the total variance among the Y's in table 1 can 
be partitioned exactly into a marginal variance for the A locus (i.e., variance 
among the row means in table l ) ,  a marginal variance for the B locus, and a 
joint or interaction variance. Furthermore, each of the marginal variances can 
be partitioned into a linear and quadratic variance ; and correspondingly, the 
interaction variances can be broken up into four components which are linear 

TABLE 1 
Hereditary values and relative lrequencies o/ the nine 

genetic types  /or two loci ,  each un'th two alleles .  

AABB 
y 2 2  

f22 

AaBB 
y 1 2  

f1Z 

aaBB 
y u l  

ful 

-BB 
y . 2  

f .2 

AABb 
yz I 

fz 1 

Yll 
f 11 

y o 1  

fool 

AaBb 

aaBb 

-BB 
Y.1 

f. I 

AAbb AA - 
y 2 0  y 2 .  

f20 f2. 

Aabb Aa - 

-bb 
Y.0  

f.0 

Y,. 
4. 
aa - 
YO. 
f0. 

y.. 
f.. = 1 

by linear, linear by quadratic, quadratic by linear, and quadratic by quadratic. 
This linear and quadratic treatment of a 3 x 3 factorial, where each of the par- 
titions corresponds to one of the eight degrees of freedom, is found in statisti- 
cal textbooks. The loci are the factors and each factor has three levels repre- 
sented by the three combinations that can occur with two alleles. In genetic 
terminology additive and dominance are used in place of linear and quadratic, 
respectively. 

What is to be shown is equally true in the presence of linkage so long as the 
frequencies at different loci are uncorrelated. If frequencies are correlated, 
which they would be under phenotypic assortative mating, the following par- 
titioning does not hold. Other causes of correlated frequencies are discussed 
by LUSH (1948) under the subject of disequilibrium. 

Partitioning the variance will be illustrated by using the eight orthogonal 
scales in table 2. These orthogonal scales serve the same purpose as orthogonal 
comparisons or polynomials (SNEDECOR 1946) in computing a portion of the 
total variance for each degree of freedom. The only new feature here is that the 
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joint frequencies are not equal to each other but are proportional to the margi- 
nal frequencies. The requirements of the orthogonal scales are : 

The first requireiiieiit insures that deviatioiis around the mean are compared. 
The second requirement insures that the comparisons are orthogonal, which 
means simply that they are uticorrelated. The eight scales or partitions of the 
variance are one for each of the eight separate degrees of freedom ill a 3 x 3  
table. The symbols U, v, x and y in table 2 are the frequencies of the genes 
A, a, B and B,  respectively 

The partition of the variance, u , ~ ,  corresponding to any particular scale, W,, 
is found in the following manner : 

which, in statistical terminology, is 

a, = (COV Yw,)2/u;t = s’,,, U;, = P\W, dY, 

where Cov, and p are covariance, regression coefficient and correlation 
coefficient, respectively. The tt’l partition of the variance is the variance due 
to regression on the t”’ orthogonal scale. 

This particular set of scales (amoiig the inany others mathematically possi- 
ble) was chosen for its utility. The scales pertaining to the marginal compari- 
sons of each locus were chosen to separate the iiiarginal variance into the saiiie 
additive (linear) and dominance (quadratic) portions that were long ago 
shown to be useful for expressing simply the correlation between parent and 
offspring and between other relatives. The other four scales, which relate to 
the interactions among the loci, also permit expressing siiiiply the correlations 
among the interaction effects of one relative and those of another relative. This 
is the primary purpose of introducing the orthogonal scales. 

The first two scales, W1 and W., are concerned only with the means for the 
rows in table 1 and thus only with the marginal variance for the A locus. For 
example, the means and frequencies for the A locus are : 

Genetic type AA Aa aa 
Mean y2. y;. YO. 
Frequency 4. 4. fo. 
w, ZV V-U -2u 
w2 I&. -2/f,. VfO. 

The marginal variance of Y for the A locus is broken into two parts, one part 
being the variance due to the regression of the marginal means on the linear 
scale designated as W1, and the other part being the variance due to  deviations 
from this regression. The variance due to regression, 
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fa. fo. - + -  
u v  

i s  the additive variance for the A locus and the variance due to deviations 
from regression on the linear scale, 

is the dominance variance for the A locus. This latter variance is also the 
variance due to regression on the scale designated as WZ.. 

