
INVESTIGATION

The Equilibrium Allele Frequency Distribution for
a Population with Reproductive Skew

Ricky Der1 and Joshua B. Plotkin
Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

ABSTRACT We study the population genetics of two neutral alleles under reversible mutation in a model that features a skewed
offspring distribution, called the L-Fleming–Viot process. We describe the shape of the equilibrium allele frequency distribution as
a function of the model parameters. We show that the mutation rates can be uniquely identified from this equilibrium distribution, but
the form of the offspring distribution cannot itself always be so identified. We introduce an estimator for the mutation rate that is
consistent, independent of the form of reproductive skew. We also introduce a two-allele infinite-sites version of the L-Fleming–Viot
process, and we use it to study how reproductive skew influences standing genetic diversity in a population. We derive asymptotic
formulas for the expected number of segregating sites as a function of sample size and offspring distribution. We find that the Wright–
Fisher model minimizes the equilibrium genetic diversity, for a given mutation rate and variance effective population size, compared to
all other L-processes.

MANY questions in population genetics concern the role
of demographic stochasticity and its interaction with

mutation and selection in determining the fates of allelic
types. The foundational work of Fisher, Wright, Haldane,
Kimura (Wright 1931; Haldane 1932; Fisher 1958; Kimura
1994), and others has been instrumental in shaping our in-
tuition about the powerful role that genetic drift plays in
evolution and especially its role in maintaining diversity.
This classical theory, which views genetic drift as a strong
force, emanates from the Wright–Fisher model of replication
and its large-population limit, the Kimura diffusion (Kimura
1955). The diffusion approximation has been particularly
well studied, not only because it is mathematically tractable,
but also because it is robust to variation in many of the
underlying model details. Many discrete population-genetic
models, including a large number of Karlin–Taylor and
Cannings processes (Karlin and McGregor 1964; Cannings
1974; Ewens 2004), share the same diffusion limit as the
Wright–Fisher model, and they therefore exhibit qualita-
tively similar behavior.

Nevertheless, Kimura’s classical diffusion is not appropri-
ate in every circumstance. Its central assumption is the ab-
sence of skew in the reproduction process—that is, the
assumption that no single individual can contribute a sizable
proportion to the composition of the population in a single
generation. Recent studies have suggested that this assump-
tion is violated in several species, especially in marine taxa
but also including many types of plants (Beckenbach 1994;
Hedgecock 1994), whose mode of reproduction involves
a heavy-tailed offspring distribution.

While the number of empirical studies on heavy-tailed
offspring distributions is limited, there is a rich mathemat-
ical theory to describe the dynamics of populations with
heavy reproductive skew. Beginning with Cannings’ (1974)
paper on neutral exchangeable reproduction processes, this
literature has led to generalized notions of genetic drift,
which subsume the traditional Wright–Fisherian concept of
drift. The resulting forward-time continuum limits of such
processes generalize the Kimura diffusion. One tractable
class of models is the so-called L-Fleming–Viot processes,
parameterized by a drift measure L (Donnelly and Kurtz
1999; Bertoin and Le Gall 2006), which we often refer to
as simply “L”-processes or L-models. The corresponding
backward-in-time, or coalescent, theory for such processes
leads to the L-coalescents, first defined by Pittman and
others (Pitman 1999; Sagitov 1999). Two conspicuous fea-
tures stand out in this more general theory: L-processes may
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have discontinuous sample paths, which feature “jumps” in
the frequency of an allele, in contrast to the continuous
sample paths of Kimura’s diffusion. These jumps occur pre-
cisely at the occasional times when a small group of individ-
uals contribute their genes to a sizeable fraction of the
population in the next generation. Likewise, in the corre-
sponding backward-time theory, the coalescents of such pro-
cesses can exhibit multiple and even simultaneous mergers,
instead of the strictly binary mergers of the classical King-
man coalescent.

Although mathematical aspects of such population pro-
cesses (such as their construction, existence, uniqueness,
etc.) have already been described, the specific population-
genetic consequences of reproductive skew have only re-
cently begun to be worked out. In many cases, the classical
picture of population genetics must be considerably en-
larged to accommodate new phenomena—see, for example,
Möhle (2006) on generalizations of the Ewens sampling
formula, Eldon and Wakeley (2006b) on linkage disequi-
librium in processes with skewed offspring distributions,
Birkner and Blath (2008) and Birkner et al. (2011) on in-
ference and sampling in the L-coalescent, and Der et al.
(2012) on the fixation probability of an adaptive allele in
the L-process.

The purpose of this article is to study the stationary allele
frequency distribution for populations with reproductive
skew, under neutrality. When there are a finite number of
allelic types subject to mutation, allele frequencies evolve to
a unique stationary distribution, and our principle aim is
to understand how this distribution depends on the form
of reproductive skew, L, and how it may depart from the
Wright–Fisherian picture.

Whereas a closed-form expression exists for the station-
ary allele frequency distribution in the (continuum) Wright–
Fisher model, very few explicit expressions can be obtained
in the general case of an arbitrary L-drift measure, corre-
sponding to an arbitrary form of reproductive skew. Instead,
we study the stationary distribution indirectly, by deriving
a recurrence relation for its moments. This relation provides
significant information about how the model parameters (u,
L) influence the stationary distribution. In particular, we
demonstrate that the mutation parameters u are identifiable
from the stationary distribution; counterexamples exist,
however, in which the form of drift measure L is not identifi-
able. We also introduce a simple estimator for u, given sam-
ples from the equilibrium distribution, which we prove is
consistent regardless of the skew in the underlying offspring
distribution.

We also study how reproductive skew alters the stand-
ing genetic diversity in a population at equilibrium. Some
numerical experiments of Möhle (2006), as well as some
asymptotic results of Berestycki et al. (2007) for the
b-coalescent, have suggested that the Wright–Fisher model
tends to minimize standing diversity, compared to other off-
spring distributions. To analyze this behavior, we develop
a L-version of Kimura’s infinite-sites model, and we study

the mean number of segregating sites, ESn, in a sample of
size n. This measure of genetic diversity is robust in the
sense that it is immune to many assumptions of the model
and it coincides with the mean number of segregating sites
in other infinite-sites models, including Watterson’s fully
linked infinite-sites model. We demonstrate that the Wright–
Fisher model minimizes diversity among all L-processes of
the same variance-effective population size. In other words,
reproductive skew always tends to amplify standing ge-
netic diversity, compared to the classical population-genetic
model. We also derive a recursion formula for the mean
number of segregating sites, and we use this to obtain as-
ymptotic formulas for the number of segregating sites in
large samples.

The remainder of the article is structured as follows. We
start by reviewing discrete population models under re-
productive skew. We then describe the forward-time con-
tinuum limits of such processes, which can be identified as
L-Fleming–Viot processes. We develop a recursion equation
for the moments of the stationary distribution in the two-
allele case, and we use this to determine the identifiability of
model parameters. To further examine equilibrium diversity
we then introduce a two-allele, infinite-sites model with free
recombination, and we study the frequency spectrum of
samples from this process. This leads to a recursion formula
for the mean number of segregating sites and theorems con-
cerning the minimization and maximization of diversity
among all L-measures. We conclude by providing a simple
intuition for our results and by placing them in the context
of the large literature on reproductive skew.

Discrete Population Models with Reproductive Skew

The L-Fleming–Viot processes are generalizations of the
classical Wright–Fisher and Moran processes, which incor-
porate the possibility of large family sizes in the offspring
distribution. The characteristics of these processes are most
easily understood by studying them in a continuous-state,
continuous-time setting, described below. Nonetheless, we
first describe these models and review their properties in
a discrete setting, along the lines of the treatment in Eldon
and Wakeley (2006a).

