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ABSTRACT Fitness is a central quantity in evolutionary models of viruses. However, it remains difficult to determine viral fitness
experimentally, and existing in vitro assays can be poor predictors of in vivo fitness of viral populations within their hosts. Next-
generation sequencing can nowadays provide snapshots of evolving virus populations, and these data offer new opportunities for
inferring viral fitness. Using the equilibrium distribution of the quasispecies model, an established model of intrahost viral evolution, we
linked fitness parameters to the composition of the virus population, which can be estimated by next-generation sequencing. For
inference, we developed a Bayesian Markov chain Monte Carlo method to sample from the posterior distribution of fitness values. The
sampler can overcome situations where no maximum-likelihood estimator exists, and it can adaptively learn the posterior distribution
of highly correlated fitness landscapes without prior knowledge of their shape. We tested our approach on simulated data and applied
it to clinical human immunodeficiency virus 1 samples to estimate their fitness landscapes in vivo. The posterior fitness distributions
allowed for differentiating viral haplotypes from each other, for determining neutral haplotype networks, in which no haplotype is
more or less credibly fit than any other, and for detecting epistasis in fitness landscapes. Our implemented approach, called QuasiFit, is
available at http://www.cbg.ethz.ch/software/quasifit.

FITNESS is a central quantity in evolutionary biology. It
can be regarded as a measure of reproductive capacity of

each individual. In evolving populations, individuals with
higher fitness can outcompete those with lower fitness. Fit-
ness depends on the genetic composition of the individual’s
haplotype, i.e., the allelic constellation of multiple loci of its
genome, and on the environment, i.e., the host conditions
for viral reproduction. Determining the fitness of viruses in
a population is experimentally difficult and laborious, be-
cause individual virus particles need to be isolated and an-
alyzed separately. In vitro determination of viral fitness
usually involves enzymatic, growth competition, or mono-

infection assays (Quiñones-Mateu and Arts 2002). A draw-
back to all in vitro measurements of viral fitness is the
removal of viruses from the environment to which they have
adapted. Such estimates disregard effects on the fitness
landscape deriving from the natural in vivo environment.

RNA viruses, such as human immunodeficiency virus
(HIV), have very high mutation rates (Rezende and Prasad
2004), and the number of haplotypes that arise in the nor-
mal course of intrahost evolution can be extremely large
(Steinhauer and Holland 1987). Thus, HIV populations change
and explore sequence space on timescales that are much
shorter than those of higher eukaryotes. As such, RNA viruses
lend themselves to being studied as model systems of evolu-
tionary theory. In clinical settings, viral fitness is also of great
interest. Disease progression, the formation of escape
mutants, and ultimately treatment failure depend on viral
fitness (Clavel and Hance 2004; Beerenwinkel et al. 2013).

The frequencies of viral haplotypes are determined by
evolutionary parameters, including mutation rate and fit-
ness. With the advent and exponential decrease in cost of
next-generation sequencing (NGS) data (Niedringhaus et al.
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2011), the technical prerequisites for affordable in-depth
personalized diagnostics are within reach. Acevedo et al.
(2014) have shown that inference of marginal fitness effects
of single nucleotide variants in viruses with NGS is possible
already today. High-quality NGS data for intrahost viral pop-
ulations will become ubiquitous in the near future, making
in vivo fitness analysis on the basis of such data possible.

A fitness landscape is the association of a real, non-
negative fitness value to each haplotype. Fitness landscapes
can be perfectly correlated, “Mount Fuji”-like with strong
correlation between the fitnesses of closely related haplo-
types or, on the other end of the spectrum, extremely rugged
and spiky (“house of cards”), with no correlation of fitness
values between related haplotypes (Gavrilets 2004). The
effect of multiple alleles acting in concert to confer a fitness
unexpected from the individual alleles is termed epistasis.
The key factor for the ruggedness of a fitness landscape is
the degree of epistasis involved in shaping it.

Several computational methods have been proposed for
predicting in vitro fitness from viral sequence (Segal et al.
2004; Deforche et al. 2008; Ma et al. 2010; Hinkley et al.
2011; Ferguson et al. 2013) and for analyzing the structure
of HIV in vitro fitness landscapes (Beerenwinkel et al. 2007a,
b; Kouyos et al. 2012). For example, Hinkley et al. (2011)
have performed large-scale in vitro fitness estimation of the
HIV-1 protease and reverse transcriptase in the absence of
drugs as well as in the presence of 15 antiretroviral drugs.
However, neither this nor any other published study consid-
ers intrahost viral genetic diversity and hence none can
account for in vivo fitness effects deriving from the host
environment.

To estimate in vivo fitness landscapes and without direct
observation of the growth kinetics of the viral population, an
evolutionary model is required that links fitness to haplotype
frequencies. Here we employ, for this purpose, the quasispecies
model, an established model of intrahost viral evolution (Eigen

and Schuster 1977; Burch and Chao 2000; Vignuzzi et al. 2005;
Metzner et al. 2009; Domingo et al. 2012), which is mathemat-
ically tractable. One of the predictions of quasispecies theory
that has stood the test of time is the existence of an error
threshold in viral replication. If the mutation rate of a virus
lies above this critical threshold, then mutation will cause
genetic information to be lost. Anderson et al. (2004) have
shown this phenomenon to exist in practice with the use of
mutagenic nucleosides.

In this article, we establish a computational framework
for estimating fitness from NGS data based on quasispecies
theory. The Markov chain Monte Carlo (MCMC) sampler
developed here infers the posterior distribution of fitness
landscapes given NGS count data obtained from mixed intra-
host virus populations (Figure 1). This inference scheme makes
use of cross-sectional data, which are common in clinical set-
tings, and where time series data are scarce.

Methods

The quasispecies model

The quasispecies model describes the evolution of an infinite
population of DNA (or RNA) sequences (Eigen and Schuster
1977). We define the DNA alphabet A ¼ A;C;G;Tgf and
DNA sequence space of a genomic region of length L as the
Cartesian product AL ¼ ða1; :::; aLÞ j ai 2 A :gf The elements
of AL are synonymously referred to as viral haplotypes, gen-
otypes, or strains. They are indexed by i ¼ 1; . . . ;m ¼ jAjL:

The quasispecies equation is a first-order coupled non-
linear differential equation describing the temporal dynamics
of a population subject to mutation and selection. Selection
results from increased replication due to higher fitness, and
coupling between haplotypes is maintained by mutation. A
quasispecies is a cloud of closely connected haplotypes that
evolve according to

Figure 1 Schematic illustration of
fitness landscapes and quasispecies.
On the left is a fitness landscape
on a simple biallelic two-locus
genome. Here, 0 indicates a wild-
type allele and 1 indicates a mu-
tant allele and the vertical axis
indicates fitness f. The fitness
landscape also includes epistasis,
as the fitness of the double mu-
tant is not additive in the main fit-
ness effects of the two mutant
alleles. For this fitness landscape,
at equilibrium, the quasispecies
equation yields the quasispecies,
i.e., the mutation–selection equi-

librium (right-hand side). The vertical bars indicate the relative frequency p of each haplotype. In practice, these frequencies are not known but can be
estimated from next-generation sequencing data. The stacked horizontal lines represent reads from a sequencing experiment and amount to a finite
sample of the quasispecies. Solid circles and crosses indicate mutant alleles at the two loci. Due to the sampling variance inherent in the finite sample, the
number of reads will not match the frequencies exactly. Note that fitness values for the haplotypes need not show a strong linear correlation with the
haplotype frequencies, as mutational coupling can obscure this relationship. Given a finite sample of the population, we aim to infer properties of
the fitness landscape (right-to-left arrow).
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_piðtÞ ¼
Xm
j¼1

pjðtÞfjqji 2 piðtÞ
Xm
j¼1

pjðtÞfj; i 2 f1; . . . ;mg; (1)

where pi(t) denotes the relative frequency at time t $ 0, fi
the fitness of haplotype i, and qji the probability of haplotype
j mutating into haplotype i upon replication. The term pj(t)
fjqji in the first sum denotes the flux, i.e., the approximate
amount of haplotype j mutating into haplotype i per unit
time. The second sum is a normalization constant and ensures
that the frequencies of all haplotypes sum to 1 for all time
points. The fitness landscape f ¼ ð f1; . . . ; fmÞT 2 ℝm

þ is static
and does not change with time. In matrix notation, the qua-
sispecies Equation 1 becomes

_pðtÞ ¼ QTdiagðfÞpðtÞ2fðpðtÞ; fÞpðtÞ (2)

with p¼ðp1;...;pmÞT2Dm21¼fðx1;...;xmÞT2ℝm
þ jPm

i¼1xi ¼ 1 ;g
the (m21)-dimensional probability simplex, average
fitness f(p(t), f ) = p � f, and mutation probability matrix
Q = (qij). In the literature, the mutation–selection matrix
QTdiag(f) is often denoted W (Eigen et al. 1988; Wilke
2005).

Equilibrium distribution: The equilibrium distribution p*
of the quasispecies Equation 2 is well known (Eigen et al.
1988). It is obtained by setting _pðtÞ ¼ 0; such that

fðp; fÞp* ¼ QTdiagðfÞp*: (3)

If Q has only positive entries, then every haplotype has
a nonzero probability of mutating into any other haplotype,
and the transition matrix Q is irreducible and a Perron ma-
trix. If all fitness values are also positive, then the matrix
QTdiag(f), which is a column-wise reweighting of QT, is still
a Perron matrix. As a consequence of the Perron–Frobenius
theorem, there exists a unique real eigenvalue f larger than
the absolute value of the real part of any other eigenvalue.
To determine the equilibrium distribution (Equation 3), we
first calculate the largest real eigenvalue f of QTdiag(f) and
its associated eigenvector possessing only positive compo-
nents. Normalizing this eigenvector by dividing it by the
sum of its components yields the global equilibrium distri-
bution of the quasispecies equation (Eigen et al. 1988;
Nowak and May 2000).

The mutation–selection equilibrium p* is referred to as
the quasispecies in quasispecies theory. The quasispecies
model can be formulated for finite populations, where it is
very similar to the Wright–Fisher model (Park et al. 2010;
Musso 2012). When the effective population size Ne and the
mutation rate m are such that Nem. 1, then the quasispecies
is closely related to classical mutation–selection equilibrium
from population genetics as exemplified in Wright’s equa-
tion (Wilke 2005).

