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ABSTRACT Over the past few years, new high-throughput DNA sequencing technologies have dramatically increased speed and
reduced sequencing costs. However, the use of these sequencing technologies is often challenged by errors and biases associated with
the bioinformatical methods used for analyzing the data. In particular, the use of naïve methods to identify polymorphic sites and infer
genotypes can inflate downstream analyses. Recently, explicit modeling of genotype probability distributions has been proposed as
a method for taking genotype call uncertainty into account. Based on this idea, we propose a novel method for quantifying population
genetic differentiation from next-generation sequencing data. In addition, we present a strategy for investigating population structure
via principal components analysis. Through extensive simulations, we compare the new method herein proposed to approaches based
on genotype calling and demonstrate a marked improvement in estimation accuracy for a wide range of conditions. We apply the
method to a large-scale genomic data set of domesticated and wild silkworms sequenced at low coverage. We find that we can infer
the fine-scale genetic structure of the sampled individuals, suggesting that employing this new method is useful for investigating the
genetic relationships of populations sampled at low coverage.

DETERMINING the level of genetic variation within and
between species or populations is necessary to study the

effects of mutation, natural selection, and genetic drift. In
the past few years, faster and cheaper high-throughput DNA
sequencing technologies have provided us with an unprece-
dented amount of large-scale genetic data. These next-gen-
eration sequencing (NGS) technologies are now commonly
used in population genetic studies and provide us with the
perfect opportunity to investigate the evolutionary forces
affecting genetic variation.

Currently, available NGS technologies differ in their
protocol design (reviewed in Metzker 2010) but all produce
data with similar general features. Briefly, the sequencing
output consists of relatively short stretches (e.g., currently
about 50–100 bp for Illumina machines) of sequenced DNA,
commonly called “reads.” These small segments of DNA are

then aligned to a reference genome or assembled into scaf-
folds in de novo assembly when a reference genome is not
available.

These technologies have greatly improved sequencing
efforts in both model and nonmodel organisms, but they
have also introduced new challenges because many of the
data sets produced using these methods are sequenced at
low coverage (a position in the genome is covered by only
few sequencing reads), and raw sequencing error rates are
often higher than observed using Sanger sequencing. In
such circumstances, it is often difficult to distinguish
between a variable site and a sequencing error, making the
identification of variable sites in the sample (a procedure
known as “SNP calling”) nontrivial and prone to error. Also,
determining the genotype for each individual (“genotype
calling”) can be unreliable due to uncertainty about whether
both the parental chromosomes were sampled. Therefore,
sequencing errors and uncertainty in the genotype calls may
lead to a biased allele frequency distribution (Johnson and
Slatkin 2008; Hellmann et al. 2008).

Accurate estimation of the site frequency spectrum (SFS),
however, is important for population genetic inferences of
demography, natural selection, and population structure.

Copyright © 2013 by the Genetics Society of America
doi: 10.1534/genetics.113.154740
Manuscript received June 25, 2013; accepted for publication August 18, 2013
Supporting information is available online at http://www.genetics.org/lookup/suppl/
doi:10.1534/genetics.113.154740/-/DC1
1Corresponding author: Department of Integrative Biology, University of
California, 4134 Valley Life Sciences Bldg., Berkeley, CA 94720.
E-mail: matteo.fumagalli@berkeley.edu

Genetics, Vol. 195, 979–992 November 2013 979

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/195/3/979/5935465 by guest on 23 April 2024

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.154740/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.154740/-/DC1
mailto:matteo.fumagalli@berkeley.edu


Indeed, many summary statistics for evolutionary inferences
are functions of the sample allele frequencies (Nielsen
2005). Higher sequencing coverage lowers the uncertainty,
but with a fixed budget, researchers need to choose between
sequencing fewer samples at higher coverage or sequencing
more samples at low to medium coverage. The latter was
the preferred option for many recent large-scale sequencing
population genetic studies (1000 Genomes Project Consor-
tium 2010, 2012; Auton et al. 2012; Huang et al. 2012).

Naïve methods for estimating allele frequencies, which
are primarily based on direct counting of sequencing reads,
provide inaccurate estimates of local nucleotide diversity
(Nielsen et al. 2011). Consequently, there have been numer-
ous efforts to use statistical models to analyze NGS data to
provide more accurate estimates of allele frequencies. To
this end, maximum-likelihood (ML) methods and Bayesian
methods have been developed for estimating the allele fre-
quency at any given site (Lynch 2009; Keightley and Halli-
gan 2011; Kim et al. 2011) or the entire distribution of allele
frequencies jointly across multiple sites (Li 2011; Keightley
and Halligan 2011; Nielsen et al. 2012). Bayesian methods
incorporate base quality scores and statistical uncertainty to
obtain posterior probabilities associated with each genotype.
Recent studies incorporate this probabilistic approach to es-
timate population genetic parameters from NGS data (Yi
et al. 2010; Gompert and Buerkle 2011; Kang and Marjoram
2011; Li 2011; Gompert et al. 2012).