We consider a population containing a fixed number N of
individuals, each of two types. At every time step, a single
individual is chosen uniformly from the population and pro-
duces a random number U of offspring, drawn from a distri-
bution of offspring numbers, PU, so that PU(i) = ℙ(U = i).
The subsequent generation is then composed of the U off-
spring from the chosen individual supplemented by N 2 U
other individuals, randomly selected without replacement
from the remainder of the population. Only a single individ-
ual contributes offspring in each reproduction event—the
remaining individuals who neither contribute offspring nor
die simply persist to the next time step.

When the offspring distribution PU is concentrated at two
individuals, i.e., ℙ(U = 2) = 1, this model coincides with the
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Moran process. More generally, we consider any discrete
offspring number distribution PU supported on the set
{0, . . . ,N}.

To incorporate mutation, an additional stage is appended
after reproduction wherein each individual may mutate to
the opposing type, independently and identically with
a probability that depends upon the individual’s type, where
the probability of a mutation from type 1 to type 2 is m1/N
and m2/N with the mutation rate mi $ 0. This composite
process is graphically depicted in Figure 1. We call this dis-
crete process, which is a special case of the Cannings process
(Cannings 1974), an “Eldon–Wakeley” model.

For our purposes, in the case of two alleles, it suffices to
keep track only of the number of individuals in generation k
of type 1, denoted by Xk. Since Xk is a Markov chain on the
states {0, . . . ,N}, it possesses an associated transition ma-
trix. We do not describe the specific form of the Markov
transition matrix in this article, but we do focus on one
important feature of this matrix: the variance of the allele
frequency after one generation, after starting from a single
mutant of type 1 in the population:

s2
N ¼ Var½XkjXk¼1 ¼ 1�: (1)

This quantity, called the “offspring variance”, determines the
time-scaling of the continuum limit (see below), and it is
related to the offspring number distribution PU by

s2
N ¼ E½UðU2 1Þ�

N2 1
: (2)

Continuum Approximations of Population Models
with Reproductive Skew

Analysis of the Moran or Wright–Fisher model is often made
easier by taking a continuum limit, which becomes accurate
in the limit of large population size N / N (Kimura 1955;
Ewens 2004). As described in Der et al. (2011), it is possible
to define a significantly larger natural class of discrete pop-
ulation processes (those whose first two conditional moments
coincide with that of the Wright–Fisher process), and derive
their continuum limits, without restrictions on the offspring
distribution PU. This class of discrete processes contains the
Cannings processes and the Eldon–Wakeley processes dis-
cussed above as special cases. The continuum theory for
the Cannings case has been developed by Möhle (2001).
While the limiting continuum processes are not, in general,
diffusions with continuous sample paths, they are still char-
acterized by an operator G, the infinitesimal generator of the
continuum process, which reduces to the second-order dif-
ferential equation of Kimura in the case of the Wright–Fisher
model.

Continuum approximations involve choosing how to
scale time and space, as N / N. Such scalings replace
the number i of individuals with the frequency x = i/bN,
and the generation number k by the time t = kcN, for some

choices of sequences {bN}, {cN}. The continuum limit is then
the process

Xet ¼ lim
N/N

1
bN

X½t=cN �: (3)

In the classical Moran model we use the scalings bN = N and
cN = N22. In fact, it can be shown that the relationship
between the space-scaling bN and time-scaling cN is fixed,
in the sense that no other relationship leads to nontrivial
limiting processes. We wish to study allele frequencies and
hence impose the natural scaling bN = N. The general theory
(Der et al. 2011; Möhle 2001) then indicates that the time-
scaling must be proportional to

cN ¼ s2
N
N
; (4)

where s2
N is the offspring variance of the discrete-time pro-

cess (2).
Once a time-scaling is fixed, then so is the appropriate

scaling regime for the mutation rates, to produce a nontrivial
balance of mutation and drift. This scaling must satisfy

mi ¼ O
�
s2
N
�
: (5)

In the classical Moran model s2
N ¼ 2=N; which produces the

traditional scaling of mutation rate mi = O(N21). In other
models, such as those described in Eldon and Wakeley
(2006a), where s2

N ¼ N2gþ1 and g , 2, mutation rates must
scale faster to compensate for the increased rate of evolution
from the drift process.

The limiting continuum process for an
Eldon–Wakeley model

By applying the techniques of Möhle (2001) and Der
(2010), we may derive the continuum limit for the Eldon–
Wakeley process. These limits are characterized by an oper-
ator G and an associated Kolmogorov backward equation,
analogous to the diffusion equation of Kimura. We consider
a sequence of Eldon–Wakeley models, one for each popula-
tion size N, and each with offspring distribution PðNÞU : We
assume the time-scaling and mutational constraints of (4)
and (5) so that

ui ¼ lim
N/N

2mi

s2
N

(6)

defines the effective population-wide mutation rate. Under
appropriate conditions on the sequence of offspring distri-
butions PðNÞU , there exists a limiting measure L that may be
derived from fPðNÞU g as

L ¼ lim
N/N

LN ðweak  limitÞ (7)

LN

�
i
N

�
¼ 1

cN

�
i
N

�2

PðNÞU ðiÞ; i ¼ 0; . . . ;N (8)
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and that characterizes the continuum limit. Letting
~X
ðNÞ
t ¼ ð1=NÞX½t=cN �; for t $ 0, denote the time and state

rescaled process, one can show then that ~X
ðNÞ
t converges to

a limiting process ~Xt on the allele frequency state-space
[0, 1] as N / N, which satisfies the backward equation

@uðx; tÞ
@t

¼ Guðx; tÞ; uðx; 0Þ ¼ f ðxÞ; (9)

where

GuðxÞ ¼ 1
2 ð2u1x þ u2ð12 xÞÞ @u@x
þ
Z 1

0

xuðx þ ð12 xÞlÞ2uðxÞ þ ð12 xÞuðx2 lxÞ
l2

3  dLðlÞ

(10)

and where uðx; tÞ ¼ E½f ð~XtÞj ~X0 ¼ x�:
The Markov process whose generator G is given by (10) is

called the forward-time, two-type L-Fleming–Viot process
(with mutation). In the sequel, we consider without any loss
of generality only those processes for which L is a probabil-
ity measure; i.e.,

R 1
0 dLðlÞ ¼ 1: This normalization can be

thought of as restricting the space of models to those with
the same offspring variance or, equivalently, the same rate
of drift.

Intuitive remarks on the generator

As with the decomposition of the discrete Eldon–Wakeley
process into a reproduction stage and mutation stage,
the generator of (10) splits into two terms: a portion
ð1=2Þð2u1x þ u2ð12 xÞÞð@=@xÞ that describes mutation, in-
dependent of the reproduction measure L, and an integral
portion that describes genetic drift. The term describing mu-
tation coincides with the standard first-order advection term
in Kimura’s diffusion equation. The integral term, however,
generally differs from the Kimura term, and it depends on
the drift measure L.

Throughout the remainder of this article we distinguish
several important families of L-processes. We define the
pure L-processes to be those models for which L = dl, the
Dirac measure concentrated at a single point l, with 0 #

l # 1. The terminology “pure” has been adopted from func-
tional analysis, where it describes extreme points of a convex

set—i.e., the points that cannot be written as nontrivial mix-
tures of other points in the set.

Since (10) expresses the generator as an integral de-
composition over such pure processes, we can think of a L-
process as being a random mixture of these pure processes.
Of particular interest are the extreme cases L = d0 and L =
d1—which correspond to the Wright–Fisher process and the
so-called “star” processes, respectively. As we will show,
these two processes constrain the range of dynamics in
L-models. Another well-studied family in the coalescent lit-
erature are the b-processes, for which L has a b-distribution
(Berestycki et al. 2007).

