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ABSTRACT Dissecting the molecular basis of quantitative traits is a significant challenge and is essential for understanding complex
diseases. Even in model organisms, precisely determining causative genes and their interactions has remained elusive, due in part to
difficulty in narrowing intervals to single genes and in detecting epistasis or linked quantitative trait loci. These difficulties are
exacerbated by limitations in experimental design, such as low numbers of analyzed individuals or of polymorphisms between parental
genomes. We address these challenges by applying three independent high-throughput approaches for QTL mapping to map the
genetic variants underlying 11 phenotypes in two genetically distant Saccharomyces cerevisiae strains, namely (1) individual analysis of
>700 meiotic segregants, (2) bulk segregant analysis, and (3) reciprocal hemizygosity scanning, a new genome-wide method that we
developed. We reveal differences in the performance of each approach and, by combining them, identify eight polymorphic genes that
affect eight different phenotypes: colony shape, flocculation, growth on two nonfermentable carbon sources, and resistance to two
drugs, salt, and high temperature. Our results demonstrate the power of individual segregant analysis to dissect QTL and address the
underestimated contribution of interactions between variants. We also reveal confounding factors like mutations and aneuploidy in

pooled approaches, providing valuable lessons for future designs of complex trait mapping studies.

OST medical and agricultural traits are complex, influ-

enced by multiple alleles with varying effect sizes that
interact to produce inherited phenotypic variation. Previous
studies in model organisms (Steinmetz and Davis 2004;
Ehrenreich et al. 2009; Flint and Mackay 2009; Flint 2011)
have yielded insights into genetic principles that shape com-
plex traits. These studies have shown that in addition to ma-
jor QTL with large effects, many loci with smaller effects
contribute to phenotypic variation. Indeed, although many
alleles have been associated with complex traits in humans,
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their individual and cumulative effects are usually small
(<10%) (Lango Allen et al. 2010). Further studies have re-
vealed extensive context-dependent effects such as epistasis
or genotype-by-sex interactions, as well as pleiotropic effects,
most instances of which have likely not been detected. Hence,
understanding the genetic basis of complex traits remains an
open challenge (Stranger et al. 2011).

In this study, we applied three high-throughput methods
for the first time to comprehensively identify causative
variants underlying 11 phenotypes in two genetically distant
yeast strains, S96 and SK1 (Liti et al. 2009; Schacherer et al.
2009). Each method begins with a hybrid generated by
crossing these two strains. The first method is the commonly
used bulk segregant analysis (BSA) (Segre et al. 2006;
Birkeland et al. 2010; Ehrenreich et al. 2010; Wenger et al.
2010; Parts et al. 2011; Swinnen et al. 2012), in which millions
of segregants from a hybrid undergo selection under an envi-
ronmental pressure. QTL mapping is then performed by iden-
tifying regions of allelic enrichment via sequencing of the pool
(Figure 1).
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nome-wide level. After selective growth, the barcodes are amplified and hybridized to a microarray (or sequenced), providing a proxy of fitness that can
be used to measure the effects of allelic variation in each gene on the phenotype of interest.

The second method utilized here is individual segregant
analysis (ISA) of 720 segregants from the hybrid. These
segregants were genotyped by next-generation sequencing
(Wilkening et al. 2013) and individually phenotyped to de-
tect genomic regions linked to the phenotypes of interest
(Figure 1). Most previous QTL mapping studies in yeast
have been performed with sample sizes on the order of
100 segregants and up to 3000 markers (average SNP dis-
tance: 4 kb) (Steinmetz et al. 2002; Brem et al. 2005;
Gatbonton et al. 2006; Foss et al. 2007; Hu et al. 2007,
Marullo et al. 2007; Nogami et al. 2007; Perlstein et al.
2007; Ehrenreich et al. 2009; Li et al. 2013). Our experiment
thus increases the sample size by 7-fold and the number of
markers by 20-fold (average SNP distance: 150 bp). To date,
only one study with a similar number of segregants (1008)
has been published; however, it did not validate causative
genes (Bloom et al. 2013).

To attain QTL mapping at single-gene resolution, we
developed and applied a third method termed “reciprocal
hemizygosity scanning” (RHS). For this method, we con-
structed a hemizygous deletion collection in the hybrid by
deleting either the SK1 or the S96 allele and replacing it
with a kanamycin resistance gene (KanMX) and a molecular
barcode (Figure 1) (Winzeler 1999). This collection includes
~75% of the essential and non-essential open reading frames
(ORFs) in the yeast genome, allowing for the direct compar-
ison of allelic variants within a single pooled experiment on
a genome-wide scale (Steinmetz et al. 2002; Steinmetz and
Davis 2004). This is the first report of this genome-wide ap-
proach including >19,000 hemizygous strains (~4861 genes
deleted in duplicate per background).

Overlaying QTL detected by these three methods yielded
extremely high resolution, allowing us to identify putative
allelic variants underlying eight phenotypes. We also dis-
covered strong interactions between QTL and differences
between the three approaches, which can partially be
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explained by different experimental parameters (e.g.,
duration of growth), but also by confounding factors such
as accumulation of mutations influencing the pooled RHS
and BSA approaches.

Materials and Methods
Yeast strain generation

Haploid strains from S288c (BY4742 prototrophic MATa,
referred to as “S96”) and SK1 (SK1 MATa ura3A his3A
flo8A canlA::STE2pr-HIS3) were crossed, and an individual
hybrid strain was sporulated by transferring the cells grown
in YPD (yeast extract, 10 g/liter; Bacto peptone, 20 g/liter;
dextrose, 20 g/liter) to 200 ml sporulation medium [0.5%
(w/v) potassium acetate] and incubating them at 22° with
agitation. After spreading the cells on YPD plates, 768 clones
were randomly picked in eight 96-well plates, grown over-
night, and stored as glycerol stocks. This set of segregants
can be copied and sent to other labs upon request. For BSA,
we crossed our haploid SK1 strain, in which the PMS1 ORF
was exchanged with its S288c version to make it more ge-
netically stable (Heck et al. 2006; Demogines et al. 2008b)
[SK1 MATa ura3A his3A floS8A canl-A::STE2pr-HIS3 PMS1
(S288c)] with an S96 strain (BY4742 MATo ura3A his3A
canlA::STE2pr-HIS3). Two independent crosses were grown
in 100 ml YPD until ODggonm = 1 and sporulated as de-
scribed above. We used the synthetic genetic array (SGA)
marker system to select for MATa strains on SD plates lack-
ing histidine and supplemented with L-canavanine (60 mg/
ml) (Tong et al. 2001; Pan et al. 2004). The resulting colo-
nies were scraped off the plates with an estimated number
of 4 X 108 independent segregants per pool. Aliquots of the
pool were frozen at —80° in 15% glycerol for later use. ENA6
was amplified from genomic DNA of SK1 and cloned into the
p416 expression vector (Mumberg et al. 1995) using Spel and
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Xhol restriction sites (Supporting Information, Table S1).
The empty plasmid as well as the ENA6-containing plasmid
were transformed into SK1 cells and tested in normal and
high-salt conditions.

