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ABSTRACT Many questions about human genetic history can be addressed by examining the patterns of shared genetic variation
between sets of populations. A useful methodological framework for this purpose is F-statistics that measure shared genetic drift
between sets of two, three, and four populations and can be used to test simple and complex hypotheses about admixture between
populations. This article provides context from phylogenetic and population genetic theory. I review how F-statistics can be interpreted
as branch lengths or paths and derive new interpretations, using coalescent theory. I further show that the admixture tests can be
interpreted as testing general properties of phylogenies, allowing extension of some ideas applications to arbitrary phylogenetic trees.
The new results are used to investigate the behavior of the statistics under different models of population structure and show how
population substructure complicates inference. The results lead to simplified estimators in many cases, and I recommend to replace F3
with the average number of pairwise differences for estimating population divergence.
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FOR humans, whole-genome genotype data are now avail-
able for individuals fromhundredsofpopulations(Lazaridis

et al. 2014; Yunusbayev et al. 2015), opening up the possi-
bility to ask more detailed and complex questions about our
history (Pickrell and Reich 2014; Schraiber and Akey 2015)
and stimulating the development of new tools for the analysis
of the joint history of these populations (Reich et al. 2009;
Patterson et al. 2012; Pickrell and Pritchard 2012; Lipson
et al. 2013; Ralph and Coop 2013; Hellenthal et al. A simple
and intuitive approach that has quickly gained in popularity
are the F-statistics, introduced by Reich et al. (2009) and
summarized in Patterson et al. (2012). In that framework,
inference is based on “shared genetic drift” between sets of
populations, under the premise that shared drift implies a
shared evolutionary history. Tools based on this framework
have quickly become widely used in the study of human ge-
netic history, both for ancient and for modern DNA (Green
et al. 2010; Reich et al. 2012; Lazaridis et al. 2014; Allentoft
et al. 2015; Haak et al. 2015).

Some care is required with terminology, as the F-statistics
sensu Reich et al. (2009) are distinct, but closely related to
Wright’s fixation indexes (Wright 1931; Reich et al. 2009),
which are also often referred to as F-statistics. Furthermore, it
is necessary to distinguish between statistics (quantities cal-
culated from data) and the underlying parameters (which are
part of the model) (Weir and Cockerham 1984).

In this article, Imostlydiscussmodelparameters, and I therefore
refer to them as drift indexes. The term F-statistics is used when
referring to the general framework introduced by Reich et al.
(2009), and Wright’s statistics are referred to as FST or f.

Most applications of the F-statistic framework can be
phrased in terms of the following six questions:

1. Treeness test: Are populations related in a tree-like fash-
ion (Reich et al. 2009)?

2. Admixture test: Is a particular population descended from
multiple ancestral populations (Reich et al. 2009)?

3. Admixture proportions: What are the contributions from
different populations to a focal population (Green et al.
2010; Haak et al. 2015)?

4. Number of founders: How many founder populations are
there for a certain region (Reich et al. 2012; Lazaridis et al.
2014)?

5. Complex demography: How can mixtures and splits of
population explain demography (Patterson et al. 2012;
Lipson et al. 2013)?
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6. Closest relative: What is the closest relative to a contem-
porary or ancient population (Raghavan et al. 2014)?

The demographic models under which these questions are
addressed, and that motivated the drift indexes, are called
population phylogenies and admixture graphs. The population
phylogeny (or population tree) is a model where populations
are related in a tree-like fashion (Figure 1A), and it frequently
serves as the null model for admixture tests. The branch
lengths in the population phylogeny correspond to howmuch
genetic drift occurred, so that a branch that is subtended by
two different populations can be interpreted as the “shared”
genetic drift between these populations. The alternative
model is an admixture graph (Figure 1B), which extends
the population phylogeny by allowing edges that represent
population mergers or a significant exchange of migrants.

Under a population phylogeny, the three F-statistics pro-
posed by Reich et al. (2009), labeled F2, F3, and F4, have
interpretations as branch lengths (Figure 1A) between two,
three, and four taxa, respectively. Assume populations are
labeled as P1, P2, . . .. Then

F2(P1, P2) corresponds to the path on the phylogeny from P1
to P2.

F3 (PX; P1, P2) represents the length of the external branch
from PX to the (unique) internal vertex connecting all three
populations. Thus, the first parameter of F3 has a unique
role, whereas the other two can be switched arbitrarily.

FðBÞ4 (P1, P2; P3, P4) represents the internal branch from the
internal vertex connecting P1 and P2 to the vertex con-
necting P3 and P4 (Figure 1A, blue).

If the arguments are permuted, some F-statistics will have
no corresponding internal branch. In particular, it can be
shown that in a population phylogeny, one F4 index will be
zero, implying that the corresponding internal branch is miss-
ing. This is the property that is used in the admixture test. For
clarity, I add the superscript FðBÞ4 if I need to emphasize the
interpretation of F4 as a branch length and FðTÞ4 to emphasize
the interpretation as a test statistic. For details, see the F4
subsection in Methods and Results.

In an admixture graph, there is no longer a single branch
length corresponding to each F-statistic, and interpretations
are more complex. However, F-statistics can still be thought
of as the proportion of genetic drift shared between popula-
tions (Reich et al. 2009). The basic idea exploited in addressing
all six questions outlined above is that under a tree model,
branch lengths, and thus the drift indexes, must satisfy some
constraints (Buneman 1971; Semple and Steel 2003; Reich
et al. 2009). The two most relevant constraints are that (i) in
a tree, all branches have positive lengths (tested using the F3-
admixture test) and (ii) in a tree with four leaves, there is at
most one internal branch (tested using the F4-admixture test).

The goal of this article is to give a broad overview on the
theory, ideas, and applications of F-statistics. Our starting point
is a brief review on how genetic drift is quantified in general
and how it is measured using F2. I then propose an alternative

definition of F2 that allows us to simplify applications and
study them under a wide range of population structure mod-
els. I then review some basic properties of distance-based phy-
logenetic trees, show how the admixture tests are interpreted
in this context, and evaluate their behavior. Many of the results
that are highlighted here are implicit in classical (Wahlund
1928; Wright 1931; Cavalli-Sforza and Edwards 1967;
Felsenstein 1973, 1981; Cavalli-Sforza andPiazza 1975; Slatkin
1991; Excoffier et al. 1992) and more recent work (Patterson
et al. 2012; Pickrell and Pritchard 2012; Lipson et al. 2013),
but often not explicitly stated or given in a different context.

Methods and Results

Thenext sections discuss the F-statistics, introducing different
interpretations and giving derivations for some useful expres-
sions. A graphical summary of the three interpretations of the
statistics is given in Figure 2, and the main formulas are
summarized in Table 1.

Throughout this article, populations are labeled as P1,
P2, . . . , Pi, . . . . Often, PX will denote an admixed population.
The allele frequency pi is defined as the proportion of indi-
viduals in Pi that carry a particular allele at a biallelic locus,
and throughout this article I assume that all individuals are
haploid. However, all results hold if instead of haploid indi-
viduals, an arbitrary allele of a diploid individual is used.
I focus on genetic drift only and ignore the effects of muta-
tion, selection, and other evolutionary forces.

Figure 1 (A) A population phylogeny with branches corresponding to
F2 (green), F3 (yellow), and FðBÞ4 (blue). (B) An admixture graph extends
a population phylogeny by allowing gene flow (red, solid line) and
admixture events (red, dotted line).
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Measuring genetic drift—F2

The purpose of F2 is simply to measure how much genetic
drift occurred between two populations, i.e., to measure ge-
netic dissimilarity. For populations P1 and P2, F2 is defined as

F2ðP1; P2Þ ¼ F2ðp1; p2Þ ¼ Eðp12p2Þ2 (1)

(Reich et al. 2009). The expectation is with respect to the
evolutionary process, but in practice F2 is estimated from
hundreds of thousands of loci across the genome (Patterson
et al. 2012), which are assumed to be nonindependent repli-
cates of the evolutionary history of the populations.

Why is F2 a useful measure of genetic drift? As it is in-
feasible to observe changes in allele frequency directly, the
effect of drift is assessed indirectly, through its impact on
genetic diversity. Most commonly, genetic drift is quantified
in terms of (i) the variance in allele frequency, (ii) heterozy-
gosity, (iii) probability of identity by descent, (iv) correlation
(or covariance) between individuals, and (v) the probability
of coalescence (two lineages having a common ancestor). In

the next sections I show how F2 relates to these quantities in
the cases of a single population changing through time and a
pair of populations that are partially isolated.