Thanks to these approaches, genome-wide scans of
positive selection have been possible in samples sequenced
at moderate coverage. For example, in Yi et al. (2010), 50
Tibetan individuals were sequenced to identify the regions
of the genome involved in the adaptation to high altitude.
Species of rice (Xu et al. 2011), chicken (Rubin et al. 2010),
and silkworm (Xia et al. 2009) have also been sequenced at
low coverage to identify functional differences between do-
mesticated and wild populations.

In genome-wide scans for selection, it is often informative
to summarize genetic variation using population differentia-
tion statistics, such as FST (Wright 1951), to identify particular
regions of the genome that are highly differentiated relative to
the rest of the genome. FST can also be informative about the
divergence time between two populations. Another powerful
tool for the analysis of genetic data are principal component
analysis (PCA). This data reduction method is a convenient
way to visualize the data, derive corrections for population
stratification in association studies, and investigate specific
features of population history and differentiation. Both PCA
and FST have been used extensively for the past 30 years and
continue to be valuable tools in summarizing genetic variation.

However, as we show, traditional methods for computing
FST and performing PCA result in biases when applied to geno-
type calls from low or moderate coverage NGS data. Therefore,
we propose a new method to estimate FST from NGS data that
accounts for uncertainty in the genotype calls. Furthermore, we
also show that population structure can be investigated with
PCA under the proposed probabilistic framework that accounts

for sequencing errors. These new methods outperform previous
approaches, especially in the case of low-coverage sequencing
data as determined from simulated sequences. Finally, we dem-
onstrate the power of the proposed methods by applying it to
a previously published data set of wild and domesticated sam-
ples of Bombyx mori (Xia et al. 2009).

The methods developed in this study contribute to the
current toolkit for population genetic analyses of next-
generation sequencing data and can be applied to both
model and nonmodel organisms.

Materials and Methods

Measuring genetic differentiation between populations

FST is a measure of population genetic differentiation that
quantifies the proportion of variance in allele frequencies
among populations relative to the total variance (the sum
of the variance within individuals, within populations, and
between populations). Several estimators of FST have been
proposed through the years (reviewed in Weir and Hill
2002; Holsinger and Weir 2009).

There is considerable debate about definitions of FST. Some
researchers consider FST to be a model parameter (e.g., Balding
and Nichols 1995; Nicholson et al. 2002; Holsinger et al.
2002), while others consider it to be a statistic (e.g., Reynolds
et al. 1983; Weir and Cockerham 1984; Hudson et al. 1992).
Even when considering FST as a parameter, there is consider-
able discussion about what model it is a parameter of and how
it should be estimated (Marchini and Cardon 2002; Balding
2003). The objective of this article is not to compare these
approaches, which differ both in what they estimate and in
how the estimation procedure works. We remain agnostic with
regard to the debate on interpretation and definition of FST,
although we use the word “estimator” throughout. Instead, we
show how some of the most commonly applied estimators of
FST can be modified in the presence of low- and medium-cov-
erage data to more accurately reflect what the original FST
estimators were intended to capture; i.e., the objective will
be to derive estimators applicable to NGS data that produce
results similar to those that would have been obtained from
the original estimator based on full genotype data without any
errors. As a note, other estimators, not considered here, could
potentially be modified in a similar fashion.

Method-of-moments estimation: We start by considering
the most simple method-of-moments estimators of FST. They
do not rely on any assumptions about the shape of the sam-
pling distribution, beyond the moments used to estimate the
parameters, and they are easy to implement through simple
algebraic expressions. For these reasons, method-of-
moments estimators are popular and often used.

Our first aim is to extend the method-of-moments FST es-
timator proposed by Reynolds et al. (1983), as this is one of
the most popular and well-motivated estimators of FST, to take
into account genotyping uncertainty. Assuming a biallelic SNP,
with nonreference allele at estimated frequencies of p̂i, p̂j, and
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p̂ for population i, j, and pooled, the genetic variance between
and within populations at site s is, respectively,

as ¼
4ni

�
p̂ði;sÞ2 p̂s

�2 þ 4nj
�
p̂ðj;sÞ 2 p̂s

�2
2 bs

2
�
2ninj=ðni þ nj

�� (1)

and

bs ¼
niaði;sÞþ njaðj;sÞ
ni þ nj2 1

; (2)

where ni and nj are the number of sampled individuals per
population, aði;sÞ ¼ 2p̂ði;sÞð12 p̂ði;sÞÞ, and aðj;sÞ ¼
2p̂ðj;sÞð12 p̂ðj;sÞÞ. Table 1 describes nomenclature used
throughout this manuscript.

