Contents

FLYBOOK

1699–1725 Polycomb and Trithorax Group Genes in *Drosophila*
Kassis, Judith A., James A. Kennison, and John W. Tamkun

INVESTIGATIONS

METHODS, TECHNOLOGY, AND RESOURCES

1727–1738 High-Throughput Characterization of Cascade type I-E CRISPR Guide Efficacy Reveals Unexpected PAM Diversity and Target Sequence Preferences
Xu Hua Fu, Becky, Michael Wainberg, Anshul Kundaje, and Andrew Z. Fire

1739–1746 Investigation of Seizure-Susceptibility in a *Drosophila melanogaster* Model of Human Epilepsy with Optogenetic Stimulation
Saras, Arunesh, Veronica V. Wu, Harlan J. Brawer, and Mark A. Tanouye

1747–1761 Toward Universal Forward Genetics: Using a Draft Genome Sequence of the Nematode *Oscheius tipulae* To Identify Mutations Affecting Vulva Development
Besnard, Fabrice, Georgios Koutsovoulos, Sana Dieudonné, Mark Blaxter, and Marie-Anne Félix

HIGHLIGHTED ARTICLE OPEN ACCESS

1763–1806 Genome-Wide Association Analyses Based on Broadly Different Specifications for Prior Distributions, Genomic Windows, and Estimation Methods
Chen, Chunyu, Juan P. Steibel, and Robert J. Tempelman

The filamentous fungus *Neurospora crassa* displays conidiation rhythms controlled by the circadian clock. Long glass tubes, called race tubes, are used to observe the conidiation rhythms representing the *Neurospora* circadian clock. The cover image shows the race tube results of a variety of *Neurospora* strains. The array of race tubes with different strains is shown in a circle view with shadow on the left, which look like a planet. Indeed, the circadian rhythms of *Neurospora* and other species reflect the influence of periodic environmental changes on these organisms. In this issue, Wu et al. show that the Up-frameshift Protein UPF1 plays an important role in regulating *Neurospora* circadian and diurnal growth rhythms. See Yilan et al., pp. 1881–1893. Image courtesy of Jinhu Guo.
<table>
<thead>
<tr>
<th>Page Range</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1807–1821</td>
<td>A Lysine Desert Protects a Novel Domain in the Slx5-Slx8 SUMO Targeted Ub Ligase To Maintain Sumoylation Levels in Saccharomyces cerevisiae</td>
<td>Sharma, Pragati, Janet R. Mullen, Minxing Li, Mikel Zaratiegui, Samuel F. Bunting, and Steven J. Brill</td>
</tr>
<tr>
<td>1823–1828</td>
<td>Pharmacological Inhibition of the DNA Damage Checkpoint Prevents Radiation-Induced Oocyte Death</td>
<td>Rinaldi, Vera D., Kristin Hsieh, Robert Munroe, Ewelina Bolcun-Filas, and John C. Schimenti</td>
</tr>
<tr>
<td>1829–1839</td>
<td>Maternal Haploid, a Metalloprotease Enriched at the Largest Satellite Repeat and Essential for Genome Integrity in Drosophila Embryos</td>
<td>Tang, Xiaona, Jinguo Cao, Liang Zhang, Yingzi Huang, Qianyi Zhang, and Yikang S. Rong</td>
</tr>
<tr>
<td>1841–1852</td>
<td>Genetics of Genome-Wide Recombination Rate Evolution in Mice from an Isolated Island</td>
<td>Wang, Richard J. and Bret A. Payseur</td>
</tr>
<tr>
<td>1853–1864</td>
<td>A Role for the Nonsense-Mediated mRNA Decay Pathway in Maintaining Genome Stability in Caenorhabditis elegans</td>
<td>González-Huici, Víctor, Bin Wang, and Anton Gartner</td>
</tr>
<tr>
<td>1865–1879</td>
<td>Evolving Mistranslating tRNAs Through a Phenotypically Ambivalent Intermediate in Saccharomyces cerevisiae</td>
<td>Berg, Matthew D., Kyle S. Hoffman, Julie Genereaux, Safee Mian, Ryan S. Trussler, David B. Haniford, Patrick O'Donoghue, and Christopher J. Brandl</td>
</tr>
<tr>
<td>1881–1893</td>
<td>Up-Frameshift Protein UPF1 Regulates Neurospora crassa Circadian and Diurnal Growth Rhythms</td>
<td>Wu, Yilan, Yin Zhang, Yunpeng Sun, Jiali Yu, Peiliang Wang, Huan Ma, Shijunying Chen, Lzihen Ma, Dongyang Zhang, Qun He, and Jinhua Guo</td>
</tr>
<tr>
<td>1895–1907</td>
<td>Epigenetic Transcriptional Memory of GAL Genes Depends on Growth in Glucose and the Tup1 Transcription Factor in Saccharomyces cerevisiae</td>
<td>Sood, Varun, Ivelisse Cajigas, Agustina D'Urso, William H. Light, and Jason H. Brickner</td>
</tr>
<tr>
<td>1909–1922</td>
<td>The Oxidative Stress Response in Caenorhabditis elegans Requires the GATA Transcription Factor ELT-3 and SKN-1/Nrf2</td>
<td>Hu, Queenie, Dayana R. D'Amora, Lesley T. MacNeil, Albertha J. M. Walhout, and Terrance J. Kubisneski</td>
</tr>
</tbody>
</table>
DEVELOPMENTAL AND BEHAVIORAL GENETICS