Single population: I assume a single population,measured at
two time points (t0 and t), and label the two samples P0 and
Pt. Then F2 (P0, Pt) can be interpreted in terms of the vari-
ances of allele frequencies:

F2ðPt; P0Þ ¼ E

h
ðpt � p0Þ2

i
¼ Varðpt � p0Þ þ E½ðpt � p0Þ�2

¼ VarðptÞ þ Varðp0Þ � 2COVðp0; ptÞ
¼ VarðptÞ þ Varðp0Þ � 2COVðp0; p0 þ ðpt � p0ÞÞ
¼ VarðptÞ � Varðp0Þ:

(2)

Here, I usedE½pt � p0� ¼ COVðp0; pt � p0Þ ¼ 0 to obtain lines
three and five. It is worth noting that this result holds for any
model of genetic drift where the expected allele frequency is

Figure 2 Interpretation of F-statistics. F-statistics can be interpreted as branch lengths in a population phylogeny (A, E, I, and M), as the overlap of paths
in an admixture graph (B, F, J, and N, see also Figure S1), and in terms of the internal branches of gene genealogies (see Figure 4, Figure S2, and Figure
S3). For gene trees consistent with the population tree, the internal branch contributes positively (C, G, and K), and for discordant branches, internal
branches contribute negatively (D and H) or zero (L). F4 has two possible interpretations; depending on how the arguments are permuted relative to the
tree topology, it may reflect either the length of the internal branch [I–L, FðBÞ4 ] or a test statistic that is zero under a population phylogeny [M–P, FðTÞ4 ]. For
the admixture test, the two possible gene trees contribute to the statistic with different sign, highlighting the similarity to the D-statistic (Green et al.
2010) and its expectation of zero in a symmetric model.
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the current allele frequency and increments are independent.
For example, this interpretation of F2 holds also if genetic
drift is modeled as a Brownian motion (Cavalli-Sforza and
Edwards 1967).

An elegant way to introduce the use of F2 in terms of
expected heterozygosities Ht (Figure 3B) and identity by de-
scent (Figure 3C) is the duality

Ept ½ p
nt
t jp0; nt� ¼ En0

�
pn0
0

��p0; nt�: (3)

This equation is due to Tavaré (1984), who also provided the
following intuition: Given nt individuals are sampled at time t,
let E denote the event that all individuals carry allele x, condi-
tional on allele x having frequency p0 at time t0. There are two
components to this: First, the frequency will change between t0
and t, and then all nt sampled individuals need to carry x.

In a diffusion framework,

ℙðEÞ ¼
Z 1

0
yntℙðpt ¼ yjp0; ntÞdy ¼ E½ pnt

t jp0; nt�: (4)

On the other hand, onemay argue using the coalescent: For E
to occur, all nt samples need to carry the x allele. At time t0,
they had n0 ancestral lineages, who all carry x with probabil-
ity p0. Therefore,

ℙðEÞ ¼
Xn0

i¼1

pi0ℙðn0 ¼ ijp0; ntÞ ¼ E
�
pn0
0

��p0; nt�: (5)

Equating (4) and (5) yields Equation 3.
In thepresent case, theonly relevant cases arent=1,2, since

E
�
p1t
��p0; nt ¼ 1

�
¼ p0

E
�
p2t
��p0; nt ¼ 2

�
¼ p0f þ p20ð12 f Þ;

where f is the probability that two lineage sampled at time t
coalesce before time t0.

This yields an expression for F2 by conditioning on the
allele frequency p0,

E

h
ðp02ptÞ2

���p0i ¼ E
�
p20
��p0�2E½2ptp0jp0� þ E

�
p2t
��p0�

¼ p20 2 2p20 þ p0f þ p20ð12 f Þ
¼ fp0ð12 p0Þ

¼ 1
2
fH0;

where H0 = 2p0 (1 – p0) is the heterozygosity. Integrating
over ℙðp0Þ yields

F2ðP0; PtÞ ¼
1
2
f EH0 (6)

and it can be seen that F2 increases as a function of f (Figure
3C). This equation can also be interpreted in terms of prob-
abilities of identity by descent: f is the probability that two
individuals are identical by descent in Pt given their ancestors
were not identical by descent in P0 (Wright 1931), and EH0 is
the probability two individuals are not identical in P0.

Furthermore, EHt ¼ ð12 f ÞEH0 (equation 3.4 in Wakeley
2009) and therefore

EH0 2EHt ¼ EH0ð12 ð12 f ÞÞ ¼ 2F2ðPt; P0Þ; (7)

which shows that F2 measures the decay of heterozygosity (Fig-
ure 3A). A similar argument was used by Lipson et al. (2013) to
estimate ancestral heterozygosities and to linearize F2.

These equations can be rearranged tomake the connection
between other measures of genetic drift and F2 more explicit:

EHt ¼ EH0 2 2F2ðP0; PtÞ (8a)

¼ EH02 2ðVarðptÞ2Varðp0ÞÞ (8b)

¼ EH0ð12 f Þ: (8c)

Pairs of populations: Equations 8b and 8c describing the
decay of heterozygosity are–of course–well known by popu-
lation geneticists, having been established by Wright (1931).
In structured populations, very similar relationships exist
when the number of heterozygotes expected from the overall
allele frequency,Hobs is compared with the number of hetero-
zygotes present due to differences in allele frequencies be-
tween populations Hexp (Wahlund 1928; Wright 1931).

In fact, already Wahlund showed by considering the ge-
notypes of all possible matings in two subpopulations (table 3
in Wahlund 1928) that for a population made of two subpop-
ulations with equal proportions, the proportion of heterozy-
gotes is reduced by

Hobs ¼ Hexp2 2ðp12p2Þ2

from which it follows that

Table 1 Summary of equations

Drift Measure F2 (P1, P2) F3 (PX; P1, P2) F4(P1, P2, P3, P4)

Definition E½ðp12p2Þ2� EðpX 2p1ÞðpX 2p2Þ Eðp1 2p2Þðp3 2p4Þ
F2 — 1

2

�
F2ðP1; PX Þ þ F2ðP2; PX Þ2 F2ðP1; P2Þ

�
1
2 ðF2ðP1; P4Þ þ F2ðP2; P3Þ2 F2ðP1; P3Þ2 F2ðP2; P4ÞÞ

Coalescence times 2ET12 2ET11 2ET22 ET1X þ ET2X 2ET12 2ETXX ET14 þ ET23 2ET13 2ET24
Variance Varðp1 2p2Þ VarðpX Þ þ COVðp1; p2Þ2COVðp1; pX Þ2COVðp2; pX Þ COVððp1 2p2Þ; ðp3;p4ÞÞ
Branch length 2Bc 2Bd 2Bc 2Bd Bc � Bd   or  as  admixture  test  :  B9d � Bd

A constant of proportionality is omitted for coalescence times and branch lengths. Derivations for F2 are given in the main text, and F3 and F4 are a simple result of combining
Equation 16 with Equations 20b and 24b. Bc and Bd correspond to the average length of the internal branch in a gene genealogy concordant and discordant with the
population assignment, respectively (see Gene tree branch lengths section).
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F2ðP1; P2Þ ¼
EHexp 2EHobs

2
: (9)

Furthermore, Varðp1 2 p2Þ ¼ Eðp12p2Þ2 2 ½Eðp12p2Þ�2; but
Eðp1 2 p2Þ ¼ 0 and therefore

F2ðP1; P2Þ ¼ Varðp1 2 p2Þ: (10)

Finally, the original definition of F2 was as the numerator of
FST (Reich et al. 2009), but FST can be written as
FST ¼ 2ðp12p2Þ2=EHexp; from which follows

F2ðP1; P2Þ ¼
1
2
FSTEHexp: (11)

Covariance interpretation: To see how F2 can be interpreted
as a covariance, define Xi and Xj as indicator variables that
two individuals from the same population sample have the
A allele, which has frequency p1 in one and p2 in the other
population. If individuals are equally likely to be sampled
from either population,

EXi ¼ EXj ¼
1
2
p1 þ

1
2
p2

EXiXj ¼
1
2
p21 þ

1
2
p22

COVðXi;XjÞ ¼ EXiXj2EXiEXj

¼ 1
4
ðp12p2Þ2 ¼ 1

4
F2ðP1; P2Þ:

Justification for F2: The preceding arguments show how the
usage of F2 for both single and structured populations can be
justified by the similar effects of F2 on different measures of
genetic drift. However, what is the benefit of using F2 instead
of the established inbreeding coefficient f and fixation index
FST? Recall that Wright motivated f and FST as correlation
coefficients between alleles (Wright 1921, 1931). Correlation
coefficients have the advantage that they are easy to inter-
pret, as, e.g., FST = 0 implies panmixia and FST = 1 implies
complete divergence between subpopulations. In contrast, F2
depends on allele frequencies and is highest for intermediate-
frequency alleles. However, F2 has an interpretation as a
covariance, making it simpler and mathematically more con-
venient to work with. In particular, variances and covariances
are frequently partitioned into components due to different
effects, using techniques such as analysis of variance and
analysis of covariance (e.g., Excoffier et al. 1992).