The single globally stable mutation–selection equilibrium
is one appealing feature of the quasispecies equation, mak-
ing it more tractable than other models of evolution. For

fixed Q, we denote by Qm21=Dm21 the set of all stationary
distributions p* arising under the quasispecies model for
positive fitness landscapes f 2 ℝm

þ :

Haplotype space and mutation probabilities: Working
with the full combinatorial DNA sequence space AL is in-
feasible, because its dimension grows exponentially in L. To
employ this model for real data, we work on a reduced
haplotype subset H3AL that is sufficiently small to allow
for computational analysis but large enough to account for
HIV’s large heterogeneity. In practice, the haplotype space H
contains all haplotypes observed in the sequencing data,
plus additional unobserved ones, such that it is sufficiently
connected, as detailed below. Working on a reduced haplo-
type space also reflects biological reality, where most DNA
sequences of length L do not encode viable viruses and
hence are extremely unlikely to arise in the course of HIV
evolution and can safely be ignored.

To define the mutation probabilities (supporting infor-
mation, File S1, section 1), we assume an identical per-site
mutation probability m . 0. This constant reflects the fidel-
ity of reverse transcription and is �3 3 1025 per replication
for HIV. We denote by d(i, j) the Hamming distance between
haplotypes i and j, i.e., the number of loci at which they
differ. For a haplotype subset H of cardinality n, we define
Q = (qij) by setting

qij ¼
�

m

jAj21

�dði;jÞ
� ð12mÞL2dði; jÞ (4)

for all i 6¼ j, and qii ¼ 12
P

j2f1;...;ng =fig qij; for all i = 1, . . . ,
n. In the case that the uniform mutation probabilities are
considered too restricted, a more general two-rate model

Figure 2 Illustration of the procedure to make the haplotype graph G1

connected. Solid circles indicate observed haplotypes from sequencing in
sequence space. Observed haplotypes are grouped in three connected
components denoted with uppercase letters in boldface type, A, B, and
C. The shortest mutational path between any pair of connected compo-
nents is indicated with lines and labeled with lowercase italic letters a, b,
and c. Blue solid circles indicate those haplotypes forming the endpoints
of the shortest path between any pair of connected components. The aim
is to make the whole graph connected while inserting the least number of
unobserved haplotypes. In this case, the two paths a and b require insert-
ing only two unobserved haplotypes each, while path c requires inserting
eight haplotypes and is not used. The edges a and b form the minimum
spanning tree of connected components and the haplotypes representing
the solid circles are inserted.
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can be used for setting up the mutation matrix Q (File S1,
section 1A).

Either way, the matrix Q is positive, symmetric, and sto-
chastic. Furthermore, as Q is strictly diagonally dominant, it
is also regular due to the Levy–Desplanques theorem (Horn
and Johnson 1985). We fix Q for the rest of this article and
focus on estimating the fitness landscape. In this setting, the
quasispecies model is identifiable. By contrast, it has been
shown that even with time series data, Q and f jointly are
structurally nonidentifiable, because the quasispecies equa-
tion is overparameterized (Falugi and Giarré 2009).

While Q is mathematically irreducible, i.e., every haplo-
type can mutate into every other haplotype with positive
probability, technical precision limits imposed by machine
precision can lead to situations where Q is not numerically
irreducible any longer. Let Gk ¼ ðH; EkÞ be the undirected
graph with vertices H and edges ði; jÞ 2 Ek whenever
dði; jÞ# k: For a given k that depends on machine precision
and on the mutation rate m, Q will be numerically irreduc-
ible if the haplotype graph Gk is connected, i.e., if a path
exists between any pair of haplotypes. For HIV, we require
k # 1 when using standard precision and k # 2 when using
quadruple precision, for three reasons. First, biologically,
any three mutations in one replication cycle occur with
a probability of �10215, which is orders of magnitude lower
than the inverse of the number of virions. Second, the ap-
proximate transition rate of 10215 is numerically bordering
on machine e = 2.22 3 10216, leaving little overhead for
precise calculations (see File S1, section 5A). Finally, most
haplotypes will be generated by mutation from haplotypes
closely related to them, such that in the asymptotic limit of
an infinitely large population size, the great majority of the
influx by mutation will still originate from very closely re-
lated haplotypes.

In practice, we constructH from observed data as follows
(see Figure 2 for an illustration). For a given k (1 in the case
of standard precision), we first construct Gk from the ob-
served haplotypes and determine its connected components.
If the number of connected components is .1, we proceed
to augmentH by including additional unobserved haplotypes
to increase connectivity. We iterate over all pairs of con-
nected components and determine the haplotype in each
connected component closest to the haplotypes in the other

connected component. We draw an edge between these two
haplotypes with weight equal to their Hamming distance.
We then build the minimum weight spanning tree between
connected components. Finally, we replace all of the edges
of the minimum weight spanning tree by linear chains of k
mutational steps by inserting unobserved haplotypes. The
stability of this procedure is detailed in File S1, section 5B.

Fitness landscape space: The quasispecies equation describes
the dynamics of an evolving population of haplotypes, but in
clinical practice, time series data are difficult and expensive to
produce and thus scarce. Hence, we apply the model to cross-
sectional data by analyzing the quasispecies in mutation–
selection equilibrium (Equation 3). With this assumption, we
cannot determine the timescale of approaching the equilib-
rium, which is reflected in the magnitude of the fitness land-
scape f. We therefore constrain the average fitness to f = 1,
removing 1 d.f. The constraint fitness space is denoted

Fn21 ¼ ff 2 ℝn
þ : f ¼ p*� f ¼ 1g: (5)

We can now ask, for a given equilibrium distribution p, what
is the corresponding fitness landscape f? This amounts to
solving Equation 3 for f. The solution defines the mapping
h : Qn21/F n21;

hðpÞ ¼ f ¼ diagðpÞ21Q21p; p 2 Qn21; (6)

where Qn21=Dn21 is the quasispecies space defined above
(File S1, section 2B). The mapping h is a bijection with in-
verse denoted by g : F n21/Qn21 (Figure 3; File S1, sec-
tions 2 and 2A). This property is critical, as it allows for
estimating fitness parameters in F n21 from haplotype fre-
quencies in Qn21:

Inference of the fitness landscape

To estimate fitness in the equilibrium quasispecies model,
we require a sample of the viral population. The data vector
X 2 ℕn records the count Xi of each haplotype i among
N ¼ Pn

i¼1Xi reads sampled in total. Classical methods such
as limiting dilution assays with Sanger sequencing can be
used to produce such data. Nowadays, NGS is far less labo-
rious and produces data with ever increasing depth. As
NGS data are generally noisy, i.e., they include erroneously

Figure 3 Sample space ℝn21 (left), quasispecies space Qn21=Dn21 (center), and fitness space F n21 (right). Sample space is mapped to the population
distribution space by t with inverse t21: The quasispecies space Qn21 is mapped to fitness space F n21 by h with inverse g. Note the lower and upper
bounds of the marginal relative frequencies in the two-haplotype model q21 , p1 , q11 and q12 , p2 , q22.
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incorporated bases with respect to the true template, several
methods have been developed to address this problem.
Probabilistic and combinatorial approaches can be used for
preprocessing raw NGS data to reduce errors and to infer
the composition of the viral population X (Beerenwinkel
et al. 2012).

If we assume that haplotypes have been inferred from
raw sequencing data, then the read counts from one NGS
experiment represent a sample from the multinomial distri-
bution Mult(X|p). Furthermore, if we assume p = g(f) as the
quasispecies equilibrium distribution, this narrows the pa-
rameter space. Whereas usually Dn21 is the parameter space
of the multinomial distribution, we have to work with qua-
sispecies space Qn21 as only elements from this set can rep-
resent true underlying quasispecies distributions. For certain
data sets where N21X;Qn21; a maximum-likelihood estima-
tor p̂ will not exist, because Qn21 is an open set and is there-
fore not compact. Such situations can arise, for example,
when Xi = 0 for some haplotype i 2 H: This property makes
resampling techniques like bootstrapping intractable for realis-
tic data sets due to the increasingly large number of bootstrap
samples not having a maximum-likelihood estimator (MLE).

We address this statistical problem in a Bayesian fashion.
This approach not only gives us the full posterior p(f|X)
but also circumvents the aforementioned shortcomings
of a likelihood-based approach. We employ a noninforma-
tive, maximum-entropy uniform prior on F n21; by setting
pðF n21Þ ¼ const: It remains to compute the posterior
distribution

pðf jXÞ ¼ PðX j gðfÞÞpðfÞ
PðXÞ ; (7)

where P(X|g(f)) is the multinomial likelihood. As with most
practical Bayesian inference problems, the posterior distri-
bution cannot be derived in closed form. This is due to the
eigenvalue constraint in Equation 5, which is a nonlinear
constraint and thus yields the nonlinear bounded space F n21:

MCMC sampler: We have developed a Metropolis–Hastings
MCMC sampler that can draw samples from this posterior
distribution. This task is daunting, because working directly
on the fitness space F n21 would require knowledge of the
neighborhood structure of this nonlinear space. Furthermore,
working onQn21 is also difficult as, in general, its boundary is
not analytically known. Finally, the most common distribu-
tions on the simplex, such as the Dirichlet distribution, have
strong conditional independence properties that do not allow
for flexible covariance structures (Aitchison and Shen 1980).

We use ℝn21 as our sampling space and map samples to
the fitness manifold F n21 via Qn21; using the composed
mapping h s t, where t : ℝn21/Dn21 is the logistic trans-
formation defined by tiðyÞ ¼ expð yiÞð1þPn21

j¼1 yjÞ21; for i =
1, . . . , n 2 1, and tnðyÞ ¼ ð1þPn21

j¼1 yjÞ21 (Figure 3; File S1,
section 4). The approach of mapping samples from a simpler
space to a manifold has been demonstrated by Diaconis et al.

(2013). Working in Euclidean space is much easier and we
have more distributions at our disposal for constructing pro-
posal distributions. For the functional form of the posterior
we have, up to a normalization constant,

log p ðyjXÞ ¼ log dðyÞ þ
Xn
i¼1

Xi log pi þ const: y 2 ℝn21;

(8)

where d(y) = |det(J[h s t])| and J denotes the Jacobian
(see File S1, section 3).

One widely characterized class of fitness landscapes is Stuart
Kauffman’s LK fitness landscapes (Kauffman and Weinberger
1989), where L denotes the number of genomic loci and K
denotes the number of interacting loci of each locus. Campos
et al. (2002) have shown that the only LK fitness landscapes
that lack any correlation between closely related haplotypes
are the house of cards fitness landscapes, i.e., fitness land-
scapes where all genes interact with all other genes concur-
rently. Thus, it is natural to assume at least some degree of
correlation inherent in real fitness landscapes.