One can interpret L as a jump measure controlling the
frequency of large family sizes. If L is concentrated near
zero, then jump sizes are small. In this regime, the integrand
ðxuðx þ ð12 xÞlÞ2 uðxÞ þ ð12 xÞuðx2 lxÞÞ=  l2 behaves like
the standard Kimura drift term ð1=  2Þxð12 xÞu$ðxÞ: For the
pure processes, where L is concentrated at the point l, allele
frequencies remain constant for an exponential amount of
time, until a bottleneck event in which a fraction l of the
population is replaced by a single individual. Such events
cause the allele frequency to increase instantaneously by the
amount (12 x)l or decrease by lx. In the most general case
of an arbitrary measure L, these behaviors are mixed, and
the jump events occur at exponential times with mean de-
pendent on l22   dLðlÞ and are associated with jumps of
random size l.

If L places a large mass near zero, the process becomes
diffusion-like, with sample paths exhibiting frequent, small
jumps. On the other hand, if L is mostly concentrated away
from zero, then allele dynamics are of the “jump and hold”
type, with fewer, but more sizable, jumps. Such behavior is
most extreme in the star model, whose sample paths are
constant until a single jump to absorption.

The Stationary Distribution of L-Processes

In the absence of mutation, allele frequencies must eventu-
ally fix at 0 or 1, and thus any discrete Eldon–Wakeley
model possesses a trivial stationary distribution whose con-
centration at the absorbing states {0, N} depends on the
initial condition. When mutation rates mi are strictly posi-
tive, however, each Eldon–Wakeley process in a population

Figure 1 Schematic diagram of a
discrete-time population model with
reproductive skew.
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size N possesses a unique, nontrivial stationary distribution,
pN, to which the process converges, regardless of the initial
condition.

In Figure 2, we plot the stationary distributions for a few
L-processes, in the case of symmetric mutation u1 = u2.
Generally, these distributions have the same qualitative de-
pendence on the mutation rate as the classical Wright–
Fisher stationary distribution: they continuously progress
from Dirac singularities at the boundaries to distributions
concentrated more in the center of the interval, as the mu-
tation rate increases. It is interesting to observe, however,
that the non-Wright–Fisherian processes tend to have more
mass at intermediate allele frequencies, and less relative
mass near the boundaries, than the Wright–Fisherian model.
We study this phenomenon more precisely below.

The continuum limit ~X of a sequence of Eldon–Wakeley
processes also possesses a unique stationary distribution, p.
In the Appendix, we demonstrate that

pN/p; as N/N: (11)

In other words, the sequence of discrete equilibrium mea-
sures converges to the continuum equilibrium distribution. As
a result, we can use the continuum equilibrium as a good
approximation in large populations.

Moments of the stationary distribution

In the case of two alleles, the stationary allele frequency
distribution describes the likelihood of finding the mutant
allele at any given frequency, if the process started a long

Figure 2 Stationary distributions for the b-process (solid lines) and Wright-Fisher process (dashed lines). (A and B) Stationary densities. (C and D)
Stationary cumulative distribution functions. (A and C) Beta process (solid lines) with Beta density parameters a = 0.7, b = 1. (B and D) Beta process
(solid lines) with parameters a = 1.3, b = 1. Mutation values are u = 0.1, 0.3, 0.6, 1.2. Population size N = 8000. Note that for a given mutation rate, the
Wright–Fisher process concentrates more mass at the boundaries than the b-process.
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time ago. We study the moments of the stationary distribu-
tions for L-processes, using a version of the Fokker–Planck
equation, analogous to the equation used by Kimura to study
the stationary distribution of the Wright–Fisher process. In
general, a stationary distribution p of a Markov process with
generator G is the solution to its so-called adjoint Fokker–
Planck equation, so thatZ 1

0
GuðxÞ  dp ¼ 0; (12)

for every smooth function u on [0, 1]. We take G as the
generator for the L-process with mutation, given by (10).
Although it is difficult to solve for p in general, this equation
can nonetheless be used to obtain detailed information
about the stationary distribution.

To begin, we develop formulas for the moments of the
stationary distribution, which allow us to characterize aspects
of standing genetic diversity. This derivation is similar in spirit
to the generator approach contained in Birkner and Blath
(2009), specialized to the case of two alleles.

Let mk denote the kth moment of p; that is,
mk ¼

R 1
0 xk   dpðxÞ: Setting u(x) = x into (12) yields an equa-

tion for the mean value of the equilibrium, so that

m1 ¼ u2
u1 þ u2

: (13)

Next, setting u(x) = x2 into (12) yields a relation between
m2 and m1 that can be solved to give

m2 ¼ ð1þ u2Þu2
ðu1 þ u2Þð1þ u1 þ u2Þ: (14)

This recursive process can be continued, because the
generator G of (10) maps polynomials of degree k to poly-
nomials of degree k. Thus, we can derive a system of equa-
tions that define the moments of p. In the Appendix, we
show that this recursion has the form

mk ¼
��
k=2Þu2 þ ak21;k

�
mk21 þ

Pk22
j¼1 ajkmj

ðk=2Þðu1 þ u2Þ þ akk
; (15)

where the coefficients {ajk}, 1 # j # k, k = 1, 2, . . . , are
functions of L and are given by

akk ¼
Z 1

0

12 ð12lÞk2 klð12lÞk21

l2
dLðlÞ (16)

aj;k ¼
�

k
j2 1

�Z 1

0
lk2j21ð12lÞj21dLðlÞ;

j ¼ 1;  . . . ;  k2 1:

(17)

Initializing this system by (13), and observing that akk . 0,
we see that (15) uniquely determines the moments of p,
and indeed this equation can be used to solve for any spe-
cific moment of the stationary distribution. While it does not

appear that the moments mk can be solved explicitly to pro-
duce simple, closed-form expressions as functions of the
L-measure, it is clear that the coefficients ajk are all linear
combinations of moments of L. Moreover, each moment mk

is always a ratio of polynomials in u1 and u2.

Identifiability of parameters from equilibrium

One of the most important questions about the stationary
allele frequency distribution is what population-genetic
parameters can be identified from it—that is, which param-
eters of the population can be uniquely determined from
data sampled in equilibrium? In the case of L-processes,
the parameters we might wish to infer are the mutation
rates, u1 and u2, as well as the (high-dimensional) drift
measure, L, which describes the offspring distribution.

The first two moments of the stationary distribution are
given by (13) and (14), and they are independent of the
drift measure, L. Thus, the first- and second-order moments
of the stationary distribution for all L-processes and any
function of these moments, such as the second-order hetero-
zygosity

R 1
0 xð12 xÞdpðxÞ; must coincide with those of the

classic Wright–Fisher model. In the case of symmetric mu-
tation u1 = u2 = u, the third moment is also, remarkably,
constant across the L-processes and has the value

m3 ¼ 2þ u

4þ 8u
: (18)

The constancy of the first two moments with respect to L,
and the fact that the mapping from the first two moments to
the two mutation parameters (m1, m2) ↦ (u1, u2) given by
(13) and (14) is one-to-one, allows us to conclude that, re-
gardless of the underlying reproductive process, the mutation
rates (u1, u2) are always identifiable from the equilibrium
distribution. This is a productive result—because it means that
we can always infer mutation rates from sampled data, even
when the offspring distribution of a species is unknown to us.

Conversely, we may ask whether we can identify the
form of reproductive process without knowledge of mutation
rates—that is, Is L always uniquely identifiable from the sta-
tionary distribution alone? It turns out that the answer is neg-
ative, as we demonstrate with the following simple example.