The additive variance is proportional to the square of the average effect, 
/3yw1, of the genes; this average effect being a weighted average of the two 
effects or differences Yz. - Y1. and Y1. - Yo. corresponding to the comparisons 
A A  - Aa and A a  - aa. Each difference represents an effect of replacing a by A, 
A - a, but in each case the effect is measured in the presence of a different 
allele. If the two differences are not exactly the same, i.e., the effect of re- 
placing a by A changes according to whether a or A is present, then the alleles 
at this locus interact, and the interaction is reflected in the dominance vari- 
ance, u ~ ~ .  

In  a similar manner u32 and u42 are the additive and dominance variances, 
respectively, which sum to the marginal variance for locus B; i.e., the variance 
between the means for the columns in table 1. The partitioning of the variance 
to this point is the same as that of FISHER (1918) and WRIGHT (1935). 

The last four components (U: through us2) account for the remaining or 
epistatic portion of the variance of Y. The naming of the epistatic components 
corresponds to the relationships among the orthogonal scales : 

Wa = w1 X w3 
We = W1 x W4 
W7 = W2 x W3 
WS = w2 x W4 

(additive x additive) 
(additive x dominance) 
(dominance x additive) 
(dominance x dominance). 

The epistatic variance for the case of two loci, therefore, consists of four parts : 
a,2 is the additive in A by additive in B, 02 is the additive in A by dominande 
in B, urZ is the dominance in A by additive in B and us2 is the dominance in A 
by dominaace in B. FISYER (1918) and other subsequent workers, in express- 
ing the epistatic variance for two loci, obtained one epistatic component which 
is actually the sum of the four components indicated above. 

The epistatic components arise because the effects of genes at one locus 
depend on what genes are present at the other locus. For example, the domi- 
nance by dominance component is 
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f 2 . 4 .  fo. f.2 f . 1  f .0  

a: = (4uv - f l )  
- f * )  ( e 2 1  - e21 - e 1 2  + ell)', 

where the e's designate the following comparisons among the hereditary 
values: 

All four epistatic components of variance are functions of these four compari- 
sons, and unless each of the comparisons is zero there will be epistatic vari- 
ance. The comparison e22, for example, corresponds to ( A A B B  - A A B b )  
- ( A a B B  - A a B b ) ,  and will be zero only if the gene effect at the B locus, 
B B  - Bb, is the same for each of the phases, AA and Aa, at the A locus. The 
other comparisons bear similar interpretations and each represents the failure 
of the effect of a gene replacement at one locus to remain the same when a gene 
is replaced at the other locus. The epistatic components of variance will be 
illustrated in more detail later ; the essential feature here being that they all 
arise from non-allelic gene interactions. 

The extension to 3 and more loci is apparent. For the case of 3 loci there 
are 3 additive components, 3 dominance components and 20 epistatic com- 
ponents. The 20 epistatic components are 3 a x  a, 6 a x d, 3 d x d, 1 a x a x  a, 
3 a x  a x  d, 3 a x  d x d and 1 d x d x d (a = additive, d = dominance). For the 
case of n loci there are 3" - 1 components consisting of n components of the 
additive type, n components of the dominance type and 3"- 2n- 1 epistatic 
components. Of the 3" - 2n - 1 epistatic components there are 2n(n - 1) two- 
factor components of which one-fourth are of the type a x a, one-half are of the 

4 
3 type a x d and one-fourth are of the type d x d ; - -n  (n - 1 ) (n  - 2)  three-factor 

Components of which one-eighth are of the type a x a x a, three-eighths are of 
the type a x a x  d, three-eighths are of the type a x d x d and one-eighth are 
of the type d x d x d ; etc. For many purposes the components of the same type 
may be combined. The types are designated separately because they present 
different properties in the correlations among relatives which will be discussed 
later. 

Although the method presented, here does not include multiple alleles, 
FISHER (1918) did partition the marginal variance for a locus with any num- 
ber of alleles in a random mating population into an additive part and a domi- 
nance part. Correlations among the additive deviations and dominance devia- 
tions of relatives in a randomly mating population were the same as those for 
two alleles at a locus. It may be possible to partition the epistatic variance for 
multiple alleles by multiple regression and correlation techniques into cctn- 
ponents which will bear definitions similar to those where only two alleles a;: 
considered. Should the correlations among these epistatic deviations of relati, es 
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be the same as those when only two alleles are considered’, the development 
herein is general for any number of alleles. At present, this must remain as a 
conjecture. 