Capturing any potential correlation present in fitness
landscapes is key to an efficient Bayesian estimation of the
posterior. To this end, we employ a differential evolution
MCMC as a sampling algorithm. This sampler is of the globally
adaptive type and can estimate the covariance structure
efficiently. It has the advantage of requiring no a priori spec-
ification of the posterior’s covariance structure, which is gen-
erally not known. Differential evolution MCMC (Ter Braak
2006) is very similar in nature to parallel tempering (Earl
and Deem 2005) for estimating equilibrium distributions of
energy states. The basic idea is that the difference of two
chains of the current population optimally captures the cor-
relation structure. An advantage of our implementation over
other globally adaptive MCMC schemes is the ease of paral-
lelizing this otherwise iterative procedure. Furthermore, due
to crossover of chains, the inference scheme involves minimal
overhead computation.

Figure 4 Five-haplotype simulation model. The haplotype graph G1,
where haplotypes can mutate into all other haplotypes taking only steps
of one mutation at a time, is a chain. The true fitness ranks are indicated
by the size of the nodes and the equilibrium relative abundance by the
height of the vertical line above each haplotype node.
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In practice, for an n-dimensional problem, we run �2n
independent chains. At every generation, we cycle through
all chains and update the current chain by generating a new
proposal. For this, we calculate the proposal for chain i with
yp ¼ yi þ gðyR1

2 yR2
Þ þ z; where R1 6¼ R2 denote two ran-

domly chosen indexes of vectors of chains other than i in
each trial, and z � Nð0;sInÞ is responsible for detailed bal-
ance to hold. This proposal sample is retained only if all its
components are positive by inspection of Equation 6. If the
sample has not been rejected in the previous step, then we
calculate the log posterior (Equation 8) and determine by
the usual MCMC acceptance probability min{1, p(yp|X)/
p(yi|X)} whether to accept this sample as a draw from the
posterior. We start the parallel chains at the MLE if it exists;
otherwise we start near the boundary where the MLE would
be if the parameter space was closed.

Implementation

We implemented our MCMC inference scheme, calledQuasiFit,
in C++. For the linear algebra we employed the Eigen suite
(Guennebaud and Jacob 2010), which is a flexible framework
for calculating Lower Upper (LU) decompositions that are cru-
cial for matrix inversion and for calculating the determinant of
a matrix.

Convergence of all MCMC runs was assessed with the
coda package in R (Plummer et al. 2006). For the clinical
data sets, we plotted the Gelman and Rubin scale reduction
factor vs. trial number and the autocorrelation, and we
tested for equality of distribution in the purported stationary
distribution samples (File S1, section 6).

The major computational bottleneck in our inference
scheme is the calculation of the determinant log d(y) in each
step. The computational complexity is therefore Oðn3Þ for
every trial due to the LU decomposition. In total this makes
for a complexity of OðNtrials � n3Þ: We conducted simulations
to investigate the required central processing unit (CPU)

time per MCMC trial (File S1, section 9). In practice, the
asymptotic regime is reached for n . 64. If all considered
haplotypes have at least one observation, i.e., Xi . 0 for
all i 2 H; then we have the best-case decline in efficiency
of Oðn21Þ in Metropolis–Hastings schemes (Hanson and
Cunningham 1998).

The major factor for convergence, well-mixing and statis-
tical efficiency is determined by the number of haplotypes
with no observations (Xi = 0). In practice, this condition is
identical to asking for the existence of a MLE. In the case
where some Xi = 0, an MLE does not exist. This in turn will
lead to a situation where the posterior on Qn21 will be lo-
cated on the boundary. The more haplotypes are considered
with Xi = 0, the longer it will take for the initial burn-in phase
to approach the boundary and the less efficient the overall
procedure becomes. Furthermore, once in the stationary dis-
tribution at the boundary, with increasing number of haplo-
types without observations an increasing number of rejections
in the Metropolis–Hastings schemes result not from the gen-
eral curse of dimensionality of MCMC schemes but from pro-
posal samples that are not elements ofQn21: In practice, data
sets of up to 300 haplotypes can currently be analyzed on
a 48-core system.

Results

Simulation studies

As there are no known in vivo fitness values of viruses from
the same host, we resorted to simulations to assess the good-
ness of our fitness landscape estimates.

Five-haplotype simulation model: We first devised a small
five-haplotype example to illustrate the intricate relation-
ship between haplotype fitness and frequency. Figure 4
shows the haplotype network G1 and parameters used for

Figure 5 Posterior fitness distributions of each of the five haplotypes in the simulations. Each histogram displays the marginal posterior distributions of
a simulation run with a particular coverage N indicated to the left of each row. The true parameter fi of each haplotype from Figure 4 is indicated by
a solid vertical line. The 95% highest posterior density intervals are demarcated with dashed vertical lines. The true parameter is not included in the 95%
highest posterior density intervals in some cases, as is to be expected from a finite sample.
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the simulation. We drew multinomial samples with different
read coverages N 2 {200, 2000, 20000} and applied our
MCMC approach to obtain the marginal posterior fitness
distributions shown in Figure 5. As coverage N increases,
so does the confidence in the estimated fitness values, which
manifests itself in smaller credibility intervals. The most fit
haplotype is only the second least frequent and the haplo-
type with the highest frequency is the second least fit. This
weak correlation between the ranks of relative abundances
and fitness is an important consequence of mutational cou-
pling. It highlights the potential pitfalls of simply relying on
abundance as a measure of fitness.

LK fitness landscape simulations: To validate more realistic
fitness landscapes, where n is at least on the order of the
expected number of viral haplotypes in patient samples, as
presented below, we employed the LK model for simulating
fitness landscapes. Stuart Kauffman’s LK model (originally
called the NK model) is a widely used scheme for generating

random fitness landscapes of tunable ruggedness (Kauffman
and Weinberger 1989; Szendro et al. 2013).

The LK model is defined such that L determines the total
number of loci and K , L determines the number of other
loci affecting the fitness of any one allele at some locus. Let
a ¼ ða1; . . . ; aLÞ 2 AL be a DNA sequence of length L and
ei ¼ i; ei;1; ei;2; . . . ; ei;Kg

�
be the interaction structure of locus

i, i.e., the K other loci affecting locus i. The fitness landscape
f : AL/ℝþ is then

fðaÞ ¼
XL
i¼1

bi
��

aj
�
j2ei

�
  ; (9)

where bi(�) denotes the fitness contribution of allele ai. To
generate a random fitness landscape according to the LK
model with given L and K, we proceed by first generating
random interaction sites. For every locus i, we randomly
select K elements from {1, . . ., i 2 1, i + 1, . . ., N} (without
replacement) as the loci ei on which the fitness at locus i

Figure 6 Rank correlation coefficient tKendall for different L and K. The rows depict results for increasingly high-dimensional DNA spaces, where n = 4L

denotes the number of haplotypes. The columns depict the density estimators for the rank correlation coefficients between an estimator and the true
fitness landscape with increasing K. Densities with dark shading represent tKendall for the QuasiFit-based estimator and densities with light shading
represent tKendall for the count-based estimator.
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depends. Second, we generate the mapping biððajÞj2eiÞ by
randomly sampling values from logNðh; vÞ; where the
parameters h and v determine the mean and, respectively,
the standard deviation of the log-normal distribution. We set
h = 1022 and v = 2 3 1026 to produce fitness values with
small differences between each other such that the quasispecies
shows significant diversity in equilibrium.

For every pair of L 2 {2, 3, 4} and K 2 {0, . . ., L 2 1}, we
generated random fitness landscapes and calculated the sta-
tionary distribution, sampled one multinomial sample with
simulated read coverage of N = 100,000, and repeated this
procedure until we had 100 samples possessing a fitness
MLE. It should be emphasized here that our inference
scheme does not require an MLE (File S1, section 5B).
Requiring all samples to have an MLE was solely done to
facilitate convergence for high-dimensional haplotype sets
with L = 4. Finally, we ran QuasiFit on all multinomial sam-
ples and took the mean of the posterior as an estimator of
the underlying fitness landscape.

To compare our model-based predictions to those of merely
using the ranks of the estimated frequencies as a proxy for the
ranks of the fitness landscape, we used Kendall’s t as ameasure
of agreement in the ranks of different methods of estimating
fitness landscapes (Figure 6). The case K= 0 represents fitness
landscapes possessing only main/additive effects; i.e., there is
no epistasis and as such we can envision a Mount Fuji-like
fitness landscape, where mutations will cause the population
to ultimately climb to the maximum fitness, as there is only
one local optimum that is also the global optimum. The ranks
of the fitness landscape and its equilibrium population distri-
bution closely agree in this case (Figure 6). For K . 0, our
fitness landscape estimates recover the ranks of the true fit-
ness landscape significantly better than the naive count-based
estimator as our model accounts for mutational neighbor-
hood structure (Figure 6).

Next, we assessed the ability of our model to estimate the
rank fitness landscape as a function of the magnitude of
epistatic relative to additive effects. We decomposed the LK
fitness landscape model into its parametric interaction terms
and simulated random fitness landscapes with prescribed
epistatic strengths, using interactions of order at most K+ 1.
We found that our model becomes superior to the naive
ranking method as soon as epistatic effects are on the order
of 10% of the additive effects, which is well within a biolog-
ically plausible range of epistatic effects in HIV (File S1,
section 5E).

Robustness of mutation parameter m: To assess the
robustness of our inference scheme with respect to the pre-
sumed mutation rate, we performed a large-scale analysis
over a range of mutation rates, 1026 # m # 1023. To be
realistic in view of the clinical data and rudimentary current
knowledge of fitness landscapes, we simulated one fitness
landscape on a DNA space of L= 3 (64 haplotypes) and with
some epistasis K = 1, using the procedure outlined in the
previous section. The choice of the inclusion of first-order

epistatic interactions is motivated by the analysis in Hinkley
et al. (2011), where such pairwise interactions (equivalent
to K = 1) have been found to be an important feature of
HIV-1 fitness landscapes.

We generated the fitness landscape with parameters
bið�Þ � logNðh; vÞ; where h = 1022 and v = 5 3 1027.
The latter parameter is one-fourth of the corresponding v
in the previous LK simulations such that the average selec-
tive advantages produced in the fitness landscape are not
much larger than the mutation rate at the lower bound of
1026; otherwise the coupling between haplotypes is too
weak and no diversity will be present at equilibrium. We
have iterated over 100 log-uniformly spaced m-values in the
interval [1026, 1023]. For each value of m, we calculated
the equilibrium distribution given our fitness landscape and
the mutation matrix (Equation 4). For each equilibrium dis-
tribution, we simulated a read coverage of N = 100,000 by
drawing from a multinomial distribution with p = g(f) and
then applying our sampler with fixed m = 3 3 1025. We
sampled a total of Ntrials = 43.2 3 106 with 144 chains and
a thinning interval of 100, giving us 432,000 samples after
each run for every m. We calculated the mean marginal fit-
nesses of the last 100,000 samples and determined the rank
correlation coefficient tKendall with respect to the initially
fixed true fitness landscape for the QuasiFit-based estimator
and the naive count-based estimator. The actual mutation
rates vs. tKendall for the back-inference and the naive estima-
tor are shown in Figure 7.