Consider the star process L = d1 with mutation parame-
ters u1 = u2 = u. The generator for this process is

GuðxÞ ¼ 1
2
uð12 2xÞu9ðxÞ þ ð12 xÞuð0Þ2 uðxÞ þ xuð1Þ:

(19)

The associated stationary distribution p1 is easily derived
(see Appendix), and it has a density dp1/dx given by

dp1

dx
¼ 1

u
j122xjð12uÞ=u: (20)

For comparison, the Kimura diffusion has a Dirichlet-type
stationary distribution p0:
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dp0

dx
¼ Gð2uÞ

ðGðuÞÞ2 x
u21ð12xÞu21: (21)

Note that both distributions (20) and (21) coincide when
u = 1, despite the enormous difference between the drift
measures of these processes. Hence, the map from a given
two-allele L-process to its stationary distribution is not one-
to-one, and consequently the drift measure L cannot always
be identified from the stationary distribution, e.g., when u is
near unity. Nonetheless, the L-measure is often identifiable
under an infinite-sites model with a small per-site mutation
rate, as discussed below.

An estimator for u from the equilibrium distribution

Here we introduce a method to estimate the mutation rate,
u, from data sampled from the two-way equilibrium distri-
bution. Because we know that the first two moments of the
equilibrium distribution do not depend on the underlying
L-measure, we will be able to construct a simple and robust
estimate for the mutation rate that is consistent regardless of
the underlying skew in the offspring distribution.

Specifically, let us consider the case of a L-process un-
dergoing symmetric two-way mutation, u = u1 = u2, and
suppose we are provided with i.i.d. samples X1, . . . , XT
drawn from p, its equilibrium distribution. The first two
moments of p are

m1 ¼ 1
2

(22)

m2 ¼ 1þ u

2ð1þ 2uÞ (23)

and thus the variance of the equilibrium distribution is

vðuÞ ¼ m2 2m2
1 ¼ 1

4ð1þ 2uÞ; (24)

which gives a map between u and the variance, v. Therefore,
a natural method-of-moments estimator for u is

û ¼ g

 
1
T

XT
i¼1

�
Xi2

1
2

�2
!
; (25)

where gðvÞ ¼ 1
8v2

1
2:

In the Appendix, we prove the following two theorems
concerning the consistency and the asymptotic variance of
this estimator:

Theorem 1. The estimator û is consistent for u.
Theorem 2. The deviation

ffiffiffi
T

p ðû2 uÞ is asymptotically
(T / N) normally distributed with mean zero and variance�

1
8
logð4þ 8uÞ

�2�
m4 2m2

2
�
; (26)

where mi is the ith central moment of the equilibrium
distribution.

The critical point, here, is that the estimator û is con-
sistent, regardless of the nuisance parameter L—allowing
us to infer mutation rates in the absence of information on
the form of reproductive skew in the population. None-
theless, Theorem 2 shows that the rate of convergence
of this estimator does depend on the fourth moment of
equilibrium distribution and hence on the reproduction
measure L.

An Infinite-Sites Model for the L-Processes

To study how reproductive skew influences standing genetic
diversity, we now develop an infinite-sites version of the
L-process and study its equilibrium behavior. This model
generalizes the infinite-sites approach of Desai and Plotkin
(2008) and RoyChoudhury and Wakeley (2010), for the
Wright–Fisher model. We study the sampled site frequency
spectrum of our model, under two-way mutation. Our anal-
ysis allows us to quantify our previous observation that the
Wright–Fisher model minimizes the amount of standing ge-
netic diversity, among all L-processes. The site frequency
spectrum that we describe in this section, for independent
sites, differs from the Watterson-type spectrum for fully
linked sites; but our approach nonetheless yields informa-
tion in that case as well.

We consider an evolving population of large size N, fol-
lowing the reproduction dynamics of a neutral forward-in-
time L-process, for a fixed L-measure. We keep track of L
sites along the genome, each with two possible allelic types
under symmetric two-way mutation at rates u = u1 = u2.
The allele dynamics at each site are described by a two-type
L-process; and the site processes are assumed independent
of one another (that is, we assume free recombination).

Let pu denote the two-allele stationary distribution for
the L-model, given by (12), where the subscript denotes
the explicit dependence on the mutation rate. We imagine
sampling n individuals from the population at equilibrium,
assuming n � N. We let Yi, 1 # i # L represent the (ran-
dom) number of sampled individuals carrying a particular
type at site i, so that their joint distribution has the form

PðY1 ¼ y1; . . . ; YL ¼ yLÞ ¼
YL
i¼1

Z 1

0

�
n
yi

�
xyið12xÞn2yidpuðxÞ:

(27)

The sampled site frequency spectrum (Sawyer and Hartl
1992; Bustamante et al. 2001) is defined as the vector
(Z0, . . . , Zn)

Zk ¼
XL
i¼1

1Yi¼k; k ¼ 0; . . . ; n: (28)

The variables Zk record the number of sites with precisely
k (of n) sampled individuals of a given allelic type. In
this sense, the sampled site frequency spectrum represents
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a discretized version of the stationary distribution pu. Equa-
tion 28 implies that the variables (Z0, . . . , Zn) are distributed
multinomially on the simplex

Pn
k¼0Zk ¼ L: The sites Z1, . . . ,

Zn21 are called the segregating sites, representing locations
where there is diversity observed in the the sample. Con-
versely, the sum Z0 + Zn represents the number of mono-
morphic sites in the sample.

The infinite-site limit and its Poisson representation

To study the sampled site frequency spectrum we take the
limit of an infinite number of sites, L / N, and we apply
a Poisson approximation. We define the genome-wide mu-
tation rate as QL = L � u, and we assume that this mutation
rate approaches a constant in the limit of many sites: QL /
Q , N. In the Appendix, we show that the segregating
site variables (Z1, . . . , Zn21) then converge, as L / N, to a
sequence of independent Poisson random variables with
means (c1Q, . . . , cn21Q), given by

cjðnÞ ¼ lim
u/0

1
u

Z 1

0

�
n
j

�
xjð12xÞn2jdpuðxÞ;

j ¼ 1; . . . ; n2 1:

(29)

The behavior of the integral term in the above is studied in
Lemma 1, Equation A20. There, it is shown that for small u, the
integral has linear order near zero, and so the above limit is
well defined. The numbers cj may be interpreted as an infinite-
sites sample frequency spectrum. From (29), it is apparent that
the means cj depend on the heterozygotic moments of p and
thus also on the moments of L. This representation is thus
a generalization of a result of RoyChoudhury and Wakeley
(2010) for the two-allele Wright–Fisher independent-sites
model, where L = d0, and where the spectrum cj has the form
cj ¼ ð1=2Þðn=  jðn2 jÞÞ for j= 1, . . . , n2 1, which can be easily
verified by direct substitution of the known b-distribution
equilibrium for the Wright–Fisher case into (29).

For the Wright–Fisher model, RoyChoudhury andWakeley
(2010) have shown that the number of segregating sites in
the sample of size n, Sn ¼Pn21

i¼1 Zi, is a sufficient statistic for
Q, under the independent-sites assumption. This is an im-
portant result because the number of segregating sites vastly
compresses the information in the frequency spectrum, yet
nonetheless contains no loss of information for the purpo-
ses of inferring the mutation rate. The Poisson representa-
tion of the sample frequency spectrum we have derived
shows that Sn remains Poisson distributed even in the gen-
eral L-infinite-sites case—under the assumption of site in-
dependence. Thus, the sufficiency of Sn for Q remains true,
and consequently Sn possesses desirable qualities for robust
estimation of Q.