Explicit expressions (in terms of Y’s, gene frequencies and WRIGHT’S 
inbreeding coefficient, F) are given in table 3 for the eight components of 
variance for the case of two loci and for any amount of inbreeding. In  an in- 
bred population the marginal frequencies for the A locus are f i .  = u2 + Fuv, 
f1. = 2uv( 1 - F) and fo. = v2 + Fuv, and those for the B locus are f.2 = x2 + Fxy, 
f.l = 2xy( 1 - F) and f.o = y2 + Fxy. When the marginal frequencies are uncor- 
related, which is the case under consideration throughout this study, the joint 
frequencies are found by the simple relationship, fij = fi.f.j. 

The partitions for random mating can be found from those in table 3 by 
letting F = 0. It  should be recognized that when there is interaction among loci 
the marginal means, Yi. and Y.j, vary with the degree of inbreeding, F. Thus 
one cannot compare the same marginal partitions for different degrees of 
inbreeding without writing out the marginal means in more detail. The Yij’s 
are also average values, averaged over the various gene combinations at other 
loci and over the various environmental sources of variation which determine 
the population of phenotypes. If interactions of 3 or more factors involve these 
loci, the Yij’s will also change with inbreeding. Thus the partitions of variance 
are descriptions of the population under consideration at the moment and will 
change with inbreeding. 

How the inbreeding affects the partitions, or at least the ultimate end of the 
partitions as inbreeding approaches one, can be seen in table 3. The dominance 
variance disappears when F = 1. The disappearance is not linear with F, how- 
ever. With some frequencies the dominance variance will actually increase for 
a period of time with inbreeding (ROBERTSON 1952). The last three of the 
epistatic partitions in table 3 also disappear as inbreeding becomes complete. 
Note that these three partitions involve dominance in their nomenclature. 
Their disappearance is not linear with F and is too complicated to allow any 
lucid generalizations. In fact, all partitions involving dominance in their 
nomenclature, and for any number of loci, will disappear as inbreeding becomes 
complete. If all partitions involving dominance in their nomenclature are zero, 
the effect of inbreeding on the additive partitions is to increase the one-factor 
additive partitions by 1 + F, the two-factor additive partitions by (1 + F)2, the 
three-factor additive partitions by ( 1  + F)3, and so on. However, when par- 
titions involving dominance in their nomenclature are not zero, the influence 
of inbreeding on the additive type of partitions cannot be foretold without 
specifying the hereditary values and gene frequencies. 

CORRELATIONS BETWEEN RELATIVES 

The covariances (or correlations) between the phenotypes of relatives can 
be analyzed in terms of the covariances between their respective components : 
that is, between the hereditary, environmental, and interaction values of one 
relative and those of the other relative. Only the covariance between hereditary 
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values will be considered here. The other covariances can sometimes be 
assumed to be zero, but this will depend on the organism and the circum- 
stances. In  human and livestock populations these correlations are often a 
troublesome feature. For example, in multiparous species, the environments of 
littermates are correlated. It is always necessary to be wary about assuming 
that the only covariances between relatives are those between their heredities. 

The hereditary deviations of individuals are products of the regression coeffi- 
cients, /?PW’S, and the appropriate scale values, W’s. For example, the additive 
genetic deviation of an individual for the A locus is /3nwlW1, where W1 is 2v, 
v-U or -2u corresponding to whether the individual is AA, Aa or aa, respec- 
tively. WRIGHT’S (1935, 1950) additive estimates, G’s in his notation, are 
the additive genetic deviations plus the mean, P. His dominance deviations, 
D = H - G in his notation, are the same as the present dominance deviations ; 
for example, /?Yw,WZ’S for the A locus. An individual’s hereditary value is a 
sum of the mean and its hereditary deviations, 

Y = v+ jgyw,wt. 

The correlations between the additive genetic and between the dominance 
deviations of relatives in a randomly mating population were given by FISHER 
(1918). He also gave the covariance between epistatic deviations of relatives 
for the case of two loci. WRIGHT (1922), with his coefficient of relationship, 
extended the correlations between additive genetic deviations of relatives to 
include inbreeding. WRIGHT’S coefficient of relationship is the same as the 
absolute value of the correlation between additive genetic deviations of rela- 
tives as described in this paper. COCKERHAM (1952) gave the correlations 
between epistatic deviations of relatives in a randomly mating population. 