We found our model to be very robust within half an
order of magnitude below and above our presumed muta-
tion rate of m = 3 3 1025. Our estimates also reproduce the
ranks of the true fitness landscape better than the naive
estimator over a wide range of m-values. In general, repro-
ducing a perfect agreement (i.e., t = 1) between ranks of
the true and reinferred fitness landscapes is not possible,

Figure 7 Rank correlation coefficient tKendall between the true fitness
landscape and one of the two estimators plotted against different actual
simulated mutation rates. The dotted vertical line marks the mutation rate
that we assume in our model.
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due to the introduced sampling variance of the finite multi-
nomial draw for each m.

We also conducted simulations to assess the robustness
toward violations of the transition/transversion rate k (File
S1, section 5D). These simulations suggest that our infer-
ence scheme still predicts better ranks of the fitness land-
scape when k shows large deviations from 1.

Sensitivity analysis: In addition, we performed a sensitivity
analysis that shows our method to be significantly better
at recovering the ranks of the underlying fitness landscape
up to 500 time units away from equilibrium (File S1, section
5C).

Fitness landscapes of clinical p7 quasispecies

To apply our model to clinical data, we selected two patients
from the Swiss HIV Cohort Study (Schoeni-Affolter et al.
2010). We analyzed parts of the spacer peptide 1 (p2) and
the nucleocapsid protein (p7) comprising a total of 207 ba-
ses or 69 amino acids. We aligned the 2 3 250-bp Illumina
MiSeq reads with bwa (Li and Durbin 2010) to the reference
sequence HXB2 and focused on the p2–p7 reading frame.
The compositions of the viral populations had been inferred
with the probabilistic viral haplotype reconstruction tool
QuasiRecomb (Töpfer et al. 2013). In both cases, QuasiRecomb
was employed only for error correction, as the raw reads
contain too many errors, but read assembly was not necessary

Figure 8 Log-posterior of the first 100,000 MCMC trials. The x-axis denotes the trial number and the y-axis denotes the logarithm of the posterior
distribution, Equation 8.

Figure 9 Rank fitness landscapes of the haplotypes in each of two patients. A directed edge i / j exists between haplotypes i and j if the posterior
fitness difference fj 2 fi can credibly be inferred to be .0, i.e., if, given the model, there is evidence for haplotype j being fitter than haplotype i. Both
graphs possess the transitive property; i.e., if j is fitter than i (indicated by an edge i / j) and k is fitter than j, then k is also fitter than i and a directed
path exists from i to k. Dark gray vertices possess credibly larger than average, light gray vertices possess average, and colorless vertices possess lower
than average fitness f = 1.
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on these short segments. After inference, the observed qua-
sispecies distribution for patient 1 and patient 2 consisted of
n1 = 86 and, respectively, n2 = 123 haplotypes. Both data
sets possess a connected haplotype graph G1, such that no
further unobserved haplotypes needed to be included.

We determined the fitness landscape of the quasispecies
by running QuasiFit on the estimated composition of the
viral population. Default parameters were used. In total,
288 chains were run in parallel, with a total of 500,000 trials
per chain for both patient samples. The burn-in phase for
both MCMC processes was �30,000 and 60,000 (Figure 8)
and every chain was thinned by retaining every 1150th sam-
ple (File S1, Figure S6 and section 6). In Figure 8, the ob-
served drop from the initial value is due to the general curse
of dimensionality of sampling in high dimensions when
starting at the single highest point of the posterior.

We determined neutral haplotype networks by 95% high-
est posterior density (HPD) intervals of marginal fitness

differences. A 95% HPD region is the smallest region that
has 95% probability mass. We determine these for the margin-
als of the posterior by minimizing over all 95% credibility
intervals. Neutrality between two haplotypes is called when
0 is an element of the 95% HPD of fitness differences
between two such haplotypes. On the other hand, a ranking of
haplotypes by fitness can be established when there is a
credible difference in fitnesses, i.e., when 0 is not an element
of the pairwise fitness difference (Figure 9; haplotype sequen-
ces in File S1, section 7). Visualizing fitness landscapes by
drawing a directed edge between haplotypes of differing fit-
ness is a popular and intuitive way of visualizing these high-
dimensional mathematical objects (Crona et al. 2013). Both
graphs are transitively reduced; i.e., all directed paths be-
tween haplotypes represent credible fitness differences. In
patient 1, the fitness landscape is dominated by a few highly
fit haplotypes and a large fraction of unfit haplotypes. In
contrast, patient 2 shows a fitness landscape where the two
highly fit haplotypes are surrounded by a cloud of haplotypes
of intermediate, average fitness. It also shows a stronger star-
like topology in comparison to that of patient 1.

To summarize the haplotype networks of size n1 = 86
and n2 = 123, we translated their DNA sequences into pep-
tides and calculated the joint posterior fitness distribution of
each peptide i as Fi ¼ ðPj fjpjÞ=ð

P
j pjÞ; where the sums run

over all DNA sequences j that code for peptide i. We dis-
carded all loci with conserved residues and denote peptides
with their alleles subscripted by their loci. Figure 10 illus-
trates the fitness landscapes for the four peptides in patients
1 and 2. This analysis shows again the importance of work-
ing with fitness values instead of ranking frequencies. In
patient 1, while K25T64 and R25N64 show no credible differ-
ences when comparing their posterior frequencies, i.e., zero
is an element of the 95% HPD region, they do show a cred-
ible difference in their fitness values, i.e., zero is not an
element of the 95% HPD region (Figure 11).

In addition to pairwise fitness differences, we also used
our method for detecting epistasis, i.e., nonadditive effects
of multiple alleles on fitness. We denote with 0 the wild-type
or major allele and with 1 the mutant or minor allele. In
patient 1, K25 and N64 are the major alleles and in patient 2,
R25 and R48 are the major alleles. To determine whether
a nonlinear interaction exists between alleles at two loci,
we considered the random variable d = F11 + F00 2 F10 2
F01 and tested whether d is credibly different from 0. In the
clinical data, we found a credible, nonzero epistatic effect
between loci 25 and 64 in patient 1, but not between loci 25
and 48 in patient 2 (Figure 12).

Figure 10 Rank fitness landscapes of four peptides in each of two
patients. Each peptide is denoted by amino acids subscripted with their
loci. A directed edge i / j exists between peptides i and j if the posterior
fitness difference Fj 2 Fi can credibly be inferred to be .0, i.e., if, given
the model, there is evidence for peptide j being fitter than peptide i.
Vertices with dark shading possess larger than average and open vertices
possess lower than average fitness f = 1.

Figure 11 (A and B) Histograms of the difference of log-
marginal frequencies (A) and of marginal fitness values
(B). Differences in fitness values need not necessarily cor-
respond to differences in marginal frequencies. The differ-
ences here are based on peptides from patient 1. The
95% highest posterior density intervals are demarcated
with dashed vertical lines.
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Finally, we also analyzed codon usage effects. We found that
the marginal fitness differences between major and minor codons
at synonymous amino acid residues were all credible, mainly due
to the large difference in their frequencies (File S1, section 8).

Discussion

We have developed a computational framework for inferring
fitness landscapes from NGS samples of HIV-1 patient-derived
viruses, using quasispecies theory. Our inference scheme
represents a novel approach to derive a measure of fitness
from cross-sectional data. We obtained unimodal posterior
distributions because of the existence of a single global stable
mutation–selection equilibrium in the quasispecies model.
This makes the inference scheme particularly efficient, as
multimodality and suboptimal exploration of fitness space
are not a problem. Our inference scheme is strongly paralle-
lizable. For instance, for 300 haplotypes, we can run 624
chains on a 48-core server. Then each core needs to update
only 13 chains by itself. This efficient partitioning scheme for
sampling cannot be attained with ordinary globally adaptive
MCMC schemes, where much CPU power cannot be utilized
due to inherent lack of concurrency.

Every evolutionary model includes assumptions to make
analysis possible. While established in the field of virology
with many ubiquitous applications, the quasispecies frame-
work nonetheless has limitations. One central weakness of
the quasispecies model is at the same time its greatest strength,
namely the assumption of a constant fitness landscape. Due to
the inherent feedback loop of the host immune system, the
quasispecies model will likely fail in genomic regions that can
experience strong immunological pressure such as env, where
fitness is more likely to be time dependent. While adaptations
exist of the quasispecies model to time-varying, frequency-
dependent fitness landscapes, such approaches necessarily
include more involved mathematical machinery. The replicator–
mutator equation is one such extension. In light of the minimum
n2-dimensional parameter space and the highly complicated
nonlinear trajectories of the replicator equation coupled with
mutation (Pais and Leonard 2011), such a model would re-
quire prohibitively large amounts of time series, rather than
cross-sectional, data to be useful for inference.

The centerpiece of quasispecies theory is the quasispecies,
i.e., the population in mutation–selection equilibrium. Whether
in reality such an equilibrium can ever exist remains an open
question in the field of virology. One early study by Domingo
et al. (1978) supported such a dynamic equilibrium for amultiply
passaged Qb bacteriophage. Ramratnam et al. (1999) high-

light the existence of a dynamic equilibrium of production and
clearance of HIV particles in vivo. Quasispecies theory likely
fails to account for the acute phase of HIV infection, which is
characterized by very strong initial immune responses that will
show strong dynamics and where coupling between haplo-
types is less of a driving force than immune escape.

Due to the high rates of mutation in RNA viruses and
their large population sizes, quasispecies theory makes the
implicit assumption that the expected number of produced
mutants per replication cycle Nem is large and hence can be
modeled quasi-deterministically (Rodrigo 1999). It should
be noted that the precise value of Ne in viral populations is
an open question. In particular, if Ne , m21, the evolutionary
process is dominated by stochastic effects, such that genetic
drift trumps deterministic forces like selection. In this sto-
chastic regime, the informative value of one sample of a viral
population diminishes rapidly with decreasing Ne. Given
these large random fluctuations in the stochastic regime,
inferring selection requires multiple replicates of time series
data, to disentangle deterministic effects from random fluc-
tuations. At least one study of linkage disequilibrium in HIV-
1 suggests Ne to be.m21 (Rouzine and Coffin 1999). The Ne

limitation does not just affect the quasispecies model, but all
deterministic models of virus evolution, such as those based
on ordinary differential equations.