Diversity amplification and the number of
segregating sites

The number of segregating sites in a sample is a classic and
powerful method to quantify genetic diversity in a population.

Here we study how Sn depends on the form of reproduction—
that is, on the form of the drift measures L. In particular, we
show that the Wright–Fisher model minimizes the expected
number of segregating sites in a sample, compared to all other
L-processes. Thus, large family sizes in the offspring distribution
will tend to amplify the amount of diversity in a population.

As usual, we consider a L-Fleming–Viot process such that
L is a probability measure. Under the infinite-sites Poisson
approximation, the number of segregating sites Sn in a sam-
ple of size n is Poisson distributed, and its expected value is

ESn ¼ E

Xn21

j¼1

Zj ¼ Q
Xn21

j¼1

cjðnÞ; (30)

where cj(n) are the coefficients in (29). Applying the bino-
mial theorem to the sum above shows that

ESn
Q

¼ lim
uY0

1
u

Z 1

0
½12 xn2 ð12xÞn�dpuðxÞ (31)

and so we may interpret the expected number of segregating
sites as a type of higher-order heterozygosity statistic of the
stationary distribution. According to (29), cj(n) is a linear
combination of moments of p, of order at most n. It follows
that the average number of segregating sites may be evalu-
ated by the recursion (15) and it can be expressed as ratio-
nal functions of moments of L. The first several such
expressions are listed below:

ES2 ¼ Q (32)

ES3 ¼ 3
2
�Q (33)

ES4 ¼

Z 1

0

�
5l2 2 14lþ 11

�
  dLðlÞZ 1

0

�
62 8lþ 3l2

�
  dLðlÞ

�Q (34)

ES5 ¼ 5
2

Z 1

0

�
52 6lþ 2l2

�
  dLðlÞZ


1

0

�
62 8lþ 3l2

�
  dLðlÞ

�Q (35)

ES6 ¼ 1
2

R 1
0

�
2608l2 2 1558lþ 41122428l3 þ 1312l4 2388l5 þ 49l6

�
  dLðlÞR 1

0

�
62 8lþ 3l2

��
152 40lþ 45l2 224l3 þ 5l4

�
  dLðlÞ

�Q

(36)

⋮
These expressions for the expected number of segregat-

ing sites become extremely complex for larger sample sizes
n. Nevertheless, we can use asymptotic methods to study
how diversity is expected to behave in large sample sizes.
We address two primary questions. First, how does the
expected number of segregating sites, ESn, grow as a func-
tion of the sample size, for a given drift-measure L? And
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second, which reproduction processes L maximize and min-
imize ESn, for fixed Q?

In the Appendix, we use the moment recursion (15)
to derive the following recursion for the sequence {ESn},
n = 2, 3, . . . ,

ESn ¼ nQ
2ann

þ
Xn21

j¼1

ajn
ann

ESj; (37)

with the initial value ES1 = 0, and where {ajn} are given by
(16) and (17). We can use this relation to obtain detailed
information about ESn both as a function of the sample size
n and as a function of the underlying L-measure.

Consider first the pure L-processes L = dl, in which
a single individual may replace a given fixed fraction 0 ,
l # 1 of the population. Then we can prove from (37) that,
for every p . 1(see Appendix),

ESn ¼ lQ

2
nþ O

�
n1=p

�
; n/N: (38)

Two features are of interest in this asymptotic expression.
First, the average number of segregating sites grows linearly
with sample size in a pure L-process, as opposed to logarith-
mically as in the Wright–Fisher case. Second, the rate of linear
growth depends on the jump fraction, l, so that asymptoti-
cally, diversity is maximized for large replacement fractions l
and correspondingly minimized when this fraction is small.

Equation 38 can be generalized to a larger class of
L-measures. If L is any probability measure whose support
excludes a neighborhood of zero [i.e., there exists an inter-
val I = [0, e], for e . 0, such that L(I) = 0], then we have
the asymptotic formula, for every P . 1,

ESn ¼ CðLÞQ � nþ O
�
n1=p

�
; n/N; (39)

where CðLÞ ¼ ð2 R 10 l21   dLÞ21: This equation shows that
linear growth of the expected number of segregating sites
is characteristic of any L-process whose drift measure is
bounded away from zero—that is, any L-process that does
not contain a component of the Wright–Fisher process. This
result allows us to determine which reproduction processes
L maximize and minimize the average number of segregat-
ing sites ESn, for a given value of Q. In the Appendix, we
prove the following optimization principle: for each sample
size n, the diversity maximizing and minimizing processes
within the class of all L processes must in fact be pure L pro-
cesses, i.e., where L is concentrated at a single point. It follows
then from (38) that, asymptotically, the Wright–Fisher model
(l = 0) minimizes and the star-model (l = 1) maximizes,
respectively, the mean number of segregating sites among
all L-processes.

Although these results apply in the limit of large sample
sizes, we conjecture that the Wright–Fisher and star models
are also the extremal diversity processes for any sample size,
n. From the optimization principle stated above, it suffices to

check this statement within the restricted class of pure
L-processes. In Figure 3, we show ESn/Q as a function of
the jump-size parameter l for the pure models, for a few
values of n. These results confirm that the Wright–Fisher
model minimizes ESn, whereas the star model maximizes
ESn, over all L-models. We have conducted numerical studies
that support this proposition more generally, even for very
small sample sizes. In this sense, the Wright–Fisher model
and star models are extremal processes and, for a given ef-
fective variance population size, respectively minimize and
maximize the expected genetic diversity in any sample.

Discussion

We have studied the stationary distribution of a very general
class of population models, under recurrent mutation. We
have focused on understanding the interaction between
the form of the offspring distribution and the resulting
form of genetic drift it engenders, as well as the shape of
the stationary distribution. We have demonstrated that the
mutation rate can always be uniquely identified from
the stationary distribution, even when the drift measure is
unknown (as it always will be, in practice). In addition, we
have provided a simple example in which the drift measure
L cannot be uniquely identified from the equilibrium prop-
erties of the process.

While inference of the L-measure has been studied for
particular subclasses of processes (e.g., the pure processes
and b-processes) in the literature, the general question of
identifiability from equilibrium properties does not ap-
pear to have a definitive answer. Our results suggest there
are several facets to the problem. The counterexample
to uniqueness provided above shows that, even when re-
stricted to the class of pure processes, mutation rates exist
at which the diallelic equilibria of different L-processes are
indistinguishable. However, identifiability is recovered in
this class of processes when the per-site mutation rates are
small, as shown by our infinite-sites analysis: the asymptotic
formula for the mean number of segregating sites indicates
that the pure L-processes can be uniquely discriminated by
the rate of linear growth in diversity as a function of sample
size. It remains unclear, however, even in the infinite-sites
framework, whether L can be identified in general. The fact
that ESn grows linearly for a large class of processes implies
that this statistic may be insufficient to discriminate among
processes whose coalescents are highly non-Wright–Fisher-
ian—for example, processes whose coalescents do not come
down from infinity. In these cases dynamic data, such as
allele-frequency time series, would allow researchers to in-
fer the form of the offspring distribution.

The stationary allele frequency distribution of the Wright–
Fisher process is extremal, in a sense, within the class of
L-processes. Specifically, the Wright–Fisher model exhibits
greater probability mass near very high and low allele fre-
quencies. This observation was formalized by analyzing
a L-infinite-sites model, in which we found that the mean
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number of segregating sites in a sample is indeed mini-
mized by the Wright–Fisher process, among all L-processes
of the same offspring variance s2

N and with the same per-
generation mutation rate.