The orthogonal scales may again be invoked to obtain these relationships for 
a randomly mating population or  an inbreeding population where gene fre- 
quency is not changing, and8 to obtain the correlations among relatives for the 
epistatic deviations. Although one cannot find a joint frequency distribution of 
relatives which is general for all systems of inbreeding they can be computed 
for any particular system of consanguine mating. Again, the case of two loci 
with two genes each will be used for illustrative purposes ; however, the exten- 
sion to any number of loci will be apparent. 

Let Y and Y’ be the hereditary values for two relatives (parent and off- 
spring, full-sibs, etc.) and let Wt and Wt.‘ be the orthogonal scales of their 
respective generations. The scale values (terms of the scale) vary with the 
genotypes of course, but the entire scale may vary with the generation (e.g., 
when there is inbreeding). In a randomly mating population where gene fre- 
quencies do not change, relatives with the same genotype have the same heredi- 
tary deviations and the same scale values. The different notation (prime) 
simply designates whether the hereditary deviation or scale value is used for 
one relative or the other relative. In any system of inbreeding relatives with 
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the same genotype will have the same deviations and the same scale values 
provided they are in the same generation but can have different deviations and 
different scale values if they are in different generations, even though gene 
frequency does not change. 

The covariance between Y and U’ may be expressed as 

which is equivalent to 

because the regression coefficients are constants and do not affect the absolute 
value of the correlation coefficients. The sign (+ or -) will be the same as the 
sign of the product of the two regression coefficients, and will be considered in 
more detail later. It is necessary then to determine the correlation between the 
eight orthogonal scales of one relative and the eight orthogonal scales of the 
other relative. This is done by constructing a nine by nine joint distribution 
table for the two relatives. Although the results are simple, the development is 
involved and is given in an Appendix. If the genotypic frequencies for all rela- 
tives are proportional to the marginal frequencies of the loci, if the genes 
recombine independently, and if gene frequencies do not change, the correla- 
tions between the epistatic scales of two relatives are products of the one- 
factor correlations as given in table 4. 

TABLE 4 
Correlations between the eigbt scales o/ one relative 

and the eigbt scales o/ another relative. 

w: w; w; w; w; w: w; w: 
w, pw,w: pw,w; 0 0 0 0 0 0 
w, pw,w: PW,Wi 0 0 0 0 0 0 
w3 0 0 pw,w; pw,w; 0 0 0 0 
w4 0 0 pw4w; pw,w; 0 0 0 0 

ws 0 0 0 0 pw,w; pw,w; pw,w: pw,w; PW,Wi pw,w; Pw,w,’Pw,w; 
W6 0 0 0 0 PW,Wl pw4w; Pw,w:Pw,w; Pw,w,’ pw,w; Pw,w,’Pw4w; 
w7 0 0 0 0 pw,w; pw,w; pw,w: pw3w; PW,Wi pw,w; PW,Wi pw,w; 
Wll 0 0 0 0 pw,w; PW,Wj pw,w: pw4w; pw,w: Pw4w; pw,w; pw,w; 

Two simple generalizations are apparent from table 4. ( 1 ) One-factor devi- 
ations (additive or dominance) of one relative are correlated, if at all, only 
with one-factor deviations of the other relative, and also the deviations must 
pertain to the same locus. This is actually a particular case of the broader 
generalization that n-factor deviations of one relative are correlated, if at all, 
only with n-factor deviations of the other relative, and the deviations for both 
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relatives must involve the same loci. (2) The correlations between the epistatic 
or multi-factor deviations are functions of the correlations between one-factor 
deviations. 

Relatives in a randomly mating population 

If the one-factor additive deviations of either relative are uncorrelated 
with the one-factor dominance deviations of the other relative, i.e., pwIw2, 
= p W 2 w l ~  = 0 for all loci, then all the correlations in table 4 are zero, except for 
the diagonal ones. This means that a deviation in one relative is correlated, 
if at all, only with the same deviation in the other relative. This condition is 
fulfilled, in a randomly breeding population. Since the one-factor additive corre- 
lations are the same and the one-factor dominance correlations are the same for 
all loci, a simple rule can be used for computing the various correlations. Let 
p be the correlation between one-factor additive deviations of the relatives, and 
let q be the 'correlation between one-factor dominance deviations of the rela- 
tives. The correlation between any type of deviation of the relatives is 

where A is the number of factors (loci) entering into the deviation with addi- 
tive nomenclature and D is the number of factors entering into the deviation 
with dominance nomenclature. The deviation is an (A + D)-factor deviation. 
When the two relatives are parent and offspring, p = and q = 0. No devia- 
tions involving dominance in their nomenclature are correlated between parent 
and offspring. The correlations between the indicated types of deviations are : 

a a x a  a x a x a  

Dominance i s  illustrated by considering the relationships between full 

sibs; i.e. p = - and q = -. The correlations between the epistat ic  devia- 

tions are 

1 1 
2 4 

a x  a a x d  d x d  

(!I (a,' = (:I (:I = 
(iy (fS = -, 1 and so on. 