F2 as branch length: Reich et al. (2009) and Patterson et al.
(2012) proposed to partition “drift” (as previously estab-
lished, measured by covariance, allele frequency variance,
or decrease in heterozygosity) between different populations
into contribution on the different branches of a population
phylogeny. This model has been studied by Cavalli-Sforza
and Edwards (1967) and Felsenstein (1973) in the context
of a Brownian motion process. In this model, drift on indepen-
dent branches is assumed to be independent, meaning that the
variances can simply be added. This is what is referred to as the
additivity property of F2 (Patterson et al. 2012).

To illustrate the additivity property, consider two popula-
tions P1 and P2 that split recently from a common ancestral
population P0 (Figure 2A). In this case, p1 and p2 are assumed
to be independent conditional on p0, and therefore
COVðp1; p2Þ ¼ Varðp0Þ: Then, using (2) and (10),

F2ðP1; P2Þ¼ Varðp12 p2Þ¼ Varðp1Þþ Varðp2Þ22COVðp1; p2Þ
¼ Varðp1Þ þ Varðp2Þ2 2Varðp0Þ
¼ F2ðP1; P0Þ þ F2ðP2; P0Þ:

Alternative proofs of this statement and more detailed rea-
soning behind the additivity assumption can be found in
Cavalli-Sforza and Edwards (1967), Felsenstein (1973),
Reich et al. (2009), and Patterson et al. (2012).

Lineages are not independent in an admixture graph, and
so this approach cannot be used. Reich et al. (2009) ap-
proached this by conditioning on the possible population
trees that are consistent with an admixture scenario. In par-
ticular, they proposed a framework of counting the possible
paths through the graph (Reich et al. 2009; Patterson et al.
2012). An example of this representation for F2 in a simple
admixture graph is given in Supplemental Material, Figure S1,
with the result summarized in Figure 2B. Detailed motivation
behind this visualization approach is given in Appendix 2 of
Patterson et al. (2012). In brief, the reasoning is as follows:
Recall that F2ðP1; P2Þ ¼ Eðp1 2 p2Þðp1 2 p2Þ and interpret the
two terms in parentheses as two paths between P1 and P2,

Figure 3 Measures of genetic drift in a single population. Shown are
interpretations of F2 in terms of (A) the increase in allele frequency var-
iance; (B) the decrease in heterozygosity; and (C) f, which can be inter-
preted as probability of coalescence of two lineages or the probability
that they are identical by descent.
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and F2 as the overlap of these two paths. In a population
phylogeny, there is only one possible path, and the two paths
are always the same; therefore F2 is the sum of the length of
all the branches connecting the two populations. However, if
there is admixture, as in Figure 2B, both paths choose inde-
pendently which admixture edge they follow. With probability
a they will go left, and with probability b = 1 2 a they go
right. Thus, F2 can be interpreted by enumerating all possible
choices for the two paths, resulting in three possible combina-
tions of paths on the trees (Figure S1), and the branches in-
cluded will differ, depending on which path is chosen, so that
the final F2 is made of an average of the path overlap in the
topologies, weighted by the probabilities of the topologies.

However, one drawback of this approach is that it scales
quadratically with the number of admixture events, making
calculations cumbersomewhen thenumber of admixture events
is large.More importantly, thisapproachisrestrictedtopanmictic
subpopulations and cannot be usedwhen the populationmodel
cannot be represented as a weighted average of trees.

Gene tree Interpretation: For this reason, I propose to redefine
F2, using coalescent theory (Wakeley 2009). Instead of allele
frequencies on afixed admixture graph, coalescent theory tracks
the ancestors of a sample of individuals, tracing their history
back to their most recent common ancestor. The resulting tree is
called a gene tree (or coalescent tree). Gene trees vary between
loci and will often have a different topology from that of the
population phylogeny, but they are nevertheless highly informa-
tive about a population’s history. Moreover, expected coales-
cence times and expected branch lengths are easily calculated
under a wide array of neutral demographic models.

In a seminal article, Slatkin (1991) showed how FST can be
interpreted in termsof theexpectedcoalescence timesofgene trees,

FST ¼ ETB 2ETW
ETB

;

where ETB and ETW are the expected coalescence times of
two lineages sampled in two different populations and the
same population, respectively.

Unsurprisingly, given the close relationship betweenF2 and
FST, an analogous expression exists for F2 (P1, P2): The der-
ivation starts by considering F2 for two samples of size 1. I
then express F2 for arbitrary sample sizes in terms of individ-
ual-level F2 and obtain a sample-size independent expression
by letting the sample size n go to infinity.

In this framework, I assume that mutation is rare such that
there is atmost onemutationatany locus. Ina sampleof size2,
let Ii be an indicator random variable that individual i has a
particular allele. For two individuals, F2 (I1, I2) = 1 implies
I1= I2, whereas F2 (I1, I2)= 0 implies I1 6¼ I2. Thus, F2(I1, I2) is
another indicator random variable with the parameter equal
to the probability that a mutation happened on the tree
branch between I1 and I2.

Now, instead of a single individual I1, consider a sample of
n1 individuals: P1 ¼ fI1;1;I1;2; . . . ; I1;n1g The sample allele fre-
quency is p̂1 ¼ n21

1
P

iI1;i: And the sample F2 is

F2ð p̂ 1; I2Þ ¼ F2

 
1
n1

Xn1

i¼1

I1;i; I2

!
¼ E

 
1
n1

Xn1

i¼1

I1;i2I2

!2

¼ E

"
1
n21

X
I21;i þ

2
n21

X
I1;iI1; j2

2
n1

X
I1;iI2 þ I22

#

¼ E

"
1
n1

X
I21;i 2

2
n1

X
I1;iI2 þ

n1
n1

I22

#

þ E

"
2
n21

X
I1;iI1; j2

n1 2 1
n21

X
I21;i

#
:

The first three terms can be grouped into n1 terms of the form
F2 (I1,i, I2), and the last two terms can be grouped into ðn12 Þ
terms of the form F2 (I1,i, I1, j), one for each possible pair of
samples in P1.

Therefore,

F2ð p̂1; I2Þ ¼
1
n1

X
i
F2
�
I1;i; I2

�
2

1
n21

X
i,j

F2
�
I1;i; I1; j

�
; (12)

where the second sum is over all pairs in P1. This equation is
equivalent to equation 22 in Felsenstein (1973).

As F2ðp̂1; p̂2Þ ¼ F2ðp̂2; p̂1Þ; I can switch the labels and obtain
the same expression for a second population P2 ¼ fI2;i; i ¼
0; . . . ; n2g Taking the average over all I2, j yields

F2ð p̂ 1; p̂2Þ ¼
1
n1

X
i
F2
�
I1;i; I2; j

�

2
1
n21

X
i,j

F2
�
I1;i; I1; j

�
2

1
n22

X
i,j

F2
�
I2;i; I2; j

�
:

(13)

Thus, I can write F2 between the two populations as the
average number of differences between individuals from dif-
ferent populations, minus some terms including differences
within each sample.

Equation 13 is quite general, making no assumptions on
where samples are placedona tree. In a coalescence framework,
it is useful to make the assumptions that all individuals from the
same population have the same branch length distribution; i.e.,
F2ðIx1;i; Iy1;jÞ ¼ F2ðIx2;i; Iy2;jÞ for all pairs of samples (x1, x2) and
(y1, y2) from populations Pi and Pj. Second, I assume that all
samples correspond to the leaves of the tree, so that I can esti-
mate branch lengths in terms of the time to a common ancestor
Tij. Finally, I assume that mutations occur at a constant rate
of u=2 on each branch. Taken together, these assumptions
imply that F2ðIi;k; Ij;lÞ ¼ uETij for all individuals from popula-
tions Pi, Pj. this simplifies (13) to

F2
�
p̂1; p̂2

�
¼ u3

 
ET12 2

1
2

�
12

1
n1

�
ET11

2
1
2

�
12

1
n2

�
ET22

!
;

(14)
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which, for the cases of n = 1, 2, was also derived by Petkova
et al. (2014). In some applications, F2 might be calculated
only for segregating sites in a large sample. As the expected
number of segregating sites is ðu=2ÞTtot (with Ttot denoting
the total tree length), taking the limit where u/0 is mean-
ingful (Slatkin 1991; Petkova et al. 2014):

F2ð p̂1; p̂2Þ ¼
2
Ttot

3

 
ET12 2

1
2

�
12

1
n1

�
ET11

2
1
2

�
12

1
n2

�
ET22

!
:

(15)

In either of these equations, 2=Ttot or u acts as a constant of
proportionality that is the same for all statistics calculated
from the same data. Since interest is focused on the relative
magnitude of F2 or whether a sum of F2 values is different
from zero, this constant has no impact on inference.