Genotyping

Both ISA and BSA analyses were performed with the same
65,234 single nucleotide polymorphisms (SNP) positions, as
described before (Wilkening et al. 2013). In brief, sequences
were aligned to the S288c reference genome (Saccharomy-
ces Genome Database), using Novoalign and allowing only
unique alignments. Realignment of the subsequent BAM
files, SNP calling, and genotyping were performed using
GATK (McKenna et al. 2010). For ISA segregants, missing
genotypes were imputed with BEAGLE (Browning and
Browning 2007). In total, 768 segregants were sequenced,
but from the coverage aneuploidies were detected in 26 in-
dividual segregants (Wilkening et al. 2013). After exclusion
of these aneuploid strains and strains with low coverage or
contamination, 720 segregants were used for subsequent
analyses.

QTL mapping

For ISA, we estimated the genetic map for our data set and
calculated the LOD score at each position using R/qtl
(Broman et al. 2003). The threshold at 5% significance level
was estimated using the permutation test implemented in
R/qtl.

To identify smaller-effect QTL and interactions between
QTL for the high-salt and high-temperature phenotypes, we
stratified the ISA samples according to the major QTL allele
prior to repeating QTL analysis. In principle, this is similar
to using the genotypes at major QTL as an additive
covariate, as implemented in R/qtl (discussed in Broman
et al. 2003). For BSA, the allele frequency was calculated at
each SNP position for all conditions. The allele frequency
was fitted using local polynomial regression assuming bino-
mial distribution, and confidence intervals were called using
a bootstrapping method. To determine whether the allele
frequency at the peak for a given condition was signifi-
cant compared to the control (YPD at 30° for 100 gen-
erations), a permutation test was performed for each
peak and P-values were corrected using Benjamini-
Hochberg (details in Supporting Information).

We also performed an in silico comparison of the ISA
method with a simulated BSA using only the best perform-
ing strains (pool of 50 segregants with extreme phenotypes)
for eight of the phenotypes analyzed in this study (Figure
S1). Detailed description of the analysis can be found in File
S1. Phenotype and genotype information used for QTL map-
ping can be found in File S2.

Estimating heritability of traits

A genomic selection method was used to estimate, for each
trait, the proportion of phenotypic variance that could be
explained by using all the 65,234 markers used for QTL

mapping. Ridge regression best linear unbiased prediction
(rrBLUP) was applied using the rtBLUP package (Endelman
2011). The model has two components of error, genetic
variance (Vg) and error variance (Ve). The heritability of
the trait, which is the proportion of phenotypic variance that
can be explained by all genetic markers, can be estimated by
calculating Vg/(Vg + Ve). For estimating narrow sense her-
itability, the additive kinship matrix described in the rrBLUP
package was used as the relationship matrix, and, for esti-
mating broad sense heritability, the non-additive Gaussian
kernel was used.

Phenotyping

For ISA, individual strains were phenotyped in 96-well
plates by growth curve analysis (Proctor et al. 2011). Cells
were grown overnight in YPD to saturation to obtain similar
densities for all strains. These colonies were replicated in the
medium of interest in transparent 96-well plates and grown
until saturation (usually 1-2 days). Doubling times were
calculated from OD measurement of liquid cultures at
a wavelength of 595 nm in a plate reader (Genios, Tecan)
as previously described (St Onge et al. 2007). The relative
fitness was calculated as (1/doubling time at stress condi-
tion)/(1/doubling time in YPD at 30°). The phenotype “fit-
ness YPD” was calculated as 1/doubling time in YPD at 30°.
“OD saturation” refers to the ODsgs,y, at the saturation
phase.

In addition, a colony-size assay was performed for the
high-salt phenotype by replicating YPD overnight cultures
on agar plates and growing them for 2-4 days until an av-
erage colony diameter of ~5 mm was reached. To determine
colony sizes, photos were taken of the agar plates and pro-
cessed with the CellProfiler software (Carpenter et al. 2006).
The relative fitness in a specific condition was calculated as
follows: log (colony size treatment) — log (colony size con-
trol). To account for variability between plates, the colony
sizes were normalized using the median colony size per
plate. Colony shapes were determined by visual observation
of the control plates (30° YPD) used for the colony-size
assay.

BSA

BSA was done similarly to the approach in Parts et al
(2011). In brief, two independent pools of segregants from
an S96 X SK1 cross (see Yeast strain generation) were grown
in 100 ml YPD for 4 h. From this preculture, 400 ml of each
specific condition medium (treatment) and of YPD (30° con-
trol) were inoculated with a starting ODgoonm Of 0.08 and
grown until ODggonm, = 2. This dilution step was repeated to
keep cells in continuous exponential growth for ~100 divi-
sions. The cells were then collected and kept at —80° for
later DNA isolation and library preparation.

Sequencing library preparation

Genomic DNA from individual (ISA) or pooled strains (BSA)
was isolated from fresh and frozen cell pellets with the

High-Throughput QTL Mapping Approaches 855

20z Iudy 60 U0 3s8Nnb Aq 069GE6S/£58/€/96 L /o101B/SolOUSB/ W00 dno 0jWapeE//:SdRY WOl papeojumod


http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1/genetics.113.160291-16.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1/genetics.113.160291-8.txt
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000130715
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1/genetics.113.160291-16.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1/genetics.113.160291-5.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1/genetics.113.160291-5.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1/genetics.113.160291-11.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1/genetics.113.160291-11.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1/genetics.113.160291-19.zip

PrepEase kit (USB). Adapters were ligated to sonicated DNA
as previously described (Wilkening et al. 2013). After size
selection on an E-Gel (Invitrogen), libraries were amplified
with Illumina paired-end primers, cleaned, and sequenced
(105 bp paired-end) on a HiSeq 2000 (Illumina).