In addition to the presumed quasispecies, we do not take re-
combination into account. While extensions of the quasispecies
model exist that account for this phenomenon (Boerlijst
et al. 1996; Jacobi and Nordahl 2006), they are exceedingly
complicated by nonlinear dynamics arising from bimolecular
production reactions. This generally leads to bistability, such
that a unique global quasispecies is not guaranteed anymore.
Here, we analyzed genomic regions for which we assume
recombination within the region to be negligible but recom-
bination outside of the region may be somewhat larger, such
that genetic variation that exists outside of the region of in-
terest does not confound the analysis. This is reasonable, as
the genomic ranges analyzed here are ,200 bp. In general
though, the recombination rate will affect epistasis and above
a certain threshold, allelic selection takes over, where the
selective advantage of alleles depends only on their own in-
trinsic fitness contribution and not on combinations with
other alleles (Neher and Shraiman 2009).

Every computational approach to inference of high-
dimensional data includes certain assumptions and approx-
imations necessary for making practical analysis possible.
Our approach to analyzing NGS data in the form of an
MCMC sampler is no different in this regard. Our inference

Figure 12 Posterior distributions of the
epistasis term d in both patients. A credible
interaction term was detected in patient 1,
but not in patient 2. The 95% highest pos-
terior density intervals are demarcated with
dashed vertical lines.
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scheme does not yet capture overdispersion, the effect of
the data having more variance than postulated by the
statistical model. It is well known that NGS data involve
a number of experimental steps for sample preparation.
Sequencing has practical limitations and is error prone. All
these steps will eventually yield a population sample that is
overdispersed with respect to the multinomial distribution
we employ. However, without replicates, technical overdis-
persion cannot be estimated jointly with the fitness landscape.
An alternative would be to specify experimental overdisper-
sion upfront as additional model parameters.

Inferring in vivo fitness landscapes for comparative analysis
becomes possible with our inference approach. It could prove
to be fruitful with regard to fitness landscapes of, for example,
genomic loci that experience negligible immunological pressure
and are not subject to drug pressure. One example is HIV-1’s
gag gene, parts of which we have analyzed here. We can de-
termine reliably the number of distinct fitness classes. In the
analyzed patient data, we deduced a total order of peptides
with increasing fitness in patient 1 and a partial order in pa-
tient 2. The reason for not being able to infer a total order in
the case of patient 2 lies in the neutral network formed by the
peptides K25R48 and K25K48. Additionally, we can also analyze
properties of fitness landscapes, such as epistatic interactions.

In clinical settings, the vast majority of data will be cross-
sectional and not time series. To go beyond the current standard
of practice of equating fitness ranks to frequency ranks, any
fitness inference method based on cross-sectional data will need
to make strong assumptions on the population dynamics _pðtÞ:
By accounting for mutational neighborhood structure, an impor-
tant factor of intrahost viral evolution (Burch and Chao 2000),
our model performs significantly better at inferring the rank
fitness landscape than equating fitness ranks to frequency ranks.
This is important in light of the observation that fitness need not
necessarily show a strong connection to relative haplotype abun-
dance (De la Torre and Holland 1990).

In summary, we have devised a mathematical framework
based on the quasispecies model and an efficient sampling
scheme for estimating in vivo viral fitness from intrahost
NGS data. It will help in analyzing viral populations and
understanding their evolutionary dynamics and eventually
their clinical consequences.
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File S1: Supporting Information

1. Mutation matrix Q
Let Cn denote a random variable modeling a single base in generation n at some locus with state space the sequence
alphabet A. Let c, d ∈ A, c 6= d, be two bases from the alphabet. The mutation rate per replication cycle is defined as
the probability of not reproducing the same base

µ := P (Cn+1 6= c | Cn = c) (1.1)

As the mutation rate is assumed to be uniform for all bases, a transition from a single base to a specific other base has
probability

P (Cn+1 = d | Cn = c) =
µ

|A| − 1
(1.2)

The self-replication probability is

P (Cn+1 = c | Cn = c) = 1−µ (1.3)

In order to set up the probabilities of mutation between haplotypes, we assume an independent and identical mutation
rates across loci. Let i, j ∈ {1, . . . , m} , m= |A|L , then we set for the mutation matrix Q=

�

qi j

�

qi j =
�

µ

|A| − 1

�d(i, j)

· (1−µ)L−d(i, j) > 0 (1.4)

where d(i, j) denotes the Hamming distance, i.e., the number of loci at which haplotypes i and j differ. Since qi j = q ji ,
the matrix Q is symmetric.

A. Non-uniform transition/transversion rate
In order to account for a non-uniform mutation rate between different bases, the mutation model from (1.4) needs to
be generalized. A mutation is called a transition when A ↔ G or C ↔ T during a replication cycle. The remaining
mutations are called transversions, i.e., all mutations from a purine to a pyrimidine. With α we denote the probability
of a transition, in line with the similar transition substitution parameter used in phylogenetic analysis. The probability
of a transversion mutation occurring is denoted with β . The ratio of α/β is the transition/transversion ratio and is
denoted by κ. These two mutation types can be combined to yield the overall mutation rate compatible with the
definition in (1.1):

µ= α+ 2β (1.5)

The intuition of this identity is that, for every base, there exists exactly one transition mutation and two transversion
mutations. The two mutation rates can now be expressed in terms of µ and κ as

α= µ ·
κ

κ+ 2
, β = µ ·

1
κ+ 2

(1.6)

For κ= 1, we find the specialization (1.2). To set up the mutation matrix for the full DNA sequence space AL , we use

qi j = α
nti(i, j) · βntv(i, j) · (1−µ)L−d(i, j) (1.7)

where nti(i, j) respectively ntv(i, j) denote the number of transitions respectively transversions going from haplotype i
to j and d(i, j) = nti(i, j)+ntv(i, j). It should be emphasized that, while α, β and κ bear resemblance to the parameters
of the popular Kimura-2-Parameter model (also known as K80 model), the parameters used in constructing phyloge-
netic trees and the mutation rates here cannot be used interchangeably. Substitution parameters implicitly account for
more effects, such as fixation and codon position effects, and cannot be equated with mutation rates (Kimura, 1980).
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2. The function g
We ask for the equilibrium distribution p ∈ ∆n−1 in the quasispecies model given a fitness landscape f ∈ F n−1. The
asterisk has been dropped from the distribution vector in (3) of the main article, as all further analysis will only be
concerned with the equilibrium value of p (t). By (3) in the main article, for φ = 1, the equilibrium distribution is

p= QT diag (f)p (2.1)

The equilibrium distribution p lies in the kernel of the matrix

B := QT diag (f)− In (2.2)

where In denotes the n× n identity matrix. Employing the Moore-Penrose pseudoinverse (Searle, 1982), any vector in
the kernel of B can be expressed as

a (f) :=
�

In −B+B
�

1n (2.3)

where B+ is the Moore-Penrose pseudoinverse of B and 1n denotes the n-dimensional vector of all-ones. We define the
scalar normalization constant λ (f) := 1T

n a (f) and set

g (f) :=
a (f)
λ (f)

= ker (B)∩∆n−1 (2.4)

such that g (f) ∈ ∆n−1. The function is well-defined, because
�

�ker (B)∩∆n−1
�

� = 1 for all f ∈ F n−1 due to the Perron-
Frobenius theorem (Bapat and Raghavan, 1997). It is not surjective, because the quasispecies equation has the
property that no haplotypes can go extinct, as mutations of any haplotype will always produce all other haplotypes with
non-zero probability. Thus, there exists a non-empty set of distributions, that include faces of ∆n−1, which cannot arise
in steady state from the quasispecies equation. We hence restrict g to its image g : F n−1 → image (g) =: Qn−1 ( ∆n−1,
such that g is surjective. We refer to Qn−1 as the quasispecies space, i.e., the set of all equilibrium distributions the
quasispecies equation can yield. In section B we have devised a two-haplotype model and derive lower and upper
bounds on the relative frequencies defining Q1 that are directly related to the mutation rate of the polymerase.

A. The bijections g and h are inverses of each other
Theorem 1. g is a bijection and h is its inverse.

Proof. Given that g is surjective, all we have to show is

h (g (f)) = f for all f ∈ F n−1 (2.5)

For proving (2.5), the following expansion is permissible, as a (f) is strictly positive due to the Perron-Frobenius
theorem

f= diag (a (f))−1 diag (a (f)) f (2.6)

Q−T QT = In as Q is regular due to it being a strictly diagonal dominant matrix

= diag (a (f))−1 Q−T QT diag (a (f)) f (2.7)

= diag (a (f))−1 Q−T QT diag (f)a (f) (2.8)

= diag (a (f))−1 Q−T
�

QT diag (f)a (f)− Ina (f) + a (f)
�

(2.9)

= diag (a (f))−1 Q−T (Ba (f) + a (f)) (2.10)

= diag (a (f))−1 Q−T
�

B
�

In −B+B
�

1n + a (f)
�

(2.11)

= diag (a (f))−1 Q−T
��

B−BB+B
�

1n + a (f)
�

(2.12)

We have B−BB+B= 0 by definition of the Moore-Penrose pseudoinverse, hence

f= diag (a (f))−1 Q−T a (f) (2.13)

= diag (a (f))−1 Q−T a (f)
λ (f)
λ (f)

(2.14)

= diag
�

a (f)
λ (f)

�−1

Q−T a (f)
λ (f)

(2.15)

= diag (g (f))−1 Q−T g (f) (2.16)

= h (g (f)) (2.17)
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B. Explicit description of Q1

Calculating the set Qn−1 is analytically not possible, but bounds can be formulated component-wise. Consider the
two-haplotype model, where we find for the first component of g (f), using MATLAB’s symbolic toolbox,

p1 =
2 f2q21 − f2 + 1

f1 − f1q11 + f2q21 − f1 f2q11 + f1 f2q21 + 1
(2.18)

Since elements in F n−1 only have one degree of freedom when n = 2, we can replace f2 with the help of the average
fitness constraint 1= p1 f1 + p2 f2 and substitute into (2.18) to obtain

�

1− p1 f1

1− p1

�

(2q21 − 1) + 1= p1

��

1− p1 f1

1− p1

�

(q21 − f1q11 + f1q21) + f1 − f1q11 + 1
�

(2.19)