Furthermore, a population-level quantity is obtained by taking
the limitwhen thenumbers of individualsn1 andn2 go to infinity:

F2ðP1; P2Þ ¼ lim
n1;n2;/N

F2ð p̂1; p̂2Þ ¼ u

�
ET122

ET11 þ ET12
2

�
:

(16)

Unlike FST, the mutation parameter u does not cancel. How-
ever, for most applications, the absolute magnitude of F2 is of
little interest, since only the sign of the statistics is used for
most tests. In other applications F-statistics with presumably
the same u (Reich et al. 2009) are compared. In these cases, u
can be regarded as a constant of proportionality and will not
change the theoretical properties of the F-statistics. It will,
however, influence statistical properties, as a larger u implies
more mutations and hence more data.

Estimator for F2: An estimator for F2 can be derived using the
average number of pairwise differencespij as an estimator for
uTij (Tajima 1983). Thus, a natural estimator for F2 is

F̂2ðP1; P2Þ ¼ p122
p11 þ p22

2
: (17)

Strikingly, the estimator in Equation 17 is equivalent to that
given by Reich et al. (2009) in terms of the sample allele
frequency p̂i and sample size ni:

F2ðP1; P2Þ ¼ p12 2p11=22p22=2

¼ ½ p̂1ð12 p̂2Þ þ p̂2ð12 p̂1Þ�

2   p̂1ð12 p̂1Þ
n1

n1 2 1
2 p̂2ð12 p̂2Þ

n2
n2 2 1

¼ p̂1

�
1212

1
n1

�
þ p̂2

�
12 12

1
n2

�
22p̂1p̂2

þ p̂21

�
12

1
n12 1

�
2 p̂22

�
12

1
n2 2 1

�

¼ ð p̂12 p̂2Þ2
p̂1ð12 p̂1Þ
n12 1

2
p̂2ð12 q2Þ
n22 1

:

The last line is the same as equation 10 in the appendix of
Reich et al. (2009).

However,while theestimators are identical, theunderlying
modeling assumptions are different: The original definition
considered only loci that were segregating in an ancestral
population; loci not segregating there were discarded. Since
ancestral populations are usually unsampled, this is often
replaced by ascertainment in an outgroup (Patterson et al.
2012; Lipson et al. 2013). In contrast, Equation 17 assumes
that all markers are used, which is the more natural interpre-
tation for sequence data.

Gene tree branch lengths: An important feature of Equation
16 is that it depends only on the expected coalescence times
between pairs of lineages. Thus, the behavior of F2 can be fully
characterized by considering a sample of size 4,with two random
individuals taken from each population. This is all that is needed
to study the joint distribution of T12, T11, and T22 and hence F2.
By linearity of expectation, larger samples can be accommodated
by summing the expectations over all possible quartets.

For a sample of size 4 with two pairs, there are only two
possible unrooted tree topologies: one, where the lineages
from the same population are more closely related to each
other [called concordant topology, T ð2Þ

c ] and one where line-
ages from different populations coalesce first [which I refer to
as discordant topology, T ð2Þ

d ]. The superscripts refers to the
topologies being for F2, and I discard them in cases where no
ambiguity arises.

Conditioning on the topology yields

F2ðP1; P2Þ ¼ E½F2ðP1; P2ÞjT �
¼ ℙðT cÞE½F2ðP1; P2ÞjT c� þ ℙðT dÞE½F2ðP1; P2ÞjT d�:

Figure 4 contains graphical representations for E½F2ðP1; P2ÞjT c�
(Figure 4B) and E½F2ðP1; P2ÞjT d� (Figure 4C), respectively.

In this representation, T12 corresponds to a path from a
random individual from P1 to a random individual from P2,
and T11 represents the path between the two samples from
P1.

For T c the internal branch is always included in T12, but
never in T11 or T22. External branches, on the other hand, are
included with 50% probability in T12 on any path through the
tree. T11 and T22, on the other hand, consist only of external
branches, and the lengths of the external branches cancel.

On the other hand, for T d; the internal branch is always
included in T11 and T22, but only half the time in T12. Thus,
they contribute negatively to F2, but only with half the mag-
nitude of T c: As for T c; each T contains exactly two external
branches, cancelling the external branches from T12.

An interesting way to represent F2 is therefore in terms of
the internal branches over all possible gene genealogies. De-
note the unconditional average length of the internal branch
of T c as Bc and the average length of the internal branch in
T d as Bd: Then, F2 can be written in terms of these branch
lengths as
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F2ðP1; P2Þ ¼ uð2Bc2 1BdÞ; (18)

resulting in the representation given in Figure 2, C and D.
As a brief sanity check, consider the case of a population

without structure. In this case, the branch length is indepen-
dent of the topology and T d is twice as likely as T c and hence
Bd ¼ 2Bc; from which it follows that F2 will be zero, as
expected in a randomly mating population

This argument can be transformed from branch lengths to
observed mutations by recalling that mutations occur on a
branch at a rate proportional to its length. F2 is increased by
doubletons that support the assignment of populations (i.e.,
the two lineages from the same population have the same
allele), but reduced by doubletons shared by individuals from
different populations. All other mutations have a contribu-
tion of zero.

Testing treeness

Many applications consider tens or even hundreds of popula-
tions simultaneously (Patterson et al.2012;Pickrell andPritchard
2012; Haak et al. 2015; Yunusbayev et al. 2015), with the
goal to infer where and between which populations admix-
ture occurred. Using F-statistics, the approach is to interpret
F2ðP1; P2Þ as a measure of dissimilarity between P1 and P2, as
a large F2 value implies that populations are highly diverged.
Thus, the strategy is to calculate all pairwise F2 indexes be-
tween populations, combine them into a dissimilarity matrix,
and ask whether that matrix is consistent with a tree.

Oneway to approach this question is by using phylogenetic
theory: Many classical algorithms have been proposed that
use a measure of dissimilarity to generate a tree (Fitch et al.
1967; Saitou and Nei 1987; Semple and Steel 2003;
Felsenstein 2004) andwhat properties a general dissimilarity
matrix needs to have to be consistent with a tree (Buneman
1971; Cavalli-Sforza and Piazza 1975), in which case the
matrix is also called a tree metric (Semple and Steel 2003).
Thus, testing for admixture can be thought of as testing
treeness.

For a dissimilaritymatrix to be consistent with a tree, there
are twocentralproperties itneeds to satisfy:First, the lengthof

all branches has to be positive. This is strictly not necessary for
phylogenetic trees, and some algorithmsmay return negative
branch lengths (e.g. Saitou and Nei 1987); however, since in
our case branches have an interpretation of genetic drift,
negative genetic drift is biologically nonsensical, and there-
fore negative branches should be interpreted as a violation of
the modeling assumptions and hence of treeness.

The second property of a tree metric important in the
present context is a bit more involved: A dissimilarity matrix
(written in terms of F2) is consistent with a tree if for any four
populations Pi, Pj, Pk, and Pl,

F2ðPi; PjÞ þ F2ðPk; PlÞ#maxðF2ðPi; PkÞ þ F2ðPj; PlÞ; F2ðPi; PlÞ
þ F2ðPj; PkÞÞ;

(19)

that is, if the sums of pairs of distances are compared, two of
these sumswill be the same, andno smaller than the third one.
This theorem, due to Buneman (1971, 1974), is called the
four-point condition or sometimes, more modestly, the “fun-
damental theorem of phylogenetics.” A proof can be found in
Semple and Steel (2003, Chap. 7).

Informally, this statement canbeunderstoodbynoting that
on a tree, two of the pairs of distanceswill include the internal
branch, whereas the third one will not and therefore be
shorter. Thus, the four-point condition can be colloquially
rephrased as “any four-taxa tree has at most one internal
branch.”

Why are these properties useful? It turns out that the
admixture tests based on F-statistics can be interpreted as
tests of these properties: The F3 test can be interpreted as a
test for the positivity of a branch and the F4 as a test of the
four-point condition. Thus, the working of the two test sta-
tistics can be interpreted in terms of fundamental properties
of phylogenetic trees, with the immediate consequence that
they may be applied as treeness tests for arbitrary dissimilar-
ity matrices.

An early test of treeness, based on a likelihood ratio, was
proposed by Cavalli-Sforza and Piazza (1975): They com-
pared the likelihood of the observed F2matrix to that induced

Figure 4 (A–C) Schematic explanation of how F2 behaves
conditioned on a gene tree. (A) Equation with terms cor-
responding to the branches in the tree below. Blue terms
and branches correspond to positive contributions, whereas
red branches and terms are subtracted. Labels represent
individuals randomly sampled from that population. Exter-
nal branches cancel out, so only the internal branches have
nonzero contribution to F2. In the concordant genealogy
(B), the contribution is positive (with weight 2), and in the
discordant genealogy (C), it is negative (with weight 1). The
mutation rate as constant of proportionality is omitted.
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by the best-fitting tree (assuming Brownian motion), rejecting
the null hypothesis if the tree likelihood is much lower than
that of the empirical matrix. In practice, however, finding the
best-fitting tree is a challenging problem, especially for large
trees (Felsenstein 2004), and so the likelihood test proved to
be difficult to apply. From that perspective, the F3 and F4 tests
provide a convenient alternative: Since treeness implies that
all subsets of taxa are also trees, the ingenious idea of Reich
et al. (2009) was that rejection of treeness for subtrees of sizes
3 (for F3) and 4 (for F4) is sufficient to reject treeness for the
entire tree. Furthermore, tests on these subsets also pinpoint
the populations involved in the non-tree-like history.