RHS

Both alleles of each gene in the genome were individually
deleted in the SK1 X S96 hybrid and replaced with a molec-
ular barcode and a kanMX4 cassette. The resulting RHS
pools were grown for 20 generations under the following
conditions: YPD at 30°, YPD at 38°, YPD + 350 mM NaCl,
and YPD + 350 pM cantharidin. Genomic DNA from the
pool was extracted, and the uptags and downtags containing
the barcodes were amplified by PCR and hybridized to Tag4
Microarrays (Affymetrix) (Pierce et al. 2007). Fitness of each
deletion strain was deduced from the signal intensity of the
barcodes on the microarray. For each gene, the selection
coefficient s (or relative growth rate of the strain in the pool)
was estimated using the log, fold change of normalized
signal intensity between the initial and final time points
(details in Supporting Information). The allelic effect at
each locus was calculated as the difference between the
selection coefficients (As = sgg1 — Sso6)-

Confirmation of QTL

To test the effect of a gene variant on a specific trait, the
ORF = 300 bp was deleted by homologous recombination.
For S96, a CORE cassette (Storici et al. 2001) (kindly pro-
vided by Michael Knop) with KIURA3 (counterselectable)
and kanMX4 (reporter) markers were inserted by standard
DNA-targeting procedures (Gietz and Schiestl 2007) at the
respective ORF locus. For SK1, transformation was done by
electroporation (as described in http://www.koko.gov.my/
CocoaBioTech/DNA%20Cells36.html). Cells were then
spread on synthetic dextrose plates supplemented with
geneticin (G418, 400 pg/ml) and lacking uracil for 3-4 days
at 30°. The correct integration site was confirmed by colony
PCR with internal and external primers (Table S1). For al-
lele replacement experiments, cells were transformed with
the ORF region * 600 bp amplified from the strain carrying
the desired allele. Counterselection for the CORE cassette
excision was performed by selection on plates containing 5-
fluoroorotic acid (5-FOA, 1 g/liter).

Computational detection of genetic interactions

Apart from the stratification of the samples according to the
major QTL, to identify QTL acting in a specific background,
the interaction distance method (ID) (Ignac et al. 2012) was
applied. ID is based on merging interaction information,
a generalization of mutual information to three variables,
and the normalized information distance, a metric of the
amount of information shared between two variables. ID
was applied to measure dependence between two genetic
markers and a phenotype, allowing us to detect the presence
of interactions between the QTL. Positive ID values indicate
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redundant information between markers with strong effects
on the phenotype (due to linkage or genetic redundancy);
negative values indicate synergy between the markers in
predicting the quantitative phenotype. To estimate the sta-
tistical significance of an ID value, we computed IDs be-
tween one million randomly generated markers given the
same phenotype. A candidate interaction was considered
significant if its P-value was <0.005. In applying ID, we
discretized the variables: for example, the phenotype of
high-temperature growth was discretized into four bins of
equal size. To reduce computational requirements, we ini-
tially reduced the number of markers to 1226 by identifying
blocks of highly correlated markers. Figure S2A shows the
significant interaction candidates among the reduced set of
markers. For the high-resolution TAO3-MKT1 interaction
analysis, we then selected all markers with the appropriate
coordinates from the full marker set.

Results

We performed QTL mapping on 11 distinct traits using three
high-throughput approaches (BSA, ISA, and RHS). In the
following, we present the QTL mapping results of these
independent approaches, ranging from a simple Mendelian
trait to nonselectable traits with two to three QTL with
similar effect sizes to complex traits driven by many QTL
with different effect sizes. Five of these traits were analyzed
with all three methods, which allowed us to evaluate their
performance in QTL detection. Finally, our large set of
individual segregants allowed us to identify interactions
between QTL within specific phenotypes.

BSA, ISA, and RHS effectively detect the causal QTL
for cantharidin resistance

We first evaluated the three methods (ISA, BSA, and RHS)
to map QTL for a Mendelian trait (cantharidin resistance),
where S96 is resistant and SK1 is sensitive to the drug. With
ISA, we mapped a single interval of ~1 kb (LOD >200) on
chromosome (chr) 8 (Figure 2). Within 3 kb of this interval,
a BSA QTL was called, with the S96 allele highly enriched
(~95%); this QTL was found in both biological replicates,
while several additional BSA peaks with similar amplitudes
were not. The gene CRGI was located in the strongest QTL
peak in ISA and was also the top RHS hit (Figure 2). We
confirmed the causative role of CRG1 by individually pheno-
typing the RHS hemizygous strains, demonstrating that
deletion of the S96 CRGI allele abolished cantharidin
resistance (Figure S3). Individual and combinatorial re-
placement of the two nonsynonymous CRGI SNPs (D82E
and Y119C) indicated that both are necessary for canthari-
din resistance in S96: 60 colonies of SK1 cells carrying both
SNPs grew on cantharidin plates but none grew from the
single-SNP replacements. Our results are consistent with
previous reports that CRGI confers cantharidin resistance
(Niewmierzycka and Clarke 1999; Hoon et al. 2008; Lissina
et al. 2011). Crg1 has been shown to mediate resistance to

20z Iudy 60 U0 3s8Nnb Aq 069GE6S/£58/€/96 L /o101B/SolOUSB/ W00 dno 0jWapeE//:SdRY WOl papeojumod


http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1/genetics.113.160291-16.pdf
http://www.koko.gov.my/CocoaBioTech/DNA%20Cells36.html
http://www.koko.gov.my/CocoaBioTech/DNA%20Cells36.html
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1/genetics.113.160291-8.txt
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1/genetics.113.160291-12.pdf
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001252
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001252
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001252
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1/genetics.113.160291-2.pdf
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001252
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001252
http://www.yeastgenome.org/cgi-bin/locus.fpl?dbid=S000001252

ISA

150 225 300 O

LOD

SK1 allele
frequency
5
—
“a_e—:
|
=
—
=
==
P,

Figure 2 Cantharidin resistance
QTL mapped by BSA, ISA, and
RHS. The top LOD score identi-
fied by ISA is located directly at
the causal CRGT gene, which
was also the top hit in RHS (bot-
tom plot). For BSA, the SK1 allele
frequency (1 corresponding to
100% SK1, 0 to 100% S96) is
plotted for two biological repli-
cates. These replicates were not
reproducible overall (likely due to
crar|  Spontaneous beneficial muta-

|

l 1
o ,.‘4\.‘,.
P W abud
‘ | m Replicate 1
m Replicate 2

—
_—
— i
=

SK1 allele
frequency
05

LoD
150 300 0
it L

015 0 75
"

7 RHS CRG1 (cantharidin

resistance gene 1)\.