16 

The correlations between the various deviations of relatives in a randomly 
mating population are all positive, since each one involves the same deviation 
and the two regression coefficients, flnw and f l p ~ ,  are identical in each case. 

Since the partitions of the variance are the same for each relative in a 
randomly mating population the covariance between the hereditary values of 
two relatives can be given in terms of partitions of the hereditary variance. 
Also since the correlations among hereditary deviations are the same for all 
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those of the same type it is convenient to designate the sum of the components 
of variance of the same type by a single term. Let uAD2 be the sum of all the 
components in whose nomenclature additive appears A times and dominance 
appears D times. For example, u12(A = 1, D = 0) is the additive genetic vari- 
ance which is the sum of all the one-factor additive components (one from each 
locus), is the dominance variance, all2 is the a x d epistatic variance, and 
so on. Symbolically, the total hereditary variance is 

l q d  t D(-n 

where n is the number of loci. The summation is over both A and D where 
each varies from 0 to n but subject to the limitations that for any term A and 
D cannot both be zero nor can their sum be greater than n. The covariance 
between relatives can be given in terms of these partitions, 

cov YY' = 

A,D- 0 
1LA t D b  

When the two relatives are parent and offspring the covariance reduces to 

which is one-half the additive genetic variance, plus one-fourth the a x a vari- 
ance plus one-eighth the a x a x a variance, and so on. 

If only the heredities of relatives are correlated, the covariance between 
their phenotypes is the same as the covariance between their heredities. In this 
case the phenotypic correlation or the phenotypic regression of one relative on 
the other is the ratio of the covariance between the heredities of the relatives 
to the total phenotypic variance. 

Relatives in a self-fertilizing population 
Although the correlations among epistatic deviations of relatives in an inbred 

population are functions of the correlations for one-factor deviations, several 
new considerations are involved. The absolute values of the correlations between 
one-factor additive deviations are the same as WRIGHT'S (1922) coefficient of 
relationship (the correlations can be negative when the relatives are in differ- 
ent generations depending on dominance and epistatic effects of the genes). 
This means that the absolute values of the correlations between the epistatic 
deviations of relatives involving only additive in their nomenclature can be 
found in the same manner as when mating is random. The correlations between 
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one-factor dominance deviations of relatives must be computed for each system 
of inbreeding and involve considerable labor. Also, one-factor additive devia- 
tions of one relative are correlated with one-factor dominance deviations of the 
other relative. This means that many more of the epistatic deviations of one 
relative are correlated with those of the other relative than in a randomly 
breeding population. 

Self-fertilization was chosen as the system of inbreeding to illustrate the 
correlations among relatives in an inbred population for three main reasons. 
First, it is the most extreme form of inbreeding and relationships in a milder 
system of inbreeding should fall between these for selfing and those indicated 
earlier for random mating; second, considerable work is being done in plant 
breeding with normally selfed organisms or by selfing organisms ; and thirds, 
it is by far the easiest system to work with computationally. The correlations 
between hereditary deviations of parent and of offspring will be considered at 
first. 

The correlation between one-factor additive scales of the parent and one- 
factor additive scales of the offspring is 

1 + F’ + 2F  
(LUSH 1948) 2 d m  

where F’ and F are t h e  inbreeding coefficients of the parent and rhe off- 
spring, respectively. When selfing 

1 + F’ F=- 
2 ’  

so that the correlation becomes 

The correlation between the one-factor dominance scales  of parent and of 
offspring in a self-fertilizing population is 

1 + F) (U - v + 2Fv) (V - U + 2Fu) 
F ( u  + Fv) (v + Fu) ’ 

which involves gene frequency, U and v at the A locus in this example. Also 
in a self-fertilizing population, the one-factor additive scales of the parent 
may be correlated with the onefactor  dominance scales  of the offspring. 
This correlation is 

(U - V) ( I  - F) 
2 

(1 - F) 
F ( l  + F) (U + Fv) (v + Fu)’ 

which is zero when gene frequency is one-half. The dominance scales of the 
parent and the additive scales of the offspring are not correlated. 
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The correlations among the epistatic scales can be found from the one-factor 
correlations by substitution in table 4. The simple rule used for computing the 
correlation between any type of deviation in a randomly mating population 
cannot be used here because ( 1) the one-factor dominance correlations involve 
gene frequencies and can differ from locus to locus, (2) different types of epi- 
static deviations may be correlated, and (3)  in terms of hereditary deviations 
the correlations may be negative. 