F3: Three population statistic

In the previous section, I showed how F2 can be interpreted as
a branch length, as an overlap of paths, or in terms of gene
trees (Figure 2). Furthermore, I gave expressions in terms of
coalescence times, allele frequency variances, and internal
branch lengths of gene trees. In this section, I give analogous
results for F3.

Reich et al. (2009) defined F3 as

F3ðPX ; P1; P2Þ ¼ F3ðpX ; p1; p2Þ ¼ EðpX 2 p1ÞðpX 2 p2Þ
(20a)

with the goal to testwhether PX is admixed. Recalling the path
interpretation detailed in Patterson et al. (2012), F3 can be
interpreted as the shared portion of the paths from PX to P1
with the path from PX to P1. In a population phylogeny (Fig-
ure 2E) this corresponds to the branch between PX and the
internal node. Equivalently, F3 can also be written in terms of
F2 (Reich et al. 2009):

F3ðPX ; P1; P2Þ ¼
1
2

	
F2ðPX ; P1Þ þ F2ðPX ; P2Þ2 F2ðP1; P2Þ



:

(20b)

If F2 in Equation 20b is generalized to an arbitrary treemetric,
Equation 20b is known as the Gromov product in phyloge-
netics (Semple and Steel 2003). The Gromov product is a
commonly used operation in classical phylogenetic algorithms
to calculate the length of the portion of a branch shared be-
tween P1 and P2 (Fitch et al. 1967; Felsenstein 1973; Saitou
and Nei 1987), consistent with the notion that F3 is the length
of an external branch in a population phylogeny.

In an admixture graph, there is no longer a single external
branch; instead all possible treeshave to be considered, and F3
is the (weighted) average of paths through the admixture
graph (Figure 2F).

Combining Equations 16 and 20b gives an expression of
F3 in terms of expected coalescence times:

F3ðPX ; P1; P2Þ ¼
u

2

	
ET1X þ ET2X 2ET122ETXX



: (20c)

Similarly, an expression in terms of variances is obtained by
combining Equation 2 with Equation 20b,

F3ðPX ; P1; P2Þ ¼ VarðpXÞ þ COVðp1; p2Þ2COVðp1; pXÞ
2COVðp2; pXÞ;

(20d)

which was also noted by Pickrell and Pritchard (2012).

Outgroup F3 statistics:

A simple application of the interpretation of F3 as a shared
branch length are the “outgroup” F3 statistics proposed by
Raghavan et al. (2014). For an unknown population PU, they
wanted to find the most closely related population from a
panel of k extant populations fPi; i ¼ 1; 2; . . . ; kg They did
this by calculating F3 (PO; PU, Pi), where PO is an outgroup
population that was assumedwidely diverged from PU and all
populations in the panel. This measures the shared drift (or
shared branch) of PU with the populations from the panel,
and high F3 values imply close relatedness.

However, using Equation 20c, the outgroup F3 statistic can
be written as

F3ðPO; PU; PiÞ}ETUO þ ETiO 2ETUi2ETOO: (21)

Of these four terms, ETUO and ETOO do not depend on Pi.
Furthermore, if PO is truly an outgroup, then all ETiO should
be the same, as pairs of individuals from the panel population
and the outgroup can coalesce only once they are in the joint
ancestral population. Therefore, only the term ETUi is
expected to vary between different panel populations, suggest-
ing that using the number of pairwise differences, pUi; is
largely equivalent to using F3 (PO; PU, Pi). I confirm this in
Figure 5A by calculating outgroup F3 and piU for a set of in-
creasingly divergent populations, with each population having
its own size, sample size, and sequencing error probability.
Linear regression confirms the visual picture that piU has a
higher correlation with divergence time (R2 = 0.90) than F3
(R2= 0.73).Hence, the number of pairwise differencesmay be
a better metric for population divergence than F3.

F3 admixture test:

However, F3 is motivated and primarily used as an admixture
test (Reich et al. 2009). In this context, the null hypothesis is
that F3 is nonnegative; i.e., the null hypothesis is that the data
are generated from a phylogenetic tree that has positive edge
lengths. If this is not the case, the null hypothesis is rejected
in favor of the more complex admixture graph. From Figure
2F it may be seen that drift on the path on the internal
branches (red) contributes negatively to F3. If these branches
are long enough compared to the branch after the admixture
event (blue), then F3 will be negative. For the simplest sce-
nario where PX is admixed between P1 and P2, Reich et al.
(2009) provided a condition when this is the case (equation
20 in supplement 2 of Reich et al. 2009). However, since this
condition involves F-statistics with internal, unobserved pop-
ulations, it cannot be used in practical applications. A more
useful condition is obtained using Equation 20c.
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In the simplest admixture model, an ancestral population
splits into P1 and P2 at time tr. At time t1, the populations mix
to form PX, such that with probability a, individuals in PX
descend from individuals from P1, and with probability
(12a), they descend from P2 (see Figure 7 for an illustration).
In this case, F3 (PX; P1, P2) is negative if

1
ð12 cxÞ

t1
tr

, 2að12aÞ; (22)

where cx is the probability two individuals sampled in PX have
a common ancestor before t1. For a randomly mating popu-
lation with changing size N(t),

cx ¼ 12 exp
�
2

Z t1

0

1
NðsÞ ds

�
:

Thus, the power of F3 to detect admixture is large (1) if the
admixture proportion a is close to 50%; (2) if the ratio be-
tween the times of the original split and the time of secondary
contact is large; and (3) if the probability of coalescence
before the admixture event in PX is small, i.e., the size of PX
is large.

Amore general condition for negativity of F3 is obtained by
considering the internal branches of the possible gene tree
topologies, analogously to that given for F2 in the Gene tree
branch lengths section. Since Equation 20c includes ETXX ;

only two individuals from PX are needed and one each from
P1 and P2 to study the joint distribution of all terms in (20c).
The minimal case therefore contains again just four samples
(Figure S2).

Furthermore, P1 and P2 are exchangeable, and thus there
are again just two distinct gene genealogies, a concordant one
T ð3Þ

c where the two lineages from PX are most closely related
and a discordant genealogy T ð3Þ

d where the lineages from PX
merge first with the other two lineages. A similar argument to
that for F2 shows (presented in Figure S2) that F3 can bewritten
as a function of just the internal branches in the topologies,

F3ðPX ; P1; P2Þ ¼ uð2Bc 2BdÞ; (23)

where Bc and Bd are the lengths of the internal branches in
T ð3Þ

c and T ð3Þ
d ; respectively, and similar to F2, concordant

branches have twice the weight of discordant ones. Again,
the case of all individuals coming from a single populations
serves as a sanity check: In this case T d is twice as likely as T c;

and all branches are expected to have the same length, result-
ing in F3 being zero. However, for F3 to be negative, note that
Bd needs to be more than two times longer than Bc: Since
mutations are proportional to Bd and Bc; F3 can be inter-
preted as a test whether mutations that agree with the pop-
ulation tree are more than twice as common as mutations
that disagree with it.

I performed a small simulation study to test the accuracy of
Equation 22. Parameters were chosen such that F3 has a neg-
ative expectation fora. 0.05, and I find that the predicted F3
fitted very well with the simulations (Figure 5B).