As
0

-0.15

tions in individual cells of the
pool, as seen for 5-FU treat-
ment), except for very few
regions (including the CRGT lo-
cus). The results on chr 8, which
contains CRG7, are magnified
(inset). For RHS, As represents
the difference between the se-

A gl R A

\

S
015 0 0150

[T 2000 3000 g .- = DI

4 56 7 g8 9 10 11
Genome position

cantharidin by direct methylation of the compound, render-
ing it nontoxic for yeast (Lissina et al. 2011). Our results
suggest that the enzymatic activity of Crgl or its interaction
with cantharidin is impaired by this change of either of the
two amino acids. Thus, collectively, our results demonstrate
that all three approaches successfully detect the true QTL for
this Mendelian trait.

ISA detects QTL for two nonselectable traits

We next analyzed two nonselectable traits that clearly
differed among the parental strains and segregants, namely
colony shape and flocculation. For these traits, BSA and RHS
approaches could not be performed since they use pooled
phenotyping and require a selective pressure. SK1 cells form
a wrinkled colony shape on agar plates, whereas S96 cells
form smooth colonies (Figure S4 and Figure S5). A total of
8.5% of the progeny formed wrinkled colonies, which sug-
gests that the trait is conditioned by at least three or four
independent genes (probability of 0.53-0.5% when assuming
the same effect size). Consistent with this estimate, we iden-
tified three QTL, which, using gene deletion and allele re-
placement, we narrowed down to three genes (AMNI,
MUCI1, and SFL1) (Figure S5) required for the wrinkled
SK1-like colonies.

While neither of the parental strains flocculated, one-
quarter of the segregants did (23% in lactose-rich medium),
suggesting that at least two independent genes condition the
phenotype. Indeed, we detected two QTL (Figure S4), each
of which contains a gene known to modify flocculation: the
FLO1 allele (Hodgson et al. 1985) from the S96 background
(disrupted in SK1 according to our sequencing data) and the
SFL1 allele (Fujita et al. 1989) from the SK1 background
(which harbors a premature stop codon at amino acid 477
in SK1). For SFL1, the calculated maximum LOD score in the
QTL was within the gene and even close to its premature

lection coefficients of S96 and
SK1.

(likely causative) stop codon in SK1. By narrowing the QTL
of these physical phenotypes down to the presumably caus-
ative genes, we demonstrate the ability of ISA to map QTL at
high resolution in these nonselective binary traits.

From simple to complex traits

In our study, the average confidence interval size for QTL
detected in ISA was 6 cM (~18 kb). This resolution was much
higher compared to previous studies, where the interval size
has been around 16 c¢cM (Steinmetz et al. 2002; Sinha et al.
2008). Given the successful identification of causative genes
for less complex traits, we applied ISA to eight quantitative
traits showing a continuous distribution among the segre-
gants (Figure 3 and Table S2). We used these results to esti-
mate the extent to which increasing the number of segregants
improves the resolution of QTL detection (Figure S6 and Ta-
ble S3). Our results suggest that for complex, multifactorial
traits, increasing the number of segregants from 200 to at
least 600 improves the resolution by more than twofold (Fig-
ure S6), but has no effect for Mendelian traits. Four of these
complex growth traits [ethanol, 5-fluorouracil (5-FU), high-
salt concentration, and high temperature] were also analyzed
by BSA and RHS. In contrast to the physical traits, these traits
are more suitable for BSA and RHS since the fittest strains can
be selected via pooled growth. However, our RHS approach
displayed a high false-positive rate (discussed later), and RHS
results are therefore not shown.

ISA uncovers the architecture of the complex high-salt
tolerance trait

We combined ISA and BSA to dissect the high-salt tolerance
trait as thoroughly as possible. At a high-salt concentration
(350 mM NaCl), S96 grew faster than SK1, and their
progeny showed a continuous distribution of growth rates.
Six QTL were identified with ISA and eight with BSA, two of
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Figure 3 Detection of ISA QTL for 11 phenotypes. LOD scores are plotted for all phenotypes tested in this study using the IGV browser (Robinson et al.
2011) (Mendelian traits, blue; fitness traits in rich media, black; high temperature, red; high-salt, green; nonfermentable carbon sources, purple; 5-FU,
gray). QTL containing putative causative variants are marked with a gray dashed line and labeled with the gene. Gene variants that were confirmed by
allele exchange or by individual growth of RHS strains (for CRGT) in this study are marked with a star at the respective phenotype. Two gene variants
were found to modify more than one phenotype: MKT1 (high temperature, ethanol, 5-FU) and TAO3 (high temperature, glycerol).

which overlapped (chr 4 and chr 16). The chr 4 QTL were
the strongest identified by each approach (Figure 4, BSA;
Table S2, ISA; LOD >50, cutoff LOD = 3.5). Within the 95%
confidence interval of these QTL lies a cluster of ENA genes
encoding sodium pumps, which are known to confer salt
resistance (Haro et al. 1991). In contrast to a cluster of five
highly similar ENA genes present in S96 (ENAI-5), SK1 car-
ries only one copy of ENA6, a phylogenetically distant ENA
gene (Daran-Lapujade et al. 2009). ENA copy number vari-
ation has been associated with high-salt tolerance across
different yeast strains (Warringer et al. 2011). Accordingly,
we found that overexpressing ENA6 increased salt resistance
in SK1 cells (Figure S7). Moreover, we determined that ENA
copy number accounts for 20% of the phenotypic variance.
Our results thus demonstrate the ability of both ISA and BSA
to successfully identify a large-effect locus.

However, identification of the major QTL is often not
sufficient for understanding the genetic basis of a trait. If the
sample size is too small, the phenotypic variance caused by
a large-effect QTL like the ENA locus can be overestimated,
and QTL with smaller effects will be obscured. To overcome
this risk and identify additional QTL for salt tolerance, we
stratified the ISA segregants according to their ENA genotype
and repeated the QTL analysis. This highlighted the contri-
bution of QTL with significant LOD scores (chr 3, 5, 14, 15,
16) even in the detrimental SK1 ENA background (Figure 4).
We thus identified six QTL that explain >80% of both narrow
(additive genetic factors) and broad sense heritability (all
genetic factors including genetic interactions) (Visscher
et al 2008) (Table S4), suggesting that we have captured
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most of the causative alleles. These results demonstrate that
allelic stratification can reveal additional QTL and thus enable
a more comprehensive dissection of complex traits.

Six of eight BSA QTL were specific to BSA, in which cells
were cultured for 5-9 days (vs. 1-2 days in ISA). To test
whether the difference in QTL detection could be attributed
to long-term effects, we performed a colony-size assay on
agar with the ISA segregants (2-4 days in culture). In seg-
regants with the S96 ENA background, we observed a bene-
ficial effect on chr 9, where one of the BSA-specific QTL was
also detected (Figure 4). This observation suggests that var-
iations in experimental procedures, such as assay duration,
can lead to the detection of different QTL. The combination
of several methods could thus be a strategy to more thor-
oughly resolve the alleles responsible for a complex trait.