The estimate of FST for a single site is then

FST ¼ as
as þ bs

(3)

while for a locus of m sites it is

FðlocusÞST ¼
Pm

s¼1asPm
s¼1ðas þ bsÞ: (4)

Maximum-likelihood estimation: ML methods for estimat-
ing FST require the specification of a sampling probability dis-
tribution. Once this distribution is defined, one can maximize

a likelihood function to obtain ML estimators for the parame-
ters of the distribution. ML estimators of FST have been very
popular, particularly for detecting signatures of adaptive nat-
ural selection among populations (e.g., Beaumont and Balding
2004; Riebler et al. 2008; Foll and Gaggiotti 2008).

Assuming a biallelic site s with beta-distributed allele fre-
quencies, the probability of the sample allele frequencies p̂ði;sÞ
at population i can be expressed as a beta-binomial distribution
with parameters 2ni (sample size), FST, and panc,s, the ancestral
population allele frequency. This parameterization assumes di-
vergence from a common ancestral population and that the
subsequent divergence is well modeled by the beta-distribu-
tion. The marginal sampling distribution in population i is then
given by (Balding and Nichols 1995; Balding 2003)

P
�
p̂ði;sÞ ¼

k
2ni

����panc;s; FST�¼
�
2ni
k

�
Bðkþ a; 2ni 2 kþ bÞ

Bða;bÞ ;

(5)

where k is the count of the nonreference (or derived) allele,
B is the Beta-function,

a ¼ panc;sð12 FSTÞ
FST

; (6)

and

b ¼
�
12 panc;s

�ð12 FSTÞ
FST

: (7)

Table 1 Nomenclature used in the manuscript

Notation Description

p(i,s), ps Population allele frequency in population i and pooled, respectively, at site s
panc,s Ancestral population allele frequency at site s
p̂ði;sÞ, p̂s Estimated population allele frequency from allele counts at population i and pooled,

respectively, at site s
ni, n No. of sampled individuals at population i, and pooled, respectively
m No. of sites
rs No. of sequencing reads at site s
vz,s Base at sequencing read z at site s
L(z,v,s) Likelihood of base v at read z and site s
G(w,s) Genotype at site s for individual w; G 2 {0, 1, 2}
X(w,s) Data (sequencing reads) at site s for individual w
Y(i,s) Data (sequencing reads) at site s for population i

hðkÞði;sÞ
Marginal likelihood of k nonreference alleles for population i

at site s
p
ðkÞ
ði;sÞ, p

ðkÞ
s Posterior probability of k nonreference alleles for population i and pooled,

respectively, at site s
p
ðk;zÞ
ði;j;sÞ Joint posterior probability of k and z nonreference alleles for population i and j,

respectively, at site s
aðk;zÞði;jÞ , b

ðk;zÞ
ði;jÞ , c

ðk;zÞ
ði;jÞ Genetic variance between (a) and within (b) populations and total (c) assuming k and z nonreference

alleles at population i and j, respectively
Sðk;zÞði;jÞ Joint allele proportions for k and z nonreference alleles at population i and j, respectively
C(w,y) Normalized matrix for PCA for individual w and y
s Index for sites
k Index for samples (allele frequencies)
w, y Indexes for individuals
z Index for sequencing reads
P(�) Probability function
B(�) Beta-function

Genetic Variation from NGS Data 981

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/195/3/979/5935465 by guest on 23 April 2024



The full-likelihood function is the product of this sam-
pling distribution for all populations, as the populations are
independent conditional on panc,s. For two populations i and
j, we have

P
�
p̂ði;sÞ ¼

k
2ni

; p̂ðj;sÞ ¼
z
2nj

����panc;s; FST�
¼ P

�
p̂ði;sÞ ¼

k
2ni

����panc;s; FST�
3 P

�
p̂ðj;sÞ ¼

z
2nj

����panc;s; FST�;
(8)

where the subscripts on n and p̂ indicate population identity.
We numerically maximize Equation 8 using the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher
1987; Press et al. 2007).

Quantifying population genetic differentiation by
calling genotypes

A naïve strategy for estimating sample allele frequencies and
FST is to first call genotypes at each site, and then simply
count the occurrence of nonreference or derived alleles
among all individuals.