In the limit as f1→ 0, this equation becomes

0= p2
1 + p1 (−q21 − 2) + 2q21 (2.20)

with roots p1 = q21 and p1 = 2. Only the first yields a valid solution, namely p = (q21, q22)
T . The procedure can be

repeated in an analogous fashion for f2 → 0 which then yields p = (q12, q11)
T . Thus, for the two-strains model, we

have the component-wise bounds for p ∈Q1

q21 < p1 < q11 (2.21)

q12 < p2 < q22 (2.22)
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3. Jacobian of h
In order to calculate the determinant of the Jacobian, the explicit form of the Jacobian needs to be known. Recall that

diag (p) f= p� f= f� p= diag (f)p (3.1)

where � denotes the Hadamard product (element-wise multiplication). To determine the Jacobian of

h (p) = diag(p)−1Q−T p, (3.2)

we write

p� h (p) = Q−T p, (3.3)

and perform implicit differentiation,

∂

∂ p
(p� h (p)) =

∂

∂ p

�

Q−T p
�

(3.4)

diag (h (p)) In + diag (p)
∂ h
∂ p
= Q−T (3.5)

∂ h
∂ p
= diag (p)−1 Q−T − diag (p)−1 diag (h (p)) (3.6)

∂ h
∂ p
= diag (p)−1 Q−T − diag (p)−1 diag

�

diag(p)−1Q−T p
�

(3.7)

The inner-most multiplication with diag(p)−1 in the last term of (3.7) can be factorized as it already is a diagonal
matrix, hence

J=
∂ h
∂ p
= diag (p)−1 Q−T − diag (p)−2 diag

�

Q−T p
�

(3.8)
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4. Functional form of posterior density function
In order to devise an efficient inference scheme, we introduce the logistic transformation (Aitchison, 1982) t : Rn−1→
∆n−1,

t i (y) =











exp (yi)
C (y)

(i = 1, . . . , n− 1)

1
C (y)

(i = n)
y ∈ Rn−1 (4.1)

where C (y) = 1+
∑n−1

j=1 y j , and its inverse t−1 :∆n−1→ Rn−1,

t−1
i (p) = log

pi

pn
(i = 1, . . . , n− 1) p ∈∆n−1 (4.2)

The transformations t and t−1 are illustrated on the left side of Figure 1 in the main article.
We derive the functional form of the posterior density function on sample space Rn−1, given data X. This requires

two transformations of the original probability density function, one from F n−1 to Qn−1 and then from Qn−1 to Rn−1.
For the first transformation,

pQ (p) = |det (J [h] (p))| · pF (h (p)) (4.3)

where pF (h (p)) = const. as we employ a uniform prior on F n−1

= |det (J [h] (p))| · const. (4.4)

where pQ (p) denotes the transformed prior on Qn−1 and J [h] (p) =
∂ h
∂ p

denotes the Jacobian of h with respect to p

evaluated at some p. We refer to section 3 for the derivation of the Jacobian

J [h] (p) = diag (p)−1 Q−T − diag (p)−2 diag
�

Q−T p
�

(4.5)

Second, we transform the previous prior on Qn−1 to Rn−1. For conciseness, we calculate p= t (y) beforehand

pR (y) = |det (J [t] (y))| · pQ (p= t (y)) (4.6)

=

� n∏
i=1

t i (y)

�

· pQ (p= t (y)) (4.7)

Substituting for pQ (p= t (y)) with |det (J [h] (p= t (y)))| · const. from (4.4) gives

=

� n∏
i=1

pi

�

· |det (J [h] (p= t (y)))| · const. (4.8)

=
�

�det
�

Q−T − diag (p)−1 diag
�

Q−T p
���

� · const. (4.9)

= d (y) · const. (4.10)

where we denote the absolute value of the determinant as d (y) :=
�

�det
�

Q−T − diag (p)−1 diag
�

Q−T p
���

�. Thus, the
posterior has the functional form

pR (y | X) =
P (X | p) · d (y) · const.

P (X)
(4.11)

As the normalization constant P (X) cannot be determined, we drop it and write for the posterior density function

pR (y | X) = P (X | p) · d (y) = d (y) ·

� n∏
i=1

pX i
i

�

· const. (4.12)

For reasons of numerical stability, we use the logarithm

log pR (y | X) = log d (y) +
n∑

i=1

X i log pi + const. (4.13)
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5. Simulations
To highlight the numerical and parameter robustness of our model, we have conducted multiple simulations. For the
sake of demonstration, unless stated otherwise, we have set κ= 1.

A. Numerical precision simulations
A crucial point for numerical stability lies in calculating the determinant in d (y) in (4.13). As a sanity check, we ran
the sampling procedure with a total of 0 reads for two haplotypes, which is equivalent to sampling from the prior.
A correct sampling procedure will yield a flat distribution of the random variable f1 − f2, where f1 is the fitness of
haplotype 1 and f2 is the fitness of haplotype 2. The results are depicted in Figure S1.
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Figure S1. Prior fitness distributions for the two-haplotype model. Each column indicates a sampling procedure run
with a specific precision and each row represents a haplotype constellation where haplotypes were sepa-
rated by a different Hamming distance dH .

For this simulation, the first haplotype was set to AAA and the second was set to AAT, ATT, and TTT for Hamming
distances dH = 1, 2, and 3, respectively. All constellations were run with 200 · 106 MCMC trials from the prior and a
thinning interval of 1000, yielding 200 000 samples after each procedure.

The first column in Figure S1 depicts samples from the standard sampler, where floating point was performed with
ordinary x87 floating point (about 18 digits of decimal precision). The second column depicts samples for 128-bit
quadruple precision which was performed with GCC’s __float128 type (about 34 digits of decimal precision). The
last column shows samples for running our sampling procedure with GMP’s arbitrary precision type mpf_t (set to
around 100 digits of decimal precision). Correct samplers should show a uniform distribution, as there is no fitness
difference when sampling from the prior.

When the haplotype graph Gk is determined by k = 2, that is, the maximum number of mutations per step required
for a haplotype to mutate into any other haplotype, then standard precision results cannot be trusted anymore. This is
due to excessive floating-point rounding and absorption issues and motivates the requirement of k < 2 introduced in
section Haplotype space and mutation probabilities of the main article. While we provide our sampler with the option
of easily enabling quadruple and arbitrary precision floating point arithmetic, the performance penalties experienced
by these types makes their use viable only for small haplotype sets H.
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B. Unobserved haplotypes simulations
In order to verify that the procedure detailed in the section Haplotype space and mutation probabilities of the main
article allows for inference on data sets where the graph of observed haplotypes G1 is not strongly connected, we
conducted further simulations. We employed the same two observed haplotypes with the same varying dH as in
the previous section, that is, one observed haplotype is AAA and the second observed haplotype is AAT, ATT or TTT
depending on dH . In addition, we assumed that each haplotype was observed with exactly one read. From the
symmetry of this setting and the observations, the differences of fitness values between the observed haplotypes
should be symmetrical and not credibly different from 0. To circumvent the previously apparent numerical issues, we
take the union of the haplotypes of the smaller dH and the observed second haplotype for H, such that the resulting
G1 is strongly connected. Due to the increased number of unobserved haplotypes in H now compared to the H in the
previous section, the efficiency of the sampler is reduced, owing to an increased number of proposals not being an
element of Qn−1. We run the sampling procedure with 100 ·106 MCMC trials and a thinning number of 100, the results
of which are depicted in Figure S2.
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Figure S2. Posterior fitness difference distributions for the two-haplotype model with unobserved haplotypes. Each
column indicates a sampling procedure run with a specific precision and each row represents a haplotype
constellation where observed haplotypes were separated by a different Hamming distance dH . As we are
dealing with the posterior, the fitness differences are not uniformly distributed anymore. Due to the non-
linear transformation involved in transforming probability distributions between different spaces, the tails
of the posterior distribution of the fitness differences of the two observed haplotypes are heavy-tailed,
hence the y-axis representing logarithmic counts.

To further assess the stability of the procedure of including unobserved haplotypes into H, we tested whether for the
same dH , the posterior fitness samples depicted in Figure S2 come from the same distribution, i.e., whether there
exists a difference between extended precision and the other numerical precision modes. To this end, we tested the
difference with the Wilcoxon rank sum test, with results shown in Table S1.

As none of the differences in distributions between numerical precision modes is statistically significant at the 5%
level, this demonstrates the numerical robustness of the method when including unobserved haplotypes. Lastly, as a
sanity check, the 95% credibility intervals of ∆ f were determined for all precision modes (Table S2).

All of the credibility intervals include 0 as expected, providing a further indication that no spurious fitness differ-
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Table S1. Testing for differences between precision modes for the last 50000 samples of each run. Here
∆ f extended precision for instance denotes the random variable fAAA − fAAT when dH = 1 and extended preci-
sion was employed, i.e., the same samples as shown in Figure S2 in the top-left histogram.

dH ∆ f extended precision −∆ f quadruple precision ∆ f extended precision −∆ f arbitrary precision
p-Value p-Value

1 0.3606 0.2326
2 0.1603 0.4844
3 0.6719 0.7782

Table S2. Determining 95% credibility intervals for fitness differences. All intervals include 0, such that no difference
in fitness between observed haplotypes can be called.

dH ∆ f extended precision ∆ f quadruple precision ∆ f arbitrary precision

1 [−0.614,0.625] [−0.636,0.547] [−0.600, 0.596]
2 [−0.563,0.537] [−0.573,0.506] [−0.558, 0.507]
3 [−0.548,0.524] [−0.528,0.545] [−0.530, 0.551]

ences are called due to numerical errors.
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C. Upper bound on deviation from equilibrium
To give an upper bound on how close the viral population has to be to the equilibrium, we performed dynamical
simulations on the quasispecies equation. To this end, we used the same LK parameters as in the section LK fitness
landscape simulations of the main article. The random fitness landscapes were rescaled such that the average arithmetic
sum of the fitness landscape is 1. This was done to bring the average generation time to approximately one unit of
time. We randomly selected one haplotype as initial starting point and simulated the system up to 104 time units using
MATLAB. We performed the same rank-based analysis as in the simulation studies section of the main article, namely
studying the goodness of recovering the ranks of the fitness landscape, using (6) of the main article and the ranks
of the frequency vector p. We analyzed the goodness of recovering the ranks as a function of stepping back in time,
employing a total number of N = 10 000 simulation points. Results for L = 3 are shown in Figure S3.
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Figure S3. Accuracy of the predicted fitness landscape τKendall as a function of the time t from equilibrium. We set

L = 3 and analyzed the cases for K = 1, 2. The upper row shows the ability of the two methods to recover
the fitness ranks. The bottom row illustrates the differences between the two methods. The thick solid line
indicates the average distance between both methods as a function of time. For sake of clarity only 500
points are shown.