Mapping of high-temperature QTL reveals major
differences between ISA and BSA

We then applied both BSA and ISA to dissect another
selective phenotype, high-temperature growth. At high
temperature (38°), S96 grew faster than SK1, and five
QTL were identified with ISA and three with BSA. Only
the QTL on chr 9 (S96 allele beneficial) was common be-
tween these two approaches (Figure 5). Within this QTL, we
identified TAO3 as the gene responsible for high-temperature
resistance, which we confirmed by allele replacement. By
applying the stratification method described in the preced-
ing section, we identified additional smaller-effect QTL that
act specifically in the SK1-TAO3 or the S96-TAO3 back-
ground. We were able to separate a double LOD peak on chr
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QTL1:QTL2 . The P-value for the interaction is the significance of including the interaction term (QTL1:QTL2).

14 (Figure 5, bottom right): the left peak was mapped in the
SK1 TAO3 background, and the right peak (including MKT1)
in the S96 TAO3 background. By generating strains with all
four combinations of TAO3 and MKT1 alleles in the S96
background, we confirmed that the effect of the MKT1 var-
iant was indeed larger in combination with the S96 TAO3
allele (Figure 5, bottom left). These results show that the
resolution of our ISA approach is sufficient to identify two
QTL within a distance of <100 kb (Figure 5) and demon-
strate the power of ISA for detecting epistatic genetic inter-
actions. The identified QTL explain ~59 and 47% of the
narrow sense and broad sense heritability, respectively (Ta-
ble S4), suggesting that several additional causative alleles
remain undiscovered.

Mapping genetic loci associated with growth on
ethanol, glycerol, and 5-FU

For growth with ethanol as the carbon source (YPE: Yeast
extract, 10 g/liter; Bactopeptone, 20 g/liter; 2% v/v Ethanol),
both ISA and BSA detected a QTL on chr 14, and the SK1
allele of MKT1 was confirmed as causative for improving
growth by allele replacement (Figure S7 and Figure S8). In

addition to its impact on high-temperature growth, we also
confirmed that the SK1 allele of TAO3 (lying within a major
ISA QTL on chr 9) significantly improves growth in media
containing glycerol as the carbon source (YPG) (Figure S7).
Finally, for growth in 5-FU, one QTL was identified by both
ISA and BSA on chr 5 (likely due to a URA3 deletion in the
SK1 background). None of the other BSA QTL were repro-
ducible between the two biological replicates (Figure S8).
Using ISA, however, we successfully identified and confirmed
by allele replacement that MKT1 (within the QTL of chr 14) is
causative for improved growth on 5-FU.

ISA allows the detection and characterization of
genetic interactions

The complete dissection of complex traits can be hindered by
non-additive genetic interactions, but also by the presence of
closely linked alleles, which often remain undetected despite
their contribution to phenotype. We previously reported one
such linked region surrounding MKT1 on chr 14 (Steinmetz
et al. 2002), which could explain the missing heritability
(both narrow and broad) observed for high-temperature
growth. In fact, the experimentally validated MKT1-TAO3
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interaction responsible for high-temperature growth lies in
regions of high linkage to other genes on chr 9 and 14. We
observed that the LOD profile for high-temperature growth
has many local peaks on chr 9 and chr 14, which carry TAO3
and MKT1I, respectively (Figure S2A). If we include all
markers on chr 9 and chr 14 for estimating the heritability,
>65% of both narrow and broad sense heritability can be
explained, suggesting the presence of closely linked, interact-
ing QTL. To dissect these interactions at a finer resolution, we
applied an interaction distance method (Ignac et al. 2012). A
subset of 1226 markers was used to identify regions with the
strongest interactions on chr 9 and chr 14. These regions of
interaction were further analyzed with a denser marker set,
and our results suggest that both regions contain more than
one causative locus and that these loci interact with each
other (Figure S2A).

The interaction distance method (Ignac et al. 2012) allowed
us to detect both redundancy and synergistic effects between
ISA QTL for growth in YPE and YPD (Table S5 and Figure
S2B). Our results demonstrate that ISA is a powerful method
to detect and characterize genetic interactions, which must be
accounted for to explain phenotypic variance in complex traits.

Several factors confound QTL detection in
pooled approaches

We next assessed the impact of experimental factors that
confound QTL identification for each approach, which may
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partly explain their differing results (Figure S8, Figure S9,
and Figure S10). While for most traits BSA QTL of both
biological replicates were nearly identical, they varied
widely between replicates for resistance to cantharidin and
5-FU (Figure 2 and Figure S8). Sequencing the 5-FU BSA
pools revealed nonsense mutations in genes conferring re-
sistance to the drug (FUR4, URAZ2), suggesting that individ-
ual cells acquired beneficial mutations and overtook the
population, causing the enrichment of false-positive loci.
This effect is specific to bulk selection approaches and is
likely to occur for all phenotypes for which single mutations
can confer a significant growth advantage. The impact of
such confounding mutations would be expected to increase
with the strength and length of the selection procedure.

In addition to mutations that cause resistance in BSA, we
determined diploidization to be another confounding factor
during long-term selection in BSA. We sequenced BSA pools
at different time points during selection at high temperature.
A decrease of an initially strong SK1 allele enrichment on chr
3 (from ~100 to 50% allele frequency) was observed between
generations 16 and 24 (Figure S10). This loss was detected in
all of our BSA experiments and can also be observed in other
studies (Ehrenreich et al. 2010). This enrichment of SK1
alleles on chr 3 corresponds to the MATa locus used for the
initial selection of haploid progeny for BSA. Mating-type PCR
(Huxley et al. 1990) performed on 32 individual clones after
100 generations confirmed that all cells had become diploid
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at this stage. This implies that a small number of MAT« cells
in the initial BSA pool mated with MATa cells and that these
diploid cells then overtook the population.

As mentioned earlier, RHS results displayed a high rate of
false-positive hits for our complex traits. Resequencing 50 of
the RHS deletion strains revealed numerous chromosomal
aberrations, which mostly consisted of triploidies. Twelve of
38 false-positive strains and 4 of 12 randomly selected
strains were aneuploid (see Table S6 and Figure S9 for
details). Since these aberrations affect many genes, their
consequences are likely to obscure allelic differences at a sin-
gle locus, especially when these are more subtle as for com-
plex traits, and can thus lead to false positives.