F4: Four population study

The second admixture statistic, F4, is defined as

F4ðP1; P2; P3; P4Þ¼ F4ðp1; p2; p3; p4Þ¼E

h
ðp1 2 p2Þðp32 p4Þ

i
(24a)

(Reich et al. 2009). Similarly to F3, F4 can be written as a
linear combination of F2,

F4ðP1; P2; P3; P4Þ ¼
1
2

	
F2ðP1; P4Þ þ F2ðP2; P3Þ

2 F2ðP1; P3Þ2 F2ðP2; P4Þ


; (24b)

which leads to

F4ðP1; P2; P3; P4Þ ¼
u

2

	
ET14 þ ET23 2ET13 2BET24



:

(24c)

As four populations are involved, there are 4! = 24 possible
ways of arranging the populations in Equation 24a. However,
there are four possible permutations of arguments that will
lead to identical values, leaving only six unique F4 values for
any four populations. Furthermore, these six values come in
pairs that have the same absolute value and a different sign
[i.e., F4ðP1; P2; P3; P4Þ ¼ 2 F4ðP1; P2; P4; P3Þ], leaving only
three unique absolute values, which correspond to the three
possible tree topologies. Of these three, one F4 can be written
as the sum of the other two, leaving just two independent
possibilities:

F4 ðP1; P2; P3; P4Þ þ F4 ðP1; P3; P2; P4Þ ¼ F4ðP1; P4; P2; P3Þ:

As for F3, Equation 24b can be generalized by replacing F2
with an arbitrary tree metric. In this case, Equation 24b is
known as a tree split (Buneman 1971), as it measures the
length of the overlap of the branch lengths between the two
pairs. As there are two independent F4 indexes for a fixed
tree, there are two different interpretations for the F4 in-
dexes. Consider the tree from Figure 1A: F4ðP1; P2; P3; P4Þcan
be interpreted as the overlap between the paths from P1 to P2
and from P3 to P4. However, these paths do not overlap in
Figure 1A, and therefore F4 = 0. This is how F4 is used as a
test statistic. On the other hand, F4ðP1; P3; P2; P4Þ measures
the overlap between the paths from P1 to P3 and from P2 to P4,
which is the internal branch in Figure 1A, andwill be positive.

It is cumbersome that the interpretation of F4 depends on
the ordering of its arguments. To make the intention clear,
instead of switching the arguments around for the two inter-
pretations, I introduce the superscripts (T) (for test) and (B)
(for branch length):

FðTÞ4 ðP1; P2; P3; P4Þ ¼ F4 ðP1; P2; P3; P4Þ (25a)

FðBÞ4 ðP1; P2; P3; P4Þ ¼ F4 ðP1; P3; P2; P4Þ: (25b)
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Four-point condition and F4: Tree splits, and hence F4, are
closely related to the four-point condition (Buneman 1971,
1974), which, informally, states that a (sub)tree with four
populations will have at most one internal branch. Thus, if
data are consistent with a tree, FðBÞ4 will be the length of that
branch, and FðTÞ4 will be zero. Figure 2, I–L, corresponds to the
internal branch and Figure 2, M–P, to the “zero” branch.

Thus, in the context of testing for admixture, testing that F4
is zero is equivalent to checking whether there is in fact only a
single internal branch. If that is not the case, the population
phylogeny is rejected. This statement can be generalized to
arbitrary tree metrics: The four-point condition (Buneman
1971) can be written as

F2 ðP1; P2Þ þ F2 ðP3; P4Þ#
min ½F2 ðP1; P3Þ þ F2 ðP2; P4Þ; F2 ðP1; P4Þ þ F2 ðP2; P3Þ� (26)

for any permutations of the samples. This implies that two of
the sums need to be the same and larger than the third one.
The claim is that if the four-point condition holds, at least one
of the F4 values will be zero, and the others will have the same
absolute value.

Without loss of generality, assume that

F2 ðP1; P2Þ þ F2 ðP3; P4Þ# F2 ðP1; P3Þ þ F2 ðP2; P4Þ
F2 ðP1; P3Þ þ F2 ðP2; P4Þ ¼ F2 ðP1; P4Þ þ F2 ðP2; P3Þ:

Simply plugging this into the three possible F4 equations
yields

F4 ðP1; P2; P3; P4Þ ¼ 0
F4 ðP1; P3; P2; P4Þ ¼ k
F4 ðP1; P4; P2; P3Þ ¼2 k;

where k ¼ F2 ðP1; P3Þ þ F2 ðP2; P4Þ2 F2 ðP1; P2Þ þ F2 ðP3; P4Þ:
It is worth noting that the converse is false. If

F2 ðP1; P2Þ þ F2 ðP3; P4Þ. F2 ðP1; P3Þ þ F2 ðP2; P4Þ
F2 ðP1; P3Þ þ F2 ðP2; P4Þ ¼ F2 ðP1; P4Þ þ F2 ðP2; P3Þ;

the four-point condition is violated, but F4ðP1; P2; P3; P4Þ is still
zero, and the other two F4 values have the same magnitude.

Gene trees: Evaluating F4 in terms of gene trees and their
internal branches, there are three different gene tree topolo-
gies that have to be considered, whose interpretation depends
on whether the branch length or test-statistic interpretation is
considered.

For the branch length [FðBÞ4 ], the gene tree corresponding
to the population tree has a positive contribution to F4, and
the other two possible trees have a zero and negative contri-
bution, respectively (Figure S3). Since the gene tree corre-
sponding to the population tree is expected to be most
frequent, F4 will be positive and can be written as

FðBÞ4 ¼ uðBc2BdÞ: (27)

This equation is slightly different from those for F2 and F3,
where the coefficient for the discordant genealogy was half
that for the concordant genealogy. Note, however, that F4 in-
cludes only one of the two discordant genealogies. Under a
tree, both discordant genealogies are equally likely (Durand
et al. 2011), and thus the expectation of F4 will be the same.

In contrast, for the admixture test statistic [FðTÞ4 ], the contri-
bution of the concordant genealogy will be zero, and the dis-
cordant genealogies will contribute with coefficients 21 and
+1, respectively and thus the expectation of F4 as a test statistic

FðTÞ4 ¼ u
�
Bc � B 9d

�
(28)

Figure 5 Simulation results. (A) Outgroup F3 statistics (yellow) and piU(white) for a panel of populations with linearly increasing divergence time. Both
statistics are scaled to have the same range, with the first divergence between the most closely related populations set to zero. F3 is inverted, so that it
increases with distance. (B) Simulated (boxplots) and predicted (blue) F3 statistics under a simple admixture model. (C) Comparison of F4 ratio (yellow
triangles, Equation 29) and ratio of differences (black circles, Equation 31).
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is zero under the null hypothesis. Furthermore, the statistic is
closely related to the ABBA-BABA or D-statistic also used to
test for admixture (Green et al. 2010; Durand et al. 2011),
which includes a normalization term and conditions on al-
leles being derived. In our notation the expectation of D is

E½D� ¼ B 9d � Bd
B 9d þ Bd

and thus, FðTÞ4 and D are different test statistics for the same
null hypothesis.

Rank test: Twomajor applications of F4 use its interpretation
as a branch length. First, the rank of amatrix of all F4 statistics is
used to obtain a lower bound on the number of admixture
events required to explain data (Reich et al.2012). The principal
idea of this approach is that the number of internal branches in a
genealogy is bounded to be at most n2 3 in an unrooted tree.
Since each F4 is a sum of the length of tree branches, all F4
indexes should be sums of n2 3 branches or n2 3 independent
components. This implies that the rank of the matrix (see, e.g.,
section 4 in McCullagh 2009) is at most n 2 3, if the data are
consistent with a tree. However, admixture events may increase
the rank of the matrix, as they add additional internal branches
(Reich et al. 2012). Therefore, if the rank of the matrix is r, the
number of admixture events is at least r 2 n + 3.

One issue is that the full F4matrix has size
�
n
2

�
3

�
n
2

�
and

may thus become rather large. Furthermore, inmany cases only
admixture events in a certain part of the phylogeny are of in-
terest. To estimate the minimum number of admixture events
on a particular branch of the phylogeny, Reich et al. (2012)
proposed to find two sets of test populations S1 and S2 and
two reference populations for each set R1 and R2 that are pre-
sumed unadmixed (see Figure 6A). Assuming a phylogeny, all
FðBÞ4 (S1, R1; S2, R2) will measure the length of the same branch,
and all FðTÞ4 (S1, R1; S2,R2) should be zero. Since each admixture
event introduces at most one additional branch, the rank of the
resulting matrix will increase by at most one, and the rank of
either the matrix of all FðTÞ4 or the matrix of all FðBÞ4 may reveal
the number of branches of that form.

Admixture proportion: The second application is by compar-
ing branches between closely related populations to obtain an
estimate of mixture proportion or how much two focal popula-
tions correspond to an admixed population (Green et al. 2010):

a ¼ F4 ðPO; PI; PX ; P1Þ
F4 ðPO; PI; P2; P1Þ

: (29)

Here, PX is the population whose admixture proportion is esti-
mated; P1 and P2 are the potential contributors, where I assume
that they contribute with proportions a and 12 a, respectively;
and PO, PI are reference populations with no direct contribution
to PX (see Figure 6B). PI has to be more closely related to one of
P1 or P2 than the other, and PO is an outgroup.

The canonical way (Patterson et al. 2012) to interpret this
ratio is as follows: The denominator is the branch length from

the common ancestor population from PI and P1 to the com-
mon ancestor of PI with P2 (Figure 6C, yellow line). The
numerator has a similar interpretation as an internal branch
(Figure 6C, red dotted line). In an admixture scenario (Figure
6B), this is not unique and is replaced by a linear combination
of lineages merging at the common ancestor of PI and P1
(with probability a) and lineages merging at the common
ancestor of PI with P2 (with probability 1 2 a).