Our results can be placed in the context of a nascent
literature that views the Wright–Fisher process as an
extremal model within the large space of possible popu-
lation processes. Aside from the diversity-minimization
property we have demonstrated here, it has previously
been observed, for instance, that among L-processes, the
Wright–Fisher model minimizes the fixation probability of
an adaptive allele (Der et al. 2012), minimizes the time to
absorption for new mutants (Der et al. 2011), and, among
generalized coalescents, possesses the fastest rate of “com-
ing down from infinity” (Berestycki et al. 2010). The basic
intuition behind all these results revolves around the type
of sample paths possessed by different processes. A typical
sample path in the Kimura diffusion undergoes a high fre-
quency of small jumps (in fact, is continuous), and thus
new mutants persist for only O(log N) generations before
being eliminated by genetic drift. By contrast, in a general
L-model with the same variance effective population size,
large jumps in the sample path may occur, but with lower
frequency, thereby lengthening the absorption time—for
example, up to order N generations in the pure L-processes.
Since the mean number of segregating sites in the entire
population is the product of the genomic mutation rate
and the expected absorption time for a new mutant, stand-
ing genetic diversity must increase when reproductive skew
is present.

Although we have presented results only within the class
of L-processes, many of our formulas—for example (15)—
can be generalized to the set of all Cannings models. We
expect the diversity-minimization property of the Wright–
Fisher model will hold even within this larger family.

The infinite-sites model of the L-process we have devel-
oped here differs from the Watterson infinite-sites model
typically encountered in coalescent theory, in two respects.
First, we have assumed free recombination and hence in-
dependent sites, whereas in Watterson’s model sites are
tightly linked. Second, we assume two-way mutation be-
tween alternative alleles at each site, whereas Watterson’s
model features one-way mutation at each site away from the
existing type. Nonetheless, some of the results derived for
our site-independent, infinite-sites model extend to the
Watterson, linked infinite-sites L-processes as well.

In general, the (random) number of segregating sites Sn
in a sample is a function of the dependency structure among
sites. For example, in the simple Wright–Fisherian case, in-
dependence of sites gives rise to a Poisson distribution for
Sn, compared to a sum of geometric random variables in
the case of no recombination (Ewens 2004). However, as
Watterson (1975) has already remarked, the mean value
of Sn is generally robust to the recombination structure of
an infinite-sites model. If Y1, . . . , YL denote the allelic distri-
butions at L sites, then (28) shows that the expected number
of segregating sites is a function only of the marginal dis-
tributions of Yi, instead of their joint distribution. Thus the
expected number of segregating sites in a sample is unaf-
fected by linkage. Likewise, the distinction between one-way
and two-way mutation (and folded and unfolded spectra)
does not alter the mean number of segregating sites other
than by a possible overall scaling.

Because Sn is such a common measure of genetic diver-
sity, our results have some connections to the literature on
L-coalescents. Recently, Berestycki et al. (2012) (see their
Theorem 3) showed that, for those L-measures whose co-
alescent comes down from infinity, the (random) number of
segregating sites Sn in a sample of size n for the Watterson
model has the asymptotic law

SnZ n

0
qc21ðqÞdq

/Q; (40)

where c is the Laplace exponent of the L-measure, defined
as

cðqÞ ¼
Z 1

0

expð2qlÞ2 1þ ql
l2

dL: (41)

The authors conjectured that (40) holds more generally,
even when L does not come down from infinity. In this
respect, our asymptotic result (39) for ESn—derived for
L-measures bounded away from zero (and thus always fail-
ing to come down from infinity)—is evidence in favor of
their more general conjecture, in the case not covered by

Figure 3 Diversity sn = ESn/Q vs. jump-size l in the pure L-processes, for
n = 4, 7, 10, 13 (bottom to top). These functions attain their extrema at
the endpoints 0 and 1, implying that the Wright–Fisher and star proces-
ses minimize and maximize diversity for these sample sizes.
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the hypotheses of their theorem. For under such assump-
tions, the Laplace exponent has the expression

cðqÞ � q
Z 1

0
l21   dL; (42)

which implies from (40) thatZ n

0
qc21ðqÞ  dq � n �

�Z 1

0
l21dL

�21

; (43)

which is proportional to our Equation 39 for ESn. Finally,
returning to the case of independent sites, developed in this
article, it is also true that the distributional convergence of (40)
holds, a fact that follows from the Poisson representation for Sn.

In our analysis of the expected number of segregating
sites, we have concentrated on the two extreme cases—the
Wright–Fisher case, for which ESn is known to grow logarith-
mically in the sample size n, and the case of pure L-processes
(and more generally those L-processes whose drift measure
support excludes zero), for which we have demonstrated lin-
ear growth of ESn. Nevertheless, the recurrence relation (37)
can be used to analyze intermediary cases as well, for exam-
ple the b-processes, in which the density of L behaves like
a power law in the vicinity of zero. Based on our stated
optimization principle, we conjecture that for such reproduc-
tion measures, growth in diversity with sample size will lie
somewhere between the logarithmic and the linear cases.
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Appendix

The Stationary Distribution of Processes with Reproductive Skew

Let X(N) be a sequence of discrete Eldon–Wakeley processes, one for each population size N, converging to a continuum
L-process ~X; under the state and time renormalization of (4) and (5). If we suppose that each discrete process operates
under strictly positive mutation rates mðNÞ

i ; then it is easily verified that the associated forward-time transition matrices P(N)

for the discrete processes possess strictly positive entries, and thus, from the Perron–Frobenius theorem, a unique stationary
distribution pN exists for each process X(N). A standard argument, using the fact that the sequence pN is tight, shows that
there is a subsequence pNk converging to a probability measure p that is a stationary distribution for ~X (see Ethier and Kurtz
1986, for example). This argument indeed demonstrates that any weak limit point of pN is a stationary distribution ~X; below,
through the moment recursion, this distribution is uniquely characterized, and hence every weakly convergent subsequence
of pN converges to p; thus pN / p.

Derivation of a Recursion for the Moments of the Stationary Distribution

Let p be the stationary distribution for the two-type L-process, which satisfies (12). In this section we obtain a recursion
formula for the moments of p.

Define the operator Lu(x) = xu(x + (1 2 x)l) 2 u(x) + (1 2 x)u(x 2 lx). Setting u(x) = xk, k $ 0, we have

Lxk ¼
�
ð12lÞk2 1

�
xk2 ð12lÞkxkþ1 þ xðx þ ð12xÞlÞk ¼

�
ð12lÞk 21

�
xk2 ð12lÞkxkþ1 þ xkþ1ð12lÞk

þ kxkð12lÞk21lþ
Xk22

j¼0

 
k

j

!
xjþ1ð12lÞj lk2j ¼

�
ð12lÞk 2 1þ klð12lÞk21

�
xk þ

Xk21

j¼1

 
k

j2 1

!
xjð12lÞj21lk2jþ1: (A1)

Separating the L-generator (10) into the mutation and pure-drift portions, we define the latter to be the operator

GDuðxÞ ¼
Z 1

0

1
l2

LuðxÞdLðlÞ: (A2)

If we write

GDxk ¼
Xk
j¼1

bjkx
j; (A3)

then substituting (A1) into (A2) and comparing the coefficients to (A3), we have

bkk ¼
Z 1

0

ð12lÞk þ klð12lÞk212 1
l2

  dLðlÞ (A4)

bjk ¼
�

k
j21

�Z 1

0
lk2j21ð12lÞj21   dLðlÞ; j, k: (A5)

Let p be any stationary distribution of the process. Then according to (12),Z 1

0

	
1
2
ð2u1x þ u2ð12 xÞÞkxk21 þ GDxk



dpðxÞ ¼ 0: (A6)

Using the expansion for GDxk above, we derive�
bkk 2

k
2
ðu1 þ u2Þ

�
mk þ

�
k
2
u2 þ bk21;k

�
mk21 þ

Xk22

j¼1

bjkmj ¼ 0; (A7)

where mj is the jth moment of p. This is equivalent to formulas (15)–(17), where bkk = 2akk, and bjk = ajk for j , k.