The signs (+ or -) of the correlations vary with the dominance and epistatic 
effects of the genes. For example, even in the absence of epistasis, the correla- 
tion between the additive deviations of non-inbred parents and first generation 
selfed offspring is negative for an over-dominant locus when the frequency of 
the favorable gene is slightly higher than the frequency that would make the 
mean of the parents a maximum. For any given situation the sign can be found 
and is the same as the sign of the product of the two regression coefficients, 
pyw and py,w,,  corresponding to the deviations under question. When the rela- 
tives are in the same generation the correlation between the same type of 
deviation will always be positive because the two regression coefficients are 
identical, but even here the signs of the correlations between different types of 
deviations have to be determined and also all of the correlations involve gene 
frequency. The knowledge required to determine the correlations, gene fre- 
quencies and regression coefficients, precludes any use of this type of biometri- 
cal analysis, with one exception, and this is when all gene frequencies are one- 
half. In this case a deviation of one relative is correlated, if at all, only with the 
same deviation of the other relative, as is true for relatives in a randomly 
mating population. 

The frequencies of segregating genes can be reasonably assumed to be one- 
half in subsequent generations of a cross between two homozygous lines. How- 
ever, the applicability of the following results is limited somewhat because of 
the assumption, necessary in this analysis, that the genotypic frequencies are 
proportional to the marginal frequencies of the loci. Even with random mating 
following the cross it is several generations before the genotypic frequencies 
can be reasonably assumed to be proportional to the marginal frequencies of 
those loci which are closely linked. When generations subsequent to the cross 
are selfed or inbred rapidly the genotypic frequencies cannot ever be reason- 
ably assumed to be proportional to the marginal frequencies of the linked loci 
because the parental types are fixed much more rapidly than the recombinants. 
In this case the partitions of the variance and the following correlations among 
relatives apply strictly only to those combinations of loci whose genes recom- 
bine independently. 

Where each generation after the first generation of a cross between two 
homozygous parental lines is obtained by self-fertilizing the previous genera- 
tion, the coefficient of inbreeding in the gth generation is 

2 ' 4  - 1 

2 8  -7. 
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The correlation between the parent in the ( g  - 1)th generation and the off- 
spring in  the gth generation is then: 

for the additive s c a l e s ,  and 

for the tloniinance scales. These correlatioiis h a v e  iiieaning 0111~ wlieii g is 
greater than two. 

By using the correlations hetween parent ; i d  offspring a more general 
scheiiie can be developed for indicating the correlations between any two 
relatives. Let ~ , , , k , ~ , . ~ ~ )  be the correlation hetween the additive scales of one 
relative, OFl, in the g,th generation and of another relative. Py2,  in the g2th 
generation hoth of whom descended from the last ~011itii0i1 parent, Ck, in the 
kth generation. Let P J , ~ , ~ , , ~ . , )  be the correlation between the tloniinance scales 
of the same two relatives. The following path coefficient tliagraiii show the 
relationships between these relatives. 

P's are used to indicate the parents of PF2 and 0 ' s  are used to indicate the 
parents of O,, in their descent from the last coiiiiiion parent in the kth genera- 
tion. The single-headed arrows are path coefficients (WRIGHT 1934), and the 
double headed arrow indicates a correlation coefficient. The only connection 
1)etween the genotypes of the two relatives is through the chain of parents via 
the coninion parent. Since the additive scales of one individual are correlated 
only with the additive scales (and not the dominance scales) of the preceding 
parent (or succeeding offspring), the path coefficient, a, for the additive scales 
is  actually the correlation coefficient between the additive scales of the parent 
am1 of the offspring. The correlation between the additive scales of O,, and I'g2 
i s  computed by multiplying together all the path coefficients : 

the correlation between the additive scales of the two relat ives  is 