1939–1949
Control of a Novel Spermatocyte-Promoting Factor by the Male Germline Sex
Determination Factor PHF7 of Drosophila melanogaster
Yang, Shu Yuan, Yi-Chieh Chang, Yu Hsin Wan, Cale Whitworth, Ellen M. Baxter,
Shekerah Primus, Haiwei Pi, and Mark Van Doren

1951–1967
Coordination of Heparan Sulfate Proteoglycans with Wnt Signaling To
Control Cellular Migrations and Positioning in Caenorhabditis elegans
Saied-Santiago, Kristian, Robert A. Townley, John D. Attonito, Dayse S. da Cunha,
Carlos A. Díaz-Balzac, Eillen Tecle, and Hannes E. Bülow

1969–1984
Genomic Analysis of Genotype-by-Social Environment Interaction for
Drosophila melanogaster Aggressive Behavior
Rohde, Palle Duun, Bryn Gaertner, Kirsty Ward, Peter Sørensen,
and Trudy F. C. Mackay

1985–1994
Heat-Induced Calcium Leakage Causes Mitochondrial Damage in
Caenorhabditis elegans Body-Wall Muscles
Momma, Kenta, Takashi Homma, Ruri Isaka, Surabhi Sudevan,
and Atsushi Higashitani

OPEN ACCESS

1995–2006
Canalization by Selection of de Novo Induced Mutations
Fanti, Laura, Lucia Piacentini, Ugo Cappucci, Assunta M. Casale,
and Sergio Pimpinelli

HIGHLIGHTED ARTICLE

2007–2039
LIN-41 and OMA Ribonucleoprotein Complexes Mediate a Translational
Repression-to-Activation Switch Controlling Oocyte Meiotic Maturation and
the Oocyte-to-Embryo Transition in Caenorhabditis elegans
Tsukamoto, Tatsuya, Micah D. Gearhart, Caroline A. Spike,
Gabriela Huelgas-Morales, Makaela Mews, Peter R. Boag, Traude H. Beilharz,
and David Greenstein

OPEN ACCESS

2041–2051
The Combined Action of Duplicated Boron Transporters Is Required for Maize
Growth in Boron-Deficient Conditions
Chatterjee, Mithu, Qiujie Liu, Caitlin Menello, Mary Galli, and Andrea Gallavotti

2053–2068
The Exon Junction Complex and Srp54 Contribute to Hedgehog Signaling via
ci RNA Splicing in Drosophila melanogaster
Garcia-Garcia, Elisa, Jamie C. Little, and Daniel Kalderon

2069–2084
Caenorhabditis elegans CES-1 Snail Represses pig-1 MELK Expression To
Control Asymmetric Cell Division
Wei, Hai, Bo Yan, Julien Gagneur, and Barbara Conradt

OPEN ACCESS

POPULATION AND EVOLUTIONARY GENETICS

2085–2103
A Unified Characterization of Population Structure and Relatedness
Weir, Bruce S. and Jérôme Goudet

OPEN ACCESS

2105–2117
Distributions of Mutational Effects and the Estimation of Directional
Selection in Divergent Lineages of Arabidopsis thaliana
Park, Britton, Matthew T. Rutter, Charles B. Fenster, V. Vaughan Symonds,
Mark C. Ungerer, and Jeffrey P. Townsend

OPEN ACCESS
Rapid Evolution of Ovarian-Biased Genes in the Yellow Fever Mosquito (*Aedes aegypti*)
Whittle, Carrie A. and Cassandra G. Extavour

Cis- and Trans-regulatory Effects on Gene Expression in a Natural Population of *Drosophila melanogaster*
Osada, Naoki, Ryutaro Miyagi, and Aya Takahashi

Discovering Complete Quasispecies in Bacterial Genomes
Bertels, Frederic, Chaitanya S. Gokhale, and Arne Traulsen

Complex Coding and Regulatory Polymorphisms in a Restriction Factor Determine the Susceptibility of *Drosophila* to Viral Infection
Cao, Chuan, Rodrigo Cogni, Vincent Barbier, and Francis M. Jiggins

Networks Underpinning Symbiosis Revealed Through Cross-Species eQTL Mapping
Guo, Yuelong, Sylwia Fudali, Jacinta Gimeno, Peter DiGennaro, Stella Chang, Valerie M. Williamson, David McK. Bird, and Dahlia M. Nielsen

Heritable Micro-environmental Variance Covaries with Fitness in an Outbred Population of *Drosophila serrata*
Sztepanacz, Jacqueline L., Katrina McGuigan, and Mark W. Blows

Causal Genetic Variation Underlying Metabolome Differences
Swain-Lenz, Devjanee, Igor Nikolskiy, Jiye Cheng, Priya Sudarsanam, Darcy Nayler, Max V. Staller, and Barak A. Cohen

An Essential Regulatory System Originating from Polygenic Transcriptional Rewiring of PhoP-PhoQ of *Xanthomonas campestris*
Peng, Bao-Yu, Yue Pan, Ru-Jiao Li, Jin-Wei Wei, Fang Liang, Li Wang, Fang-Fang Wang, and Wei Qian

The NCA-1 and NCA-2 Ion Channels Function Downstream of G_q and Rho To Regulate Locomotion in *Caenorhabditis elegans*
Topalidou, Irini, Pin-An Chen, Kirsten Cooper, Shigeki Watanabe, Erik M. Jorgensen, and Michael Ailion