These observations suggest that both pooled methods are
vulnerable to genetic alterations that can render the detection of
truly causative QTL difficult. These confounding factors should
therefore be taken into account by adapting the experimental
approaches, for example by decreasing the duration of selective
pressure or comparing additional biological replicates.

Discussion

Despite intensive efforts, dissecting the genetic basis of
complex traits is a persistent challenge. Several methods
have been developed, including pooled approaches such
as BSA, allowing for millions of individuals to be tested
in a single experiment. Using next-generation sequencing
techniques, large numbers of segregants can now be in-
dividually genotyped at a reasonable cost (Wilkening et al.
2013), enabling higher-resolution QTL mapping. To further
increase resolution to the level of individual genes, we also
developed and applied the RHS method. Here, we discuss
the biological significance of quantitative trait gene (QTG)
identification for two dissected traits (wrinkled colony shape
and flocculation), confounding factors of pooled approaches
such as BSA and RHS, and the importance of interactions
between QTL.

QTG for wrinkled colony shape and flocculation are
closely related

For wrinkled colony shape, we identified three QTG (Figure
S4), which are also known to modify flocculation. Among
these, AMNI encodes a protein required for daughter-cell
separation (Wang et al. 2003) and cell clumpiness (Yvert
et al. 2003). It has not previously been associated with colony
shape, but was recently implicated in flocculation (Li et al.
2013). Moreover, a loss-of-function mutation in the S96
AMNT1 allele (D368V) has been reported to cause widespread
gene expression changes (Yvert et al. 2003; Ronald et al
2005). Another gene we linked to flocculation is MUCI (also
known as FLO11), which encodes a key cell-surface protein
required for flocculation, as well as invasive and pseudohy-
phal growth (Lo and Dranginis 1998). Furthermore, the num-
ber of serine/threonine-rich tandem repeats in MUCI has
been linked to flocculation strength (Verstrepen et al. 2005;
Liu et al. 2007), and this region is 1.1 kb shorter in SK1,

corresponding to ~12 repeats vs. 40 repeats in S96 (for
primer sequences, see Table S1). MUCI expression level has
also been connected to colony shape (Barrales et al. 2008;
White et al. 2011; Voordeckers et al. 2012). The third gene
that we identified is SFL1, which is a known flocculation in-
hibitor (Fujita et al. 1989). Its deletion causes wrinkled col-
ony shape in the %1278b background (Halme et al. 2004),
which is consistent with our observation that the SK1 allele of
SFL1 with its premature stop codon is required for wrinkled
colony shape. Despite AMNI, MUC1, and FLO5 having pre-
viously been implicated in flocculation (Govender et al. 2008;
Li et al. 2013) and the first two genes showing an effect on
colony morphology in our study, we did not see any effect of
these polymorphisms on flocculation in our background, as
no QTL for flocculation were detected at these genes. How-
ever, SFI.1 was detected as a QTL for both traits.

Two pleiotropic genes were identified across the
traits tested

We confirmed by allele replacement that two QTG modify
multiple phenotypes (TAO3, MKT1) (Figure 3). We found
that the SK1 allele of the well-known pleiotropic gene MKT1
was beneficial for three growth phenotypes (high tempera-
ture, YPE, and 5-FU) (Figure 3 and Figure S7). Previous
studies have found MKT1 to modify high temperature
(Steinmetz et al. 2002), sporulation (Deutschbauer and
Davis 2005), petite frequency (Dimitrov et al. 2009), DNA
repair (Demogines et al. 2008a), and drug sensitivity (Kim
and Fay 2009; Ehrenreich et al. 2010). The most likely caus-
ative polymorphism is a D30G mutation, with G being con-
served across all other sequenced strains (Swinnen et al.
2011). Moreover, as reported by Zhu et al. (2008), MKT1
is a global regulator of gene expression and can therefore
influence many traits. Similarly, TAO3 was identified as
a QTG in two phenotypes (high temperature and YPG) (Fig-
ure 3 and Figure S7) in our study. This gene has previously
been identified as a causative QTG for sporulation (Deutsch-
bauer and Davis 2005) in the same strain background
(SK1 X S96), but has not been connected to high-tempera-
ture resistance before our study. Finally, the implication of
SFL1 in colony shape in this study along with its previous
implication in flocculation (Fujita et al. 1989) suggests that
this gene is also pleiotropic. On the other hand, QTL iden-
tified for growth in three different nonfermentable carbon
sources (lactose : YPL, ethanol : YPE, glycerol : YPG) did not
overlap (Figure 3), suggesting the absence of gene variants
that globally influence the metabolism of nonfermentable
carbon sources (e.g., enzymes of the Krebs cycle or mito-
chondrial respiration) in our strain background.

Analyses of pooled approaches suggests potential
confounding factors

Unlike morphological traits, phenotypes that confer a growth
advantage under a specific condition are especially suited
for BSA and RHS, as phenotypic selection can be performed
in bulk. The BSA approach is relatively fast and easy and
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confers a significant advantage over the other two ap-
proaches in terms of time and cost. However, we observed
that spontaneous mutations conferring resistance to the
selective pressure can lead to biased results. Assuming a low
number of cells with an advantageous mutation in the original
BSA pool, a shorter selection time (e.g., 10-30 generations)
might alleviate this effect. Moreover, the analysis of multiple
time points and biological replicates should help to identify true
QTL for traits with a strong selective pressure.

Additionally, the use of a BSA pool with haploid
segregants harbors the risk of diploidization, as seen in
our time-dependent high-temperature QTL maps (Figure
S$10). This observation is in accordance with a recent study
showing the invasion of diploids in a population of haploids
despite no apparent growth advantage (Gerstein and Otto
2011). The presence of heterozygous strains diminishes the
enrichment of beneficial alleles, since for dominant alleles
the allele frequency would rarely reach 100% because of
recessive alleles remaining in the heterozygous strains. To
prevent the diploidization of haploid segregants in BSA, the
strains could be diploidized in advance. The haploid segre-
gants could also be independently phenotyped, followed by
genotyping the pool of strains with extreme phenotypes.
Nevertheless, even this method would still be limited by
large-effect QTL masking smaller-effect QTL. Moreover, as
explained earlier, genetic interactions are not detectable
with BSA, nor does BSA allow the separation of linked
QTL. Thus, combining the modified BSA strategies above
with ISA should compensate for these limitations and lead
to a more comprehensive understanding of the genetic ar-
chitecture of complex traits.