Derivation of the star-process stationary distribution
Consider the probability measure m on [0, 1], with density
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dm
dx

¼ 1
u
j122xjð12uÞ=u: (A8)

The generator for the star process undergoing symmetric mutation is Gu ¼ ð1=  2Þuð12 2xÞu9ðxÞ þ ð12 xÞuð0Þ2 uðxÞ þ xuð1Þ;
and the space of twice continuously differentiable functions C2[0, 1] is a core for G. Noting that the density dm/dx satisfies
the equation 2 d=dxððu=  2Þð12 2xÞdm=dxÞ2 dm=dx ¼ 0 and integrating by parts, it is readily verified that

R 1
0 Gu  dm ¼ 0

for every u 2 C2. Thus m is a stationary distribution for the process and is further unique as established by the moment
recursion (A7).

Properties of the u-estimation from the equilibrium distribution
We establish here Theorems 1 and 2 for the estimator û. From the strong law of large numbers, ð1=  TÞPT

i¼1ðXi2ð1=2ÞÞ2
converges almost surely to v, the variance of the equilibrium. Therefore û/gðvÞ ¼ u, which proves Theorem 1.

Next we study the asymptotic variance of the estimator û: The asymptotic mean from the consistency result above, is, of
course, u. Since ð1=  TÞPT

i¼1ðXi21=2Þ2 concentrates around v(u), we consider a Taylor expansion around that point:

gðvðuÞ þ xÞ ¼ gðvÞ þ g9ðvÞx þ O
�
x2
�

(A9)

¼ uþ 1
8
log  vðuÞ � x þ O

�
x2
�
: (A10)

Let Y ¼ ð1=  TÞPT
i¼1ðXi21=2Þ2: Then setting x = Y 2 v(u),

gðYÞ ¼ gðvðuÞÞ þ 1
8
log  vðuÞ � ðY 2 vðuÞÞ þ OðY2vðuÞÞ2 (A11)

¼ uþ 1
8
log  vðuÞ � ðY 2 vðuÞÞ þ OðY2vðuÞÞ2: (A12)

It follows that

Var
�
û
� ¼ EðgðYÞ2uÞ2 ¼ 1

64
ðlog  vðuÞÞ2EðY2vðuÞÞ2 þ O

�
EðY2vðuÞÞ3

�
(A13)

¼ 1
64

ðlog  vðuÞÞ2 � VarðYÞ þ O
�
EðY2vðuÞÞ3

�
: (A14)

Now,

VarðYÞ ¼ 1
T
Var
�
Xi2

1
2

�2

(A15)

¼ 1
T

0@E
�
Xi2

1
2

�4

2

 
E
�
Xi2

1
2

�2
!2
1A: (A16)

Thus in summary, for large T,

Var
�
û
�

� C
T
; (A17)

where

C ¼ 1
64

ðlog vÞ2�m4 2m2
2
�

(A18)

v ¼ 1
4ð1þ 2uÞ; (A19)
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and mi is the ith central moment of the equilibrium distribution.
Using the Taylor estimate (A12) and combining with the central limit theorem, this establishes Theorem 2.

Poisson representation of the infinite-sites model
In this section we show that the segregating site variables (Z1, . . . , Zn21) in the independent-sites L-model converge to
a sequence of Poisson random variables with means (c1Q, . . . , cn21Q), given by (29). We make use of the structure of the
moments of the stationary distribution as found in (15). First, we require a preliminary lemma.

Lemma 1. Let pu be the stationary distribution of a L process undergoing symmetric mutation u. Then constants cj $ 0 exist,
for 1 # j # n 2 1,

pjðuÞ[
Z 1

0

�
n
j

�
xjð12xÞn2j   dpuðxÞ ¼ cjuþ oðuÞ; uY0: (A20)

Proof. Lemma 1 is equivalent to saying pj(0) = 0 and that the derivative of pj exists at u = 0, taken as a limit from positive
values. First, observe from (15) that under u1 = u2, all the moments mk(u) of the stationary distribution are differentiable in
u for all u $ 0, and hence pj(u) is differentiable everywhere. Also���pjðuÞ���#�n

j

�Z 1

0
xð12 xÞ  dpuðxÞ ¼

�
n
j

�
2u

1þ 2u
: (A21)

Hence pj(u) / 0 as u Y 0.
Now to establish the Poisson representation, it is enough to apply the well-known Poisson approximation to the

multinomial distribution. We use the following:
Theorem 3 (McDonald 1980). If (Z0, . . . , Zn) is multinomial with parameters (L, p0, . . . , pn), and (V1, . . . , Vn21) are

independent Poissons with means Lpj, then

jjðZ1; . . . ; Zn21Þ2 ðV1; . . . ;Vn21Þjj# 2L

0@Xn21

j¼1

pj

1A2

; (A22)

where ||�|| is the total variation norm of measures.
The Poisson representation is now obvious, since pj(u) = O(u) = O(1/L) by Lemma 1 and therefore the right-hand side of

(A22) goes to zero as L / N. Since (V1, . . . , Vn21) are converging to a sequence of independent Poisson distributions with
finite means cjQ, where cj are as in Lemma 1, so must (Z1, . . . , Zn21).

The average number of segregating sites
In this section, we study the number of segregating sites Sn in the infinite-sites L-model, deriving the recursion (37) for
the average diversity measure sn = ESn/u, and use it to obtain asymptotic expressions for diversity.

Let pu be the stationary distribution of the L-process under two-way symmetric mutation u. Define Hn(u) as the hetero-
zygosity measure

HnðuÞ ¼
Xn21

j¼1

Z 1

0

�
n
j

�
xjð12xÞn2j   dpuðxÞ: (A23)

Applying the binomial theorem,

HnðuÞ ¼
Z 1

0

�
12 xn 2 ð12xÞn�dpuðxÞ ¼

Z 1

0
ð12 2xnÞdpuðxÞ; (A24)

where the second equality follows from symmetry of the stationary distribution. Now, define the diversity measure sn =
ESn/Q. We have from (31)

sn ¼ lim
uY0

1
u
HnðuÞ: (A25)

Under symmetric mutation u = u1 = u2, the recursion formulas for moments (15) read
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mnðuÞ ¼
ðnu=2Þ �mn21ðuÞ þ

Pn21
j¼1 ajnmjðuÞ

nuþ ann
: (A26)

Observe that by the binomial theorem, one has the relation

ann ¼
Xn21

j¼1

ajn: (A27)

Taking the limit as u Y 0 in (A26), and using (A27) and m1(u) = 1/2, it is easy to show that limu/0 mn(u) = 1/2 for every n.
Since (A26) also demonstrates that mn is analytic in u in a neighborhood of 0, there are numbers {vn} such that mn(u) = 1/2
+ vnu + O(u2). Inserting this into the right-hand side of (A26), and expanding the quotient (A26) in a Taylor series, we
obtain, by equating the first-order coefficients, a recursion for vn:

vn ¼ 2 n=4þPn21
j¼1 ajnvj

ann
: (A28)

The equations (A24) and (A25) imply that

lim
uY0

122mnðuÞ
u

¼ sn: (A29)