As can be seen, the QuasiFit-based estimator is clearly superior up to about 500 time units and degrades beyond.
Nonetheless, even very far from equilibrium, the difference between both methods still marginally favors the QuasiFit-
based estimator. Of these N = 10 000 simulations, only 39 respectively 2 resulted in a better ranking of the true fitness
landscape for the naive estimator for K = 1 respectively K = 2. As such, it can be concluded that the QuasiFit-based
estimator is at least as good as the current standard of practice of taking the counts as estimator for the ranks of the
fitness landscape, even when equilibrium has not been reached.
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D. Deviations from transition/transversion ratio
To assess the violations of the assumed transition/transversion ratio, we conducted simulations by varying κ in (1.7).
In detail, we increased κ from 1 (i.e., the uniform mutation model) up to 10 with N = 10000. For each simulation,
we generated random LK fitness landscapes using the same parameters as in the previous section, calculated the
quasispecies distribution using 1 < κ < 10 and assumed the standard HIV mutation rate of µ = 3 · 10−5. We then
employed the standard uniform mutation matrix Q from (1.4) to simulate inference results for the standard QuasiFit
case (Figure S4).
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Figure S4. Accuracy of the predicted fitness landscape τKendall as a function of the actual κ. We set L = 3 and analyzed

the cases for K = 1,2. The upper row shows the ability of the two methods to recover the fitness ranks. The
bottom row illustrates the differences between the two methods. The thick solid line indicates the average
distance between both methods as a function of the actual κ. For sake of clarity only 500 points are shown.

Our model is robust to at least some variation in κ. One study estimated κ to lie between 3.1 and 5.5 (Abram et al.,
2010). In this interval, the QuasiFit estimator is still better than calling fitness ranks by frequencies. In order to give
the user a maximum of flexibility in inference, QuasiFit can also employ the mutation matrix from (1.7) to avoid
possibly spurious results due to a misspecified model.
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E. Epistastic vs. additive effects
In order to further understand how well the QuasiFit model can predict the ranks of a fitness landscape with varying
levels of epistasis, we rewrite the fitness landscape as a full linear interaction model,

f (a1, . . . , aL) =
L∑

i=1

βi,ai
+

L−1∑
i=1

L∑
j=i+1

βi,ai ; j,a j
+

L−2∑
i=1

L−1∑
j=i+1

L∑
k= j+1

βi,ai ; j,a j ;k,ak
+ . . . (5.1)

where βi,ai
denote the additive effects of base a at locus i, βi,ai ; j,a j

denote the pair-wise epistatic effects of base a at locus
i and base b at locus j and so on. For the simulations we continued to employ the log-normal distribution as in section
LK fitness landscape simulations of the main article. Additionally, we parametrized the log-normal distribution of the
epistatic effects βi,ai ;(·) such that median

�

βi,ai ;(·)/βi,ai

�

= C . Hence, the epistatic and additive effects are identically
distributed when C = 1. We refer to C as the strength of epistasis relative to the additive effects. In order for the
results of this interaction model to be comparable to the results of the LK simulations, for a given K, we only included
effects up to order K+1, e.g., if we set K = 1 we only included pair-wise epistatic effects βi,a; j,b and set all higher-order
effects to 0.

For the simulations, we proceeded in a similar fashion as in the previous section, instead for every random fitness
landscape we now generated a multinomial sample with 100000 reads possessing a fitness MLE. Generating samples
possessing an f̂ was done solely to aid inference, as f̂ can then be used as a proxy for the full Bayesian estimator. In
total we simulated N = 10000 fitness landscapes with C in the interval [3 · 10−2, 3]. The results of the QuasiFit fitness
rank estimator versus the naively estimated ranks are depicted in Figure S5.

0.
2

0.
4

0.
6

0.
8

1.
0

τ K
en

da
ll

K = 1

−
0.

2
0.

0
0.

2
0.

4
0.

6

da
ta

$d
iff

[T
H

IN
]

3 × 10−2 1 × 10−1 3 × 10−1 1 3

C

−
0.

2
0.

0
0.

2
0.

4
0.

6

τ Q
ua

si
F

it
−

τ N
ai

ve

QuasiFit Naive

K = 2
da

ta
$d

iff
[T

H
IN

]

3 × 10−2 1 × 10−1 3 × 10−1 1 3

C
Figure S5. Accuracy of the predicted fitness landscape τKendall as a function of the strength of epistatic relative to

additive effects C . We set L = 3 and analyzed the cases for K = 1,2. The upper row shows the ability of
the two methods to recover the fitness ranks. The bottom row illustrates the differences between the two
methods. The thick solid line indicates the average distance between both methods as a function of the
epistatic strength C . For sake of clarity only 500 points are shown.

Notice that our estimator starts to become significantly better at recovering the ranks of the fitness landscape once
epistatic effects are approximately on the order of 10% of the additive effects. This detection limit can likely be
decreased with increasing coverage of the reads, as the intrinsic sampling variance of the inferred fitness estimator
diminishes. Assis (2014) has shown in a study of RNA secondary structure in HIV-1 that the total epistatic contribution
to the fitness landscape of a locus can make up up to 50%, which is considerably larger than our lower detection limit.
In addition, da Silva et al. (2010) have found epistasis in HIV-1 to be important and common, where the overall
epistatic contribution was orders of magnitude higher than the additive contribution in several cases.
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6. Convergence diagnostics
A. Gelman and Rubin diagnostic
In order to assess whether the MCMC procedure converged to its presumed stationary distribution, we analyzed the
scale reduction factor for patient 1. To this end, we ran another three independent MCMC chains beside the chain on
which the results reported in the main text are based. The scale factor trajectories are plotted in Figure S6.
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Figure S6. The Gelman-Rubin scale reduction factor. The plot in (a) shows the shrink factor vs. iteration number for
the first 5% of samples. The plot in (b) shows the same shrink factor for all trial samples.

Notice how after trial count 30 000, the chains have a vanishing scale factor below 1.01, strongly suggesting conver-
gence.

B. Autocorrelation
We determined the necessary thinning interval from autocorrelation plots (Figure S7) of one sub-chain of the MCMC
procedure in the main article for patient 1.
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Figure S7. Autocorrelation plots for different thinning intervals. The first plot (a) indicates that even with a thinning
interval of 50, significant autocorrelation remains. Plot (b) highlights that thinning interval 1150 achieves
negligible autocorrelation such that samples can now be regarded as approximately independent.

At around lag 23 the autocorrelation drops below the statistical significance level. This leads to a total thinning interval
of 23 · 50= 1150 for yielding approximately independent samples from the posterior distribution.
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C. Testing for differences in distributions
With thinning intervals of 1150 we proceeded to test samples from 10%–50% of trial samples with samples from
60%–100% of trial samples. Under the null hypothesis, these samples should have equal location with respect to each
other if they originate from the stationary distribution. To test this null hypothesis, we employed the Wilcoxon rank
sum test for all of the four independent runs in Table S3.

Table S3. Testing for differences between 40% of samples in the first half and 40% of samples in the latter half.
Runs p-Value

1 0.3232
2 0.0751
3 0.7854
4 0.4719

None of the p-values are significant, hence we retain the null hypothesis that samples from 10%–100% originate from
the same (stationary) posterior distribution.
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7. Patient haplotypes
This section serves to collect the DNA sequences of haplotypes inferred from the deep sequencing data. For sake of
conciseness we denote haplotypes by dropping loci with only one base and subscripting alleles at their respective loci.

Table S4. Table of haplotypes in Patient 1.

Hap. No. Haplotype
1 A9A51A74A120A168A171A183A191
2 A9A51A74A120A168A171A183C191
3 A9A51A74A120A168A171G183A191
4 A9A51A74A120A168C171A183A191
5 A9A51A74A120A168C171A183C191
6 A9A51A74A120A168C171G183A191
7 A9A51A74A120G168A171A183A191
8 A9A51A74A120G168A171G183A191
9 A9A51A74G120A168A171A183A191

10 A9A51A74G120A168A171A183C191
11 A9A51A74G120A168A171G183A191
12 A9A51A74G120A168C171A183A191
13 A9A51A74G120A168C171A183C191
14 A9A51A74G120A168C171G183A191
15 A9A51A74G120G168A171A183A191
16 A9A51A74G120G168A171G183A191
17 A9A51G74A120A168A171A183A191
18 A9A51G74A120A168A171A183C191
19 A9A51G74A120A168A171G183A191
20 A9A51G74A120A168C171A183A191
21 A9A51G74A120A168C171A183C191
22 A9A51G74A120A168C171G183A191
23 A9A51G74A120G168A171A183A191
24 A9A51G74A120G168A171G183A191
25 A9A51G74G120A168A171A183A191
26 A9A51G74G120A168A171A183C191
27 A9A51G74G120A168A171G183A191
28 A9A51G74G120A168C171A183A191
29 A9A51G74G120A168C171A183C191
30 A9A51G74G120A168C171G183A191
31 A9A51G74G120G168A171G183A191
32 A9G51A74A120A168A171A183A191
33 A9G51A74A120A168A171A183C191
34 A9G51A74A120A168A171G183A191
35 A9G51A74A120A168C171A183A191
36 A9G51A74A120A168C171A183C191
37 A9G51A74A120A168C171G183A191
38 A9G51A74A120G168A171A183A191
39 A9G51A74A120G168A171G183A191
40 A9G51A74G120A168A171A183A191
41 A9G51A74G120A168A171A183C191
42 A9G51A74G120A168A171G183A191
43 A9G51A74G120A168C171A183A191

Hap. No. Haplotype
44 A9G51A74G120A168C171A183C191
45 A9G51A74G120G168A171A183A191
46 A9G51A74G120G168A171G183A191
47 A9G51G74A120A168A171A183A191
48 A9G51G74A120A168A171A183C191
49 A9G51G74A120A168A171G183A191
50 A9G51G74A120A168C171A183A191
51 A9G51G74A120A168C171A183C191
52 A9G51G74A120A168C171G183A191
53 A9G51G74A120G168A171A183A191
54 A9G51G74A120G168A171G183A191
55 A9G51G74G120A168A171A183A191
56 A9G51G74G120A168A171G183A191
57 A9G51G74G120A168C171A183A191
58 A9G51G74G120G168A171G183A191
59 G9A51A74A120A168A171A183A191
60 G9A51A74A120A168A171A183C191
61 G9A51A74A120A168A171G183A191
62 G9A51A74A120A168C171A183A191
63 G9A51A74A120A168C171A183C191
64 G9A51A74A120A168C171G183A191
65 G9A51A74A120G168A171A183A191
66 G9A51A74A120G168A171G183A191
67 G9A51A74G120A168A171A183A191
68 G9A51A74G120A168A171A183C191
69 G9A51A74G120A168C171A183A191
70 G9A51A74G120G168A171G183A191
71 G9A51G74A120A168A171A183A191
72 G9A51G74A120A168A171A183C191
73 G9A51G74A120A168A171G183A191
74 G9A51G74A120A168C171A183A191
75 G9A51G74A120G168A171G183A191
76 G9A51G74G120A168A171A183A191
77 G9A51G74G120A168C171A183A191
78 G9A51G74G120G168A171G183A191
79 G9G51A74A120A168A171A183A191
80 G9G51A74A120A168A171A183C191
81 G9G51A74A120A168C171A183A191
82 G9G51A74G120A168A171A183A191
83 G9G51A74G120G168A171G183A191
84 G9G51G74A120A168A171A183A191
85 G9G51G74A120A168C171A183A191
86 G9G51G74G120A168A171A183A191

The haplotypes of Patient 1 respectively Patient 2 are noted in Table S4 respectively Table S5. The graphs of the
patients’ fitness landscapes are shown in Figure 9 of the main article.
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Table S5. Table of haplotypes in Patient 2.