The genome-wide RHS approach developed in our
laboratory is based on individual gene deletions and
successfully identified the causative gene for a Mendelian
trait (cantharidin resistance). It should theoretically have
performed best at identifying individual causative genes;
nevertheless, it displayed a high false-positive rate for
complex traits, most likely caused by chromosomal aberra-
tions (Figure S9). A related recent study also reported
incidences of aneuploidies and mutations, leading to high
false-positive rates (Kim et al. 2012). This issue could be
circumvented either by sequencing all strains and eliminating
aberrant genotypes or by constructing additional replicate
strains. With the emergence of more efficient gene-editing
techniques, e.g., CRISPR/Cas (Cong et al. 2013), an RHS-type
approach could also be feasible in the near future for human
cells, which should enhance the detection of functional alleles
for phenotypes with medical implications (e.g., drug resis-
tance and cancer development and progression).

Culture duration may contribute to
BSA-ISA differences

For high salt resistance, different QTL were detected between
BSA and ISA. One factor likely contributing to these differ-
ences is the longer culture time in BSA. Our results using
a longer-term colony assay in ISA (Figure 4) suggest that, in
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the BSA pool, an early selection for the advantageous S96
ENA allele occurred, followed by enrichment of beneficial
alleles in this background. This effect has also been observed
in two studies, which identified different QTL depending on
sporulation time (Deutschbauer and Davis 2005; Ben-Ari
et al. 2006). This selection for large-effect QTL and the sub-
sequent enrichment of additional alleles in this background is
a caveat to BSA studies, as QTL acting specifically in the
presence of the detrimental major QTL allele would be over-
looked. This problem can be avoided by using ISA, where
genotypic stratification of segregants can be performed.

Gene-gene interactions and linked QTL hinder the
identification of QTG

In addition to large-effect QTL masking the genetic effects of
other causative genes, the difficulty of dissecting quantita-
tive traits is increased by two factors even in an ISA
approach. First, synergistic interactions can occur between
functionally related genes (Perez-Perez et al. 2009). With
the interaction distance method we detected synergistic
gene-gene interactions, similarly to Bloom et al. (2013),
as well as redundancy effects (Table S5). We found very
little overlap between these interaction pairs and those
found using synthetic lethality screens (Tong et al. 2001,
2004), suggesting that natural and synthetic variant inter-
actions may shape phenotypic robustness differently. Sec-
ond, a group of tightly linked genes can be responsible for
large-effect QTL (Noor et al. 2001). With the high-temperature
growth phenotype, we confirmed the novel TAO3-MKT1 in-
teraction, and many more are expected from our interaction
distance method (Figure S2). These results suggest that
effects of linked causative genes and synergy are prevalent
and should be accounted for in future efforts to map quan-
titative traits. Parts et al. (2011) have shown that multiple
rounds of crossing from generations F; to F1, can reduce the
linkage between two loci, an approach that could thus in-
crease QTL resolution and dissect linked QTG.

In conclusion, our study addresses the fundamental issue
of how to improve quantitative trait dissection. Applying
three high-throughput approaches allowed us to resolve
eight potential causative genes for eight phenotypes. Nev-
ertheless, for the complex traits, the causal alleles explained
only part of the heritability (on average ~60% of broad
sense and ~66% of narrow sense) (Table S4), suggesting
the contribution of additional factors such as linked QTL and
epistatic effects. To thoroughly assess the impact of these
factors on phenotype, future studies should improve resolu-
tion by increasing the sample size. Future studies would also
benefit from accounting for experimental differences that
can influence the loci detected, for example by combining
multiple approaches as we have done here. Our findings
indicate that we are currently looking at the tip of the ice-
berg: the focus should now be placed on the development of
innovative experimental and computational strategies to
deepen our understanding of the complex architecture of
quantitative traits.
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Figure S1
Figure S2
Figure S3
Figure S4
Figure S5
Figure S6
Figure S7
Figure S8
Figure S9

Extreme genotyping versus linkage analysis

Interaction plots

Confirmation of CRG1s9 as the causative allele for cantharidin resistance using RHS hemizygous strains.

QTLs mapped for flocculation and colony shape by ISA
Confirmation of three genes causing wrinkled colony shape in SK1
Plot of resolution (size of 95% confidence interval) vs sample size
Confirmation of quantitative trait genes

QTLs mapped for YPE and 5-FU by BSA and ISA

Resequencing of 50 RHS strains reveals a high rate of aneuploidy.

Figure S10 Time course of high temperature QTLs in BSA
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File S1

Supporting Methods

Supplementary Notes

Extended Methods

Genotyping

Sequencing reads from the ISA segregants, along with the parental strains SK1 and S96 (a haploid
strain isogenic to S288c), were aligned to the S288c reference genome (build R63) using Novoalign
(v2.07.06; http://www.novocraft.com/), allowing only unique alignments. Thereafter, GATK was used for
realignment of the BAM files (Li et al. 2009), and subsequent SNP calling was performed using
SAMtools (McKenna et al. 2010). The formula SAMtools applies for calling the genotype is modelled
upon genotyping a population, and incorporates an allele frequency term. This is not applicable to our
study, a cross between 2 parents, where the allele frequency at true SNP positions is 0.5. We thus used
the genotype likelihood (PL stats generated by SAMtools) to infer the genotype. SNP positions, which
correspond to a homozygous reference call in the S96 parent and a homozygous variant in the SK1
parent, were chosen first. From this set of SNPs, we selected SNPs where the calculated allele
frequency was between 0.35 and 0.65 and the number of successfully genotyped segregants was more
than 80%. This ensured that the genotypes segregated in a 1:1 manner as expected, and that
duplicated or deleted regions were excluded. After generating the genotype matrix, using the R/qtl
package, we further checked and removed switched alleles and markers not in linkage with their

surrounding markers.

Bulk Segregant Analysis (BSA): Calculating allele frequencies

The allele frequency was calculated at each of the SNP positions used in ISA for all conditions, based
on the ratio of base calls on different alleles from sequencing reads. The allele frequency was fitted
using local polynomial regression assuming a binomial distribution. A bandwidth of 28kb validated with
5-fold cross-validation was used. Regions of interest were defined as intervals >30kb with fitted allele
frequency >0.65 or <0.35. The peak position in the region of interest was defined according to the local
maxima or minima in the region. Next, SNP positions were bootstrapped and the 95% confidence
interval was determined for the peak position. To determine whether the allele frequency at the peak for
a test condition was significant compared to the control (YPD 30°C, 100 generations), we first calculated
the observed difference in allele frequency between the test condition and control. Then with each
permutation, we randomly assigned reads in the region of interest to either test or control. The allele

S. Wilkening et al.
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frequency in both permutated datasets was fitted using local polynomial regression, and the difference in
allele frequency calculated between test and control. This permutation was repeated 5000 times, and
the p-value for the peak in the test condition was calculated as the probability of obtaining a value larger
than the observed difference in the permutated dataset. After obtaining p-values for each peak in the
test condition, they were corrected for multiple testing using the Benjamini-Hochberg method (Benjamini
and Hochberg 1995).