Thus, amore general interpretation is thatameasures how
much closer the common ancestor of PX and PI is to the com-
mon ancestor of PI and P1 and the common ancestor of PI and
P2, indicated by the red dotted line in Figure 6C. This quantity
is defined also when the assumptions underlying the admix-
ture test are violated and, if the assumptions are not carefully
checked, might lead to misinterpretations of the data. In par-
ticular, a is well defined in cases where no admixture oc-
curred or in cases where either one of P1 and P2 did not
experience any admixture.

Furthermore, it is evident from Figure 6 that if all populations
are sampled at the same time, ETOX ¼ ETO1 ¼ ETO2 ¼ ETOI;
and therefore

a ¼ ETI1 2ETIX
ETI1 2ETI2

: (30)

Thus,

a ¼ pI1 2pIX

pI1 2pI2
(31)

is another estimator fora that can be used even if no outgroup is
available. I compare Equations 29 and 31 for varying admixture
proportions in Figure 5C, using the mean absolute error in the
admixture proportion. Both estimators perform very well, but
(31) performs slightly better in cases where the admixture pro-
portion is low. However, in most cases this minor improvement
possibly does not negate the drawback that Equation 31 is ap-
plicable only when populations are sampled at the same time.

An area of recent development is how these estimates can
be extended to more populations. A simple approach is to
assume a fixed series of admixture events, in which case
admixture proportions for each event can be extracted from
a series of F4 ratios (Lazaridis et al. 2014, SI 13). A more
sophisticated approach estimates mixture weights using the
rank of the F4 matrix, as discussed in the Rank test section
(Haak et al. 2015, SI 10). Then, it is possible to estimate
mixture proportions, using amodel similar to that introduced
in the program structure (Pritchard et al. 2000), by obtaining
a low-rank approximation for the F4 matrix.

Population structure models

Here, I useEquation16 togetherwithEquations 20band24b to
derive expectations for F3 and F4 under some simple models.

Panmixia: In a randomly mating population (with arbitrary
population size changes), P1 and P2 are taken from the same
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pool of individuals and therefore ET12 ¼ ET11 ¼ ET22;EF2 ¼
EF3 ¼ EF4 ¼ 0:

Island models: A (finite) islandmodel hasD subpopulations of
size 1 each.Migration occurs at rateM between subpopulations.
It can be shown (Strobeck 1987) that ET11 ¼ ET22 ¼ D (...),
and ET12 satisfies

ET12 ¼ 1
ðD2 1ÞM þ D2 2

D2 1
ET12 þ

1
D2 1

ET11 (32)

with solution ET12 ¼ 1þM21: This results in the equation in
Figure 7. The derivation of coalescence times for the hierar-
chical island models is marginally more complicated, but
similar. It is given in Slatkin and Voelm (1991).

Admixture models: These are the models for which the F-
statistics were originally developed. Many details, applications,
and the origin of the path representation are found in Patterson
et al. (2012). For simplicity, I look at the simplest possible tree
with four populations, where PX is admixed from P1 and P2 with
contributions a and b ¼ ð12aÞ; respectively. I assume that all
populations have the same size and that this size is 1. Then,

F3ðPX ; P1; P2Þ}ET1X þ ET2X 2ET12 2ETXX
¼ ðat1 þ btr þ 1Þ þ ðatr þ bt1 þ 1Þ2 tr 2 1

2a212 ð12aÞ212 2að12aÞ
�
ð12 cxÞtr þ 1

�
¼ t1 2 2að12aÞð12 cxÞtr:

(33)

Here, cx is the probability that the two lineages from PX co-
alesce before the admixture event.

Thus, F3 is negative if

t1
ð12 cxÞtr

, 2að12aÞ; (34)

which is more likely if a is large, the admixture is recent, and
the overall coalescent is far in the past.

For F4, omitting thewithin-population coalescence time of 1,

F4 ðP1PX ; P2; P3Þ ¼ ET12 þ ET3X 2ET132ET2X

¼ tr þ atr þ bt23 2 tr 2atr 2bt2X

¼ bðt2 2 t1Þ:

Stepping-stone models: For the stepping-stonemodels, I have
to solve the recursions of the Markov chains describing the

location of all lineages in a sample of size 2. For the standard
stepping-stone model, I assumed there were four demes, all of
which exchange migrants at rate M. This results in a Markov
chain with the following five states: (i) lineages in same deme,
(ii) lineages in demes 1 and 2, (iii) lineages in demes 1 and 3,
(iv) lineages in demes 1 and 4, and (v) lineages in demes 2 and
3. Note that the symmetry of this system allows collapsing
some states. The transition matrix for this system is0

BBBB@
1 0 0 0 0
2M 12 3M M 0 0
0 M 123M M M
0 0 2M 12 2M 0
2M 0 2M 0 12 4M

1
CCCCA: (35)

Once lineages are in the same deme, the system terminates as
the time to coalescence time is independent of the deme in
isotropic migrationmodels (Strobeck 1987) and cancels from
the F-statistics.

Therefore, the vector v of the expected time until two
lineages are in the same deme is found using standard Mar-
kov chain theory by solving v = (I 2 T)21)1, where T is the
transition matrix involving only the transitive states in the
Markov chain (all but the first state), and 1 is a vector of 1’s.

Finding the expected coalescence time involves solving a
systemoffive equations. The terms involved in calculating the
F-statistics (Table 1) are the entries in v corresponding to
these states.

The hierarchical case is similar, except there are six demes
and 10 equations. Representing states as lineages being in
demes (same), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 3), (2, 4),
(2, 5), (3, 4),

As in the nonhierarchical case, solving this system yields all
pairwise coalescence times. Then, all I have to do is average
the coalescence times over all possibilities; e.g.,

ET1X ¼ v2 þ v3 þ v6 þ v7
4

: (36)

For F4, I assume that demes 1 and 2 are in P1, demes 3 and 4
are in PX, and demes 5 and 6 correspond to P2 and P3,
respectively.

Range expansion model: I use a serial foundermodelwith no
migration (Peter and Slatkin 2015), where I assume that the
expansion is recent enough such that the effect of migration

Figure 6 Applications of F4. (A) Visualization
of rank test to estimate the number of admix-
ture events. F4 (S1, R1, S2, R2) measures a
branch absent from the phylogeny and should
be zero for all populations from S1 and S2. (B)
Model underlying admixture ratio estimate
(Green et al. 2010). PX splits, and the mean
coalescence time of PX with PI gives the admix-
ture proportion. (C) If the model is violated, a
measures where on the internal branch in the
underlying genealogy PX (on average) merges.
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after the expansion finished can be ignored. Under that
model, I assume that samples P1 and P2 are taken from demes
D1 and D2, with D1 closer to the origin of the expansion and
populations with high identification numbers even farther
away from the expansion origin. Then E  T12 ¼ t1þ ET11;
where Et1 is the time required for a lineage sampled farther
away in the expansion to end up in D1. (Note that t1 depends
only on the deme that is closer to the origin.) Thus, for three
demes,

F3ðP2; P1; P3Þ}ET12 2ET13 þ ET23 2ET22
}ET11 þ t1 2ET11 2 t1 þ ET22 þ t2 2ET22
} t2

and

FðTÞ4 ðP1; P2; P3; P4Þ}ET13 2ET14 þ ET242ET23
}ET11 þ t1 2ET11 2 t1 þ ET22
þ t2 2ET22 2 t2

¼ 0:

Figure 7 Expectations for F3 and F4 under select models. The constant factor u=2 is omitted.

0
BBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0
2M 12 3M M 0 0 0 0 0 0 0
0 M 12 3M M 0 0 M 0 0 0
0 0 M 12 3M M 0 0 M 0 0
0 0 0 M 12 3M M 0 0 M 0
0 0 0 0 2M 122M 0 0 0 0
2M 0 M 0 0 0 12 4M M 0 0
0 0 0 M 0 0 M 12 4M M M
0 0 0 0 2M 0 0 2M 12 4M 0
2M 0 0 0 0 0 0 2M 0 12 4M

1
CCCCCCCCCCCCCCA

:
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More interesting is

FðBÞ4 ðP1; P2; P3; P4Þ}ET122ET14 þ ET342ET23
}ET11 þ t1 2ET11 2 t1 þ ET33
þ t3 2ET22 2 t2

}ET33 þ t32ET222 t2:

A hierarchical stepping-stone model, where demes are com-
bined into populations, is the only case I studied (besides the
admixture graph) where F3 can be negative. This effect indi-
cates that admixture and population structure models may be
the two sides of the same coin: Admixture is a (temporary)
reduction in gene flow between individuals from the same
population. Finally, for a simple serial founder model without
migration, I find that F3 measures the time between subse-
quent founder events.