Hap. No. Haplotype
1 A6A33A72A74A108G143G144T192
2 A6A33A72A74G108A143G144T192
3 A6A33A72A74G108G143A144C192
4 A6A33A72A74G108G143G144C192
5 A6A33A72A74G108G143G144T192
6 A6A33A72G74A108A143G144G192
7 A6A33A72G74A108A143G144T192
8 A6A33A72G74A108G143A144C192
9 A6A33A72G74A108G143A144T192

10 A6A33A72G74A108G143G144C192
11 A6A33A72G74A108G143G144G192
12 A6A33A72G74A108G143G144T192
13 A6A33A72G74G108A143A144T192
14 A6A33A72G74G108A143G144C192
15 A6A33A72G74G108A143G144G192
16 A6A33A72G74G108A143G144T192
17 A6A33A72G74G108G143A144C192
18 A6A33A72G74G108G143A144G192
19 A6A33A72G74G108G143A144T192
20 A6A33A72G74G108G143G144C192
21 A6A33A72G74G108G143G144G192
22 A6A33A72G74G108G143G144T192
23 A6A33G72A74G108G143G144T192
24 A6A33G72G74A108G143A144T192
25 A6A33G72G74A108G143G144C192
26 A6A33G72G74A108G143G144T192
27 A6A33G72G74G108A143A144T192
28 A6A33G72G74G108A143G144C192
29 A6A33G72G74G108A143G144G192
30 A6A33G72G74G108A143G144T192
31 A6A33G72G74G108G143A144T192
32 A6A33G72G74G108G143G144C192
33 A6A33G72G74G108G143G144G192
34 A6A33G72G74G108G143G144T192
35 A6G33A72A74G108G143G144G192
36 A6G33A72A74G108G143G144T192
37 A6G33A72G74A108G143G144T192
38 A6G33A72G74G108A143G144C192
39 A6G33A72G74G108A143G144G192
40 A6G33A72G74G108G143A144G192
41 A6G33A72G74G108G143A144T192
42 A6G33A72G74G108G143G144C192
43 A6G33A72G74G108G143G144G192
44 A6G33A72G74G108G143G144T192
45 A6G33G72G74A108G143G144T192
46 A6G33G72G74G108G143G144G192
47 A6G33G72G74G108G143G144T192
48 G6A33A72A74A108A143G144T192
49 G6A33A72A74A108G143A144T192
50 G6A33A72A74A108G143G144C192
51 G6A33A72A74A108G143G144G192
52 G6A33A72A74A108G143G144T192
53 G6A33A72A74G108A143A144T192
54 G6A33A72A74G108A143G144T192
55 G6A33A72A74G108G143A144T192
56 G6A33A72A74G108G143G144C192
57 G6A33A72A74G108G143G144G192
58 G6A33A72A74G108G143G144T192
59 G6A33A72G74A108A143A144C192
60 G6A33A72G74A108A143A144T192
61 G6A33A72G74A108A143G144C192
62 G6A33A72G74A108A143G144G192

Hap. No. Haplotype
63 G6A33A72G74A108A143G144T192
64 G6A33A72G74A108G143A144C192
65 G6A33A72G74A108G143A144G192
66 G6A33A72G74A108G143A144T192
67 G6A33A72G74A108G143G144C192
68 G6A33A72G74A108G143G144G192
69 G6A33A72G74A108G143G144T192
70 G6A33A72G74G108A143A144C192
71 G6A33A72G74G108A143A144G192
72 G6A33A72G74G108A143A144T192
73 G6A33A72G74G108A143G144C192
74 G6A33A72G74G108A143G144G192
75 G6A33A72G74G108A143G144T192
76 G6A33A72G74G108G143A144C192
77 G6A33A72G74G108G143A144G192
78 G6A33A72G74G108G143A144T192
79 G6A33A72G74G108G143G144C192
80 G6A33A72G74G108G143G144G192
81 G6A33A72G74G108G143G144T192
82 G6A33G72A74A108G143G144T192
83 G6A33G72A74G108G143G144C192
84 G6A33G72A74G108G143G144T192
85 G6A33G72G74A108A143G144T192
86 G6A33G72G74A108G143A144G192
87 G6A33G72G74A108G143A144T192
88 G6A33G72G74A108G143G144C192
89 G6A33G72G74A108G143G144G192
90 G6A33G72G74A108G143G144T192
91 G6A33G72G74G108A143A144T192
92 G6A33G72G74G108A143G144C192
93 G6A33G72G74G108A143G144T192
94 G6A33G72G74G108G143A144C192
95 G6A33G72G74G108G143A144G192
96 G6A33G72G74G108G143A144T192
97 G6A33G72G74G108G143G144C192
98 G6A33G72G74G108G143G144G192
99 G6A33G72G74G108G143G144T192

100 G6G33A72A74G108G143G144T192
101 G6G33A72G74A108A143G144T192
102 G6G33A72G74A108G143A144C192
103 G6G33A72G74A108G143A144T192
104 G6G33A72G74A108G143G144C192
105 G6G33A72G74A108G143G144T192
106 G6G33A72G74G108A143A144C192
107 G6G33A72G74G108A143A144T192
108 G6G33A72G74G108A143G144C192
109 G6G33A72G74G108A143G144G192
110 G6G33A72G74G108A143G144T192
111 G6G33A72G74G108G143A144G192
112 G6G33A72G74G108G143A144T192
113 G6G33A72G74G108G143G144C192
114 G6G33A72G74G108G143G144G192
115 G6G33A72G74G108G143G144T192
116 G6G33G72G74A108G143G144C192
117 G6G33G72G74A108G143G144T192
118 G6G33G72G74G108A143G144T192
119 G6G33G72G74G108G143A144C192
120 G6G33G72G74G108G143A144T192
121 G6G33G72G74G108G143G144C192
122 G6G33G72G74G108G143G144G192
123 G6G33G72G74G108G143G144T192
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8. Codon usage effects
In the main article in section Fitness landscapes of clinical p7 quasispecies we analyzed the bi-allelic two loci peptide
space for illustration purposes and as a proof-of-concept of our developed method. Here we show the results of
looking at fitness differences of codons at synonymous loci. To this end, we iterated over all amino acid residues and
analyzed those positions where heterogeneity exists in DNA sequences but not in the translated peptides. In order
to analyze codon usage effects, we marginalized out the effects of all other loci, by defining equivalence classes for
the synonymous codons, similar to the approach used for defining equivalence classes for peptides in section Fitness
landscapes of clinical p7 quasispecies of the main article. We have analyzed synonymous codons for patient 1 and
patient 2 and have summarized the results in Table S6 respectively Table S7.

Table S6. Codon usage in patient 1. The wild-type is indicated by the letters wt and defined as the major allele,
whereas the mutant allele is (mt) defined to be the minor allele. The variable p̄ denotes the posterior
average frequency of the respective codon.

Amino acid Amino acid wt mt
position Codon p̄wt Codon p̄mt

3 Ala GCA 85.5% GCG 14.5%
17 Arg AGA 87.8% AGG 12.2%
40 Arg AGA 92.1% AGG 7.9%
56 Glu GAA 82.5% GAG 17.5%
57 Gly GGA 74.6% GGC 25.4%
61 Lys AAA 80.0% AAG 20.0%

Table S7. Codon usage in patient 2. The wild-type is indicated by the letters wt and defined as the major allele,
whereas the mutant allele (mt1,2) is defined to be the first and (if applicable) second minor allele. The
variable p̄ denotes the posterior average frequency of the respective codon. Notice the tri-allelic locus at
amino acid position 64.

Amino acid Amino acid wt mt1 mt2
position Codon p̄wt Codon p̄mt1

Codon p̄mt2

2 Glu GAG 88.4% GAA 11.6%
11 Ala GCA 94.5% GCG 5.5%
24 Arg AGA 91.9% AGG 8.1%
36 Gly GGG 87.8% GGA 12.2%
64 Thr ACT 88.4% ACC 8.5% ACG 3.1%

All codons could be credibly inferred to differ in their fitness, with the wild-type codon fitter than average and all
mutant codons less fit than average. Given the large frequencies of the wild-type alleles, this is not unexpected. Codon
usage is a known cause for fitness differences in vivo (Ermolaeva et al., 2001).
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9. Runtime evaluation
In order to better understand when the asymptotic complexity of O(n3) is reached, we ran our sampler on artificial
data. To this end, we reduced the alphabet to a binary set A = {A, G} and set the length of the genomic space under
study to L = {1, . . . , 9}, such that the total number of haplotypes will be n = 2L . All simulations were performed
with Ntrials = 100 per chain and a total of 512 chains, thus having simulated a total of 51 200 MCMC trials. For each
simulation, we recorded the time required for simulating the MCMC trials, divided the total runtime by 51200 in order
to yield the average runtime per MCMC trial. All simulations were conducted on an Intel Xeon E5-2697 CPU with one
simulation thread. In order to estimate the transition to the asymptotic regime, we estimate two models of runtime

t(n) = a+ b · n+ c · n2 + d · n3 (9.1)

and the asymptotic model

t(n) = d · n3 (9.2)

The full model (9.1) was fitted by employing non-linear least squares (NLS) on the log-transformed data, while the
latter (9.2) was fitted by performing NLS on just the last three log-transformed data points. The fitted models are
depicted in Figure S8 and confirm that beyond n ≈ 64 the asymptotic regime is practically reached. In this regime
the calculation of the matrix determinant in (4.13) is the rate-determining step, whereas below this limit non-cubic
memory allocation and function overhead contribute a sizable portion to the computational runtime.
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Figure S8. Graph of the per MCMC trial runtime t versus the number of haplotypes n. The red curve represents the
best fit of (9.1) whereas the green model represents the asymptotic complexity (9.2).
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