Reciprocal Hemizygosity Scanning (RHS): Estimating allelic contributions

The fitness of each deletion strain was deduced from the signal intensity of the barcodes on the
microarray. Each probe on the Genflex tag16k array (Affymetrix) is represented by five replicate
features. Each tag was summarized by the log>-median intensity across all matching probes on the
array. The log; intensity distributions of the up and down tags (i.e., the barcodes before and after the
deletion cassette) on each microarray were shifted by a separate constant, so that all intensity
distributions for growing strains had the same midpoint of the shortest interval containing half the data (a
robust estimator of the mode of a distribution). Finally, the selection coefficient s (or relative growth rate
of the strain in the pool) was estimated as the median across both up and down tags of the log, fold
change of normalized signal intensity between initial and final timepoints, divided by the pool generation
number at the final timepoint. To control for pool construction effects, we focused on media-specific
allelic effects, taking YPD as a control condition. For each gene in the genome, we modelled the
selection coefficient s;;« of deleted allele i (0 for S96, 1 for SK1) in condition j (0 for YPD and 1 for the
alternative condition) and pool k (0 for the first pool and 1 for the second pool) with the following linear
model:
Sijk = Bo+ Bl + B cij+Boi(1-Dk+PB, ik +€1jk.

where [ is the intercept, B, is the condition effect, f5; is the global allele effect, By« and S« are pool
construction effects, and ¢ is a noise term. The terms of interest (f,,c) were tested using a moderated t-
test as implemented in the R limma package (Smyth et al. 2003). The moderated t-test robustly
estimates the variance by following an empirical Bayes approach that effectively shrinks estimated
sample variances towards a pooled estimate common to all strains. Obtaining robust estimates of the
variance is important because of the small sample sizes. P-values were then corrected for multiple

testing using Storey’s false discovery rate approach (Storey and Tibshirani 2003).
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$202 I1dy 60 U0 1senb Aq 069GE6SG/£SG8/E/96 L/o101E/SoldUSE /W00 dnoolwapede//:sdiy wolj papeojumoq



Benjamini Y, Hochberg Y. 1995. Controlling the False Discovery Rate - a Practical and Powerful
Approach to Multiple Testing. J Roy Stat Soc B Met 57(1): 289-300.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome
Project Data Processing S. 2009. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25(16): 2078-2079.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D,
Gabriel S, Daly M et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for
analyzing next-generation DNA sequencing data. Genome research 20(9): 1297-1303.

Smyth GK, Yang YH, Speed T. 2003. Statistical issues in cDNA microarray data analysis. Methods in
molecular biology 224: 111-136.

Storey JD, Tibshirani R. 2003. Statistical significance for genomewide studies. Proceedings of the
National Academy of Sciences of the United States of America 100(16): 9440-9445.

S. Wilkening et al.

58I

$202 I1dy 60 U0 1senb Aq 069GE6SG/£SG8/E/96 L/o101E/SoldUSE /W00 dnoolwapede//:sdiy wolj papeojumoq



6 Sl

File S2
RQTL data

Available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1.
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Tables $1-S6
Available for download at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160291/-/DC1.

Table S1 Sequence of primers used for allele deletion or exchange, for MUC1 repeat amplification, for the
construction of the ENA6 overexpression vector. The columns provide the name and the sequence of the primers, for
following genes: TAO3, AMN1, MUC1, SFL1, MKT1, ENA6, CRG1

Meaning of abbreviations: del = ORF deletion, del_conf = deletion confirmation, swap = ORF amplification for allele
exchange, swap_conf = allele exchange confirmation. If only del and conf primers are provided, conf primers also
served as del_conf, swap, and swap_conf primers.

Table S2 Table of all the significant QTLs identified from ISA.
chr: chromosome of QTL

peak_pos: SNP position at which the peak is called

ci_start: start of 95% confidence interval for peak

ci_end: end of 95% confidence interval for peak

phenotype: the phenotype for which the QTL is called

LOD: LOD score of the peak as called from R/qtl

- Table of all the significant QTLs identified from BSA.

chr: chromosome of QTL

peak_pos: SNP position at which the peak is called

ci_start: start of 95% confidence interval for peak

ci_end: end of 95% confidence interval for peak

phenotype: the phenotype for which the QTL is called

peak_af: the allele frequency at peak_pos, 1 indicates 100% SK1 and 0, 100% S288c padj: pvalue of the peak after
adjustment with Benjamini-Hochberg

Table S3 Table with the estimated 95% confidence interval size for the QTL peaks of CRG1 in cantharidin, ENA in
NaCl and MKT1 in YPE.

1. Samplesize: the number of segregants selected randomly each time, over 100 simulations
2. mean.ci_size: Mean size of the 95% confidence interval over 100 simulations

3. se.ci_size: standard error of the mean size of 95% confidence interval over 100 simulations
4. phe: Phenotype in which gtl is mapped.

Table S4 Table of heritability estimation

pheno : the phenotype

n.h.all : narrow sense heritability, all markers

b.h.all : broad sense heritability, all markers

n.h.qtl : narrow sense heritability, gtl markers (from Table S2 ISA)
b.h.qtl: broad sense heritability, gtl markers (from Table S2 ISA)

Table S5 List of markers used for testing interaction using Information Distance method. Distance values between
markers.

For identity of markers in columns M1 and M2, refer to the list of markers

ID column is the Information Distance score

Left tail indicates the probability of observing in the permutated dataset, a score smaller than the Information
Distance (ID) score

Right tail indicates the probability of observing in the permutated dataset, a score larger than the Information
Distance (ID) score

Table S6 Summary from sequencing 50 RHS strains, including parental strains (raw RHS material), parental
haploids for new RHS set, original haploid del strains (false positives), old RHS set (false positives), old RHS set
(random strains), new RHS set (check if mutation is cured), newly reconstructed on hybrid. The columns indicate:
name = name of the strain incl. systematic ORF name

plate = internal plate specification

gene_del = name of deleted gene

S. Wilkening et al. 7SI
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S/K = strain background

wrong_gene_del = indicating if gene deletion is not correct

chr_aberration = kind of detected aneuploidy

comment = indicating possible origin of aneuploidy

point_mutation = number of possible point mutation high_confidence_point_mutation = number of mutation unique
to this strain

8 Sl S. Wilkening et al.
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