Simulations

Simulations were performed using ms (Hudson 2002). Spe-
cific commands used are

ms 466 100 -t 100 -r 10 100000 -I 12 22 6 61 49 57 33
43 34 40 84 13 24 -en 0 2 7.2 -en 0 3 .2 -en 0 4 .4 -en
0 5 .2 -en 0 6 4.4 -en 0 7 3.2 -en 0 8 4.8 -en 0 9 0.2
-en 0 10 3.2 -en 0 11 0.2 -en 0 12 0.7 -ej 0.01 2 1
-ej 0.02 3 1 -ej 0.04 4 1 -ej 0.06 5 1 -ej 0.08 6 1
-ej 0.10 7 1 -ej 0.12 8 1 -ej 0.14 9 1 -ej 0.16 10 1
-ej 0.18 11 1 -ej 0.3 12 1

for the outgroup F3 statistic (Figure 5A). Sample sizes and
population sizes were picked randomly, but kept the same
over all 100 replicates. Additionally, I randomly assigned
each population an error rate uniformly between 0 and
0.05. Errors were introduced by adding additional singletons
and flipping alleles at that rate.

For Figure 5B, the command was

ms 301 100 -t 10 -I 4 100 100 100 1 -es 0.001 2
$ALPHA -ej 0.03 2 1 -ej 0.03 5 3 -ej 0.3 3 1 -ej
0.31 4 1

with the admixture proportion $ALPHA set to increments of
0.025 from0 to0.5,with200data sets generatedper$ALPHA.

Finally, data for Figure 5C were simulated using

ms 501 100 -t 50 -r 50 10000 -I 6 100 100 100 100 100
1 -es 0.001 3 $ALPHA -ej 0.03 3 2 -ej 0.03 7 4 -ej
0.1 2 1 -ej 0.2 4 1 -ej 0.3 5 1 -ej 0.31 6 1

Here, the admixture proportion $ALPHAwas varied in incre-
ments of 0.1 from 0 to 1, again with 200 data sets generated
per $ALPHA.

F3 and F4 statistics were calculated using the implementa-
tion from Pickrell and Pritchard (2012).

Estimation and testing

In this article, I focused almost exclusively on the theoretical
properties of the F-statistics, glancing over the statistical
problems of how they are estimated. Many procedures are
implemented in the software package ADMIXTOOLS and de-

scribed in Patterson et al. (2012). Alternatively, the software
package treemix (Pickrell and Pritchard 2012) contains light-
wight alternatives for calculating F3 and F4 statistics. Both use
a block-jackknife approach to estimate standard errors, tak-
ing linkage between markers into account.

Discussion

There are three main ways to interpret F-statistics: In the
simplest case, they represent branches in a population phy-
logeny. In the case of an admixture graph, the idea of shared
drift in terms of paths is most convenient. Finally, the expres-
sions in terms of coalescence times and the lengths of the
internal branches of gene genealogies are useful for more
complex scenarios. This last interpretationmakes the connec-
tion to the ABBA-BABA statistic explicit and allows the in-
vestigation of the behavior of the F-statistics under arbitrary
demographic models.

If drift indexes exist for two, three, and four populations,
should there be corresponding quantities for five or more
populations (e.g., Pease andHahn 2015)? Two of the interpre-
tations speak against this possibility: First, a population phy-
logeny can be fully characterized by internal and external
branches, and it is not clear how a five-population statistic
could be written as a meaningful branch length. Second, all
F-statistics can be written in terms of four-individual trees, but
this is not possible for five samples. This seems to suggest that
there may not exist a five-population statistic as general as the
three F-statistics I discussed here, but they will still be useful
for questions pertaining to a specific demographic model.

Awell-known drawback of F3 is that it may have a positive
expectation under some admixture scenarios (Patterson et al.
2012). Here, I showed that F3 is positive if and only if the
branch supporting the population tree is longer than the two
branches discordant with the population tree. Note that this
is (possibly) distinct from the probabilities of tree topologies,
although the average branch length of the internal branch in
a topology and the probability of that topology are frequently
strongly correlated. Thus, negative F3 values indicate that
individuals from the admixed population are likely to coalesce
with individuals from the two other populations, before they
coalesce with other individuals from their own population!

For practical purposes, it is useful to know how the admix-
ture tests perform under demographic models different from
population phylogenies and admixture graphs and in which
cases the assumptions made for the tests are problematic. In
other words, under which demographic models is population
structuredistinguishable froma tree?Equation16enables the
derivation of expectations for F3 and F4 under a wide variety
of models of population structure (Figure 7). The simplest
case is that of a single panmictic population. In that case, all
F-statistics have an expectation of zero, consistent with the
assumption that no structure and therefore no population
phylogeny exists. Under island models, F4 is also zero, and
F3 is inversely proportional to the migration rate. Results are
similar under a hierarchical island model, except that the
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number of demes has a small effect. This corresponds to a pop-
ulation phylogeny that is star-like and has no internal branches,
which is explained by the strong symmetry of the island model.
Thus, looking at different F3 and F4 statistics may be a simple
heuristic to see whether data are broadly consistent with an
island model; if F3 values vary a lot between populations, or if
F4 is substantially different from zero, an island model might be
a poor choice.When looking at a finite stepping-stonemodel, F3
and F4 are both nonzero, highlighting that F4 (and the ABBA-
BABAD-statistic) is susceptible tomigration between any pair of
populations. Thus, for applications, F4 should be used as an
admixture test only if there is good evidence that gene flow
between some pairs of the populations was severely restricted.

Overall, when F3 is applicable, it is remarkably robust to
population structure, requiring rather strong substructure to
yield false positives. Thus, it is a very striking finding that in
many applications to humans, negative F3 values are com-
monly found (Patterson et al. 2012), indicating that for most
human populations, the majority of markers support a dis-
cordant gene tree, which suggests that population structure
and admixture are widespread and that population phyloge-
nies are poorly suited to describe human evolution.

Ancient population structure was proposed as possible
confounder for the D-statistic and F4 statistic (Green et al.
2010). Here, I show that nonsymmetric population structure
such as in stepping-stonemodels can lead to nonzero F4 values,
showing that both ancestral and persisting population structure
may result in false positives when assumptions are violated.

Furthermore, I showed that F2 can be seen as a special case
of a treemetric and that using F-statistics is equivalent to using
phylogenetic theory to test hypotheses about simple phyloge-
netic networks (Huson et al. 2010). From this perspective, it is
worth raising again the issue pointed out by Felsenstein (1973)
of how and when allele-frequency data should be transformed
forwithin-species phylogenetic inference.While F2 has become
a de facto standard, different transformations of allele frequen-
cies might be useful in some cases, as both F3 and F4 can be
interpreted as tests for treeness for arbitrary tree metrics.

This relationship provides ample opportunities for interac-
tion between these currently diverged fields: Theory (Huson
and Bryant 2006; Huson et al. 2010) and algorithms for find-
ing phylogenetic networks such as Neighbor-Net (Bryant and
Moulton 2004) may provide a useful alternative to tools spe-
cifically developed for allele frequencies and F-statistics
(Patterson et al. 2012; Pickrell and Pritchard 2012; Lipson
et al. 2013), particularly in complex cases. On the other hand,
the tests and different interpretations described here may be
useful to test for treeness in other phylogenetic applications,
and the complex history of humans may provide motivation
to further develop the theory of phylogenetic networks and
stress its usefulness for within-species demographic analyses.
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Figure S1 Path interpretation of F2: F2 is interpreted as the covariance of two possible paths from P1 to P2, which I color green and
blue, respectively. Only branches that are taken by both paths contribute to the covariance. With probability α, a path takes the left
admixture edge, and with probability β = 1− α, the right one. I then condition on which admixture edge the paths follow: In the
first tree on the right-hand side, both paths take the right admixture edge (with probability α2, in the second and third tree they take
different or the right path, respectively. The result is summarized as the weighted sum of branches in the left-hand side tree. For a
more detailed explanation, see Patterson et al. (2012).
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C. Discordant genealogy

B. Concordant genealogy

A. Equation

Figure S2 Schematic explanation how F3 behaves conditioned on gene tree. Blue terms and branches correspond to positive con-
tributions, whereas red branches and terms are subtracted. Labels represent individuals randomly sampled from that population.
The external branches cancel out, so only the internal branches have non-zero contribution to F3. In the concordant genealogy
(Panel B), the contribution is positive (with weight 2), and in the discordant genealogy (Panel C), it is negative (with weight 1). The
mutation rate as constant of proportionality is omitted.
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C. Discordant genealogy (BABA)

B. Concordant genealogy

A. Equation

D. Discordant genealogy (ABBA)

Figure S3 Schematic explanation how F4 behaves conditioned on gene tree. Blue terms and branches correspond to positive con-
tributions, whereas red branches and terms are subtracted. Labels represent individuals randomly sampled from that population.
All branches cancel out in the concordant genealogy (Panel B), and that the two discordant genealogies contribute with weight +2
and -2, respectively The mutation rate as constant of proportionality is omitted.
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