And using the Taylor expansion for mn(u), we find that sn = 22vn. Thus the corresponding recursion for {sn} is

sn ¼ n=2þPn21
j¼1 ajnsj

ann
; (A30)

where we initialize s1 = 0.
From the relation (A27), the numbers ajn/ann define a probability measure on the set j 2 {1, . . . , n 2 1}. By studying this

measure and the recurrence relation defining sn, we may derive the asymptotics for sn.
Now suppose that the underlying L-process is associated with a L-measure with support bounded away from zero. Then

from (16), ann ¼ R 10 l22dLþ OðgnÞ; for some 0 , g , 1. Therefore, a21
nn ¼ ðR 10 l22dLÞ21 þ OðgnÞ: Using this estimate in the

recursion (A30), and defining A ¼ ðR 10 l22dLÞ21;

sn ¼ An
2

þ A
Xn21

j¼1

ajnsj þ OðgnÞ: (A31)

Now, we prove the following:
Theorem 4. For the L-Fleming–Viot infinite-sites model under symmetric mutation and where L is a measure whose support

is bounded away from zero, the mutation-normalized mean number of segregating sites sn satisfies, for every p . 1,

sn ¼ Cnþ O
�
n1=p

�
; n/N; (A32)

where

C ¼ A

22 2A
Z 1

0
l22ð12 lÞ  dL

¼ 1

2
Z 1

0
l21dL

: (A33)

Proof. Let sn = C(n 2 1) + gn; we derive a recurrence relation for the residual error gn. From the recursion for sn, we find,
using the explicit expressions (17),

sn ¼ An
2

þ A
Xn21

j¼1

Z 1

0
l22

�
n

j21

�
ln2ðj21Þð12lÞj21dL �

�
Cðj2 1Þ þ gj

�
þ OðgnÞ (A34)

for some 0 , g , 1.
Denote the right-hand side of the above by RHS, and to ease the notation define the coefficients
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bn;jðlÞ ¼
�

n
j2 1

�
ln2ðj21Þð12lÞj21: (A35)

Then

RHS ¼An
2

þ A
Xnþ1

j¼1

Z 1

0
Cðj2 1Þl22bn;jðlÞ  dL

2A
Xnþ1

j¼n

Z 1

0
Cðj2 1Þl22bn;jðlÞ  dL

þ  A
Xn21

j¼1

Z 1

0
gjl22bn;jðlÞdLþ OðgnÞ (A36)

¼ An
2

þ A
Xnþ1

j¼1

Z 1

0
Cðj2 1Þl22bn;jðlÞ  dLþ A

Xn21

j¼1

Z 1

0
gjl22bn;jðlÞdLþ O

�
gn1
�

(A37)

for some 0 , g1 , 1, with the last equality holding since L has support bounded away from zero. Using the formula for the
mean of a binomial random variable with parameters (n, 1 2 l) in the series, this is

RHS ¼ An
2

þ An
Z 1

0
Cð12 lÞl22dLþ A

Xn21

j¼1

Z 1

0
gjl22bn;jðlÞdLþ O

�
gn1
�
: (A38)

Inserting this expression into (A34) and using the definition of C, we find that gn satisfies the relation

gn ¼ A
Xn21

j¼1

Z 1

0
gjl22bn;jðlÞ  dLþ Oð1Þ: (A39)

We now use this relation to show that, for every p . 1, gn = O(n1/p). To do this we prove that any gn satisfying (A39)
must satisfy the upper bound gn # Mn1/p for some M; then the statement follows because 2gn also satisfies (A39) and hence
2gn # M9n1/p.

Fix a p . 1. From (A39), there exists a B such that������gn 2A
Xn21

j¼1

Z 1

0
gjl22bn;jðlÞ  dL

������#B (A40)

for all n $ 1. We demonstrate that gn # Bn1/p by induction. First, a base case for gk can be established on any fixed initial set
k 2 {1, . . . , k0} by simply enlarging B sufficiently. Now assume the statement is true up to index n 2 1, for n $ k0 + 1. Then
we have

gn #A
Xn21

j¼1

Z 1

0
gjl22bn;jðlÞ  dLþ B (A41)

#A
Xn21

j¼1

Z 1

0
Bj1=pl22bn;jðlÞ  dLþ B (A42)

#A
Xnþ1

j¼1

Z 1

0
Bj1=pl22bn;jðlÞ  dLþ B: (A43)

1214 R. Der and J. B. Plotkin



There is a probabilistic interpretation to this series. If we define random variables Xl = 1 + Yl, where Yl is binomially
distributed with parameters (n, (1 2 l)), then bn, j(l) = ℙ(Xl = j). Define further a random variable X that is a mixture of
Xl under the mixing probability density dQ(l) = Al22dL(l). Then (A43) may be written as an expectation over X, as

gn#B � E
h
X1=p

i
þ B: (A44)

Applying Jensen’s inequality,

gn #BðEXÞ1=p þ B (A45)

¼ B
�
1þ A

Z 1

0
l22ðnð12lÞÞdL

�1=p

þ B: (A46)

Let e . 0 be such that L([0, e]) = 0. Then

gn#B
�
1þ A

Z 1

0
l22ðnð12eÞÞ  dL

�1=p

þ B (A47)

¼ B
�
ð1þ ð12eÞnÞ1=p þ 1

�
: (A48)

Therefore gn # Bn1/p if the base case is established for k0 sufficiently large, and Theorem 4 is proved.

An optimization principle for the average number of segregating sites
In this section we prove the following theorem:

Theorem 5. For every sample size n, and for fixed mutation rate Q, the minimum and maximum values of ESn over the class
of L-processes are achieved within the class of pure L-Fleming–Viot processes, that is, where L = dl, for 0 # l # 1.

Proof. It is evident from the recursion for ESn in (A30) that the average number of segregating sites must have the form

ESn
Q

¼

Z 1

0
fnðlÞ  dLZ 1

0
gnðlÞ  dL

(A49)

for some continuous functions (in fact, polynomials) fn, gn. Because ESn is positive for every pure L-process (where L = dl),
we can without loss of generality assume that fn, gn $ 0. For such functions, we have the following lemma:

Lemma 2. For positive continuous functions f, g defined on [0, 1], we have the inequalities

min
l

fðlÞ
gðlÞ#

Z 1

0
fðlÞ  dLZ 1

0
gðlÞ  dL

# max
l

fðlÞ
gðlÞ: (A50)

Proof. We prove the lower bound; the upper bound is established in the same way. Say L is a two-point measure:
L ¼ p1dl1 þ p2dl2 : Then elementary manipulations show

p1f ðl1Þ þ p2f ðl2Þ
p1gðl1Þ þ p2gðl2Þ$min

�
f ðl1Þ
gðl1Þ;  

f ðl2Þ
gðl2Þ


: (A51)

By induction one easily generalizes to measures concentrated at any finite number of points. Finally, the full case is obtained
by taking weak limits of measures concentrated at a finite number of points.

Returning to the proof of the main theorem, Theorem 5, one sees that Lemma 2 immediately implies the result, since
fn(l)/gn(l) is precisely ESn/Q for the case L = dl.

The optimization principle can be refined. Let L be any probability measure whose support excludes a neighborhood of
zero, and suppose that lmin and lmax are the smallest and largest values, respectively, on which L is supported; i.e., lmin = inf
supp L, and lmax = sup supp L. Then
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lmin

2
#CðLÞ# lmax

2
: (A52)

In conjunction with (39), this shows that the asymptotic growth rate in ESn for a L-process whose drift measure is supported
on the interval [lmin, lmax] can be lower and upper bounded by the rates of growth in ESn of two pure processes, with
parameters lmin and lmax, respectively. In other words, the effect of mixing any two pure L-processes always results in
a process whose equilibrium diversity is intermediate relative to the diversities of the pure models.
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