We first assessed the accuracy of several genotype-calling
strategies (Supporting Information, File S1). These methods
include approaches based on direct counts of read bases, on
genotype likelihoods, and on genotype posterior probabili-
ties. One promising approach is to use Bayesian methods to
assign individual genotypes by computing genotype poste-
rior probabilities P(G|X) from genotype likelihoods and
a specific prior P(G) on genotype G. Bayes’ theorem is used
to calculate P(G|X), the posterior probability of genotype G
given the observed data X (1000 Genomes Project Consor-
tium 2010). The prior can be defined using extraneous data,
such as the reference sequence, sequences in a database, an
estimate of the allele frequency, and/or inbreeding coeffi-
cients, etc. (e.g., 1000 Genomes Project Consortium 2010;
Li 2011; Nielsen et al. 2012).

We calculate genotype posterior probabilities at site s for
individual w, P(G(w,s)|X(w,s)) as

P
�
Gðw;sÞ

���Xðw;sÞ� ¼
P
�
Xðw;sÞ

���Gðw;sÞ
�
P
�
Gðw;sÞ

�
P2

G¼0P
�
Xðw;sÞ

���Gðw;sÞ
�
P
�
Gðw;sÞ

�; (9)

where P(X(w,s)|G(w,s)) are the genotype likelihoods and
P(G(w,s)) is the prior probability of genotype G at site s under
Hardy–Weinberg Equilibrium (HWE). The prior is calculated
from estimates of the per-site population allele frequencies
using the method described in Kim et al. (2011). To call
genotypes, the genotype with the highest posterior proba-
bility was chosen for each individual.

Results show that calling genotypes from genotype posterior
probabilities provides the most stable and accurate genotype
and SNP-calling accuracy at almost all tested experimental

scenarios (Table S1, Table S2, and Table S3). We adopted
this strategy to call genotypes throughout the rest of the
study. Specifically, we counted nonreference alleles from
these called genotypes to infer allele frequencies and com-
puted a method-of-moments estimator of FST, which we
labeled F̂ST:GC (Equations 10 and 11). We adopted this ge-
notype calling strategy to compute a ML estimator of FST,
F̂ST:ML:GC (Equations 5 and 8).

An alternative strategy for computing FST is to avoid ge-
notype calling altogether so that inference is based directly on
the posterior probabilities (e.g., Yi et al. 2010; Nielsen et al.
2012). We describe such methods in the following sections.

Quantifying population genetic differentiation without
calling genotypes

Here we propose using a Bayesian probabilistic framework to
estimate FST from posterior probabilities of sample allele fre-
quencies of each population at each site without calling spe-
cific genotypes. In our applications, we compute a maximum-
likelihood estimate of the site frequency spectrum from geno-
type likelihoods, as previously proposed by Nielsen et al.
(2012). Using this ML estimate of the SFS as a prior in an
empirical Bayes approach, we estimate the posterior proba-
bility for all possible allele frequencies at each site (Nielsen
et al. 2012).

Method-of-moments estimation: Let p
ðkÞ
i ¼ Pð bpi ¼

k=ð2niÞjYði;sÞÞ be the posterior probability that a site in pop-
ulation i has derived sample allele frequency bpi ¼ k=ð2niÞ, in
a sample of ni diploid individuals, given the read data Y(i,s).
This probability can be calculated from the genotype prob-
abilities using the algorithm in Nielsen et al. (2012). Allele
labeling with respect to the derived allele is arbitrary and
any other labeling of alleles could have been chosen if iden-
tification of the ancestral and derived state is not possible.

From these quantities, we compute the posterior expec-
tation of the genetic variance between and within popula-
tions (see Equations 1 and 2) at site s as

E½asjYs� ¼
X2ni

k¼0

X2nj

z¼0

aðk;zÞði; jÞ p
ðk;zÞ
ði; j;sÞ (10)

and

E½bsjYs� ¼
X2ni

k¼0

X2nj

z¼0

bðk;zÞði; jÞ p
ðk;zÞ
ði; j;sÞ; (11)

where aðk;zÞði;jÞ and bðk;zÞði;jÞ are genetic variances from Reynolds
et al. (1983) formula, with k- and z-derived alleles in pop-
ulations i and j, respectively, and Ys is the sequencing data at
site s. The total expected variance, E[cs|Ys], at each site, is
then E[cs|Ys] = E[as|Ys] + E[bs|Ys].

The estimate of FST for a single site is given by the ratio of
E[as|Ys] to E[cs|Ys] (Equation 3). However, since the two
variance components are not independent and this calcula-
tion involves the expectation of a ratio, we approximate it
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using the delta method (Rice 2008; Rice and Papadopoulos
2009) to obtain the following estimator of FST at site s,

F̂ST:Ev ¼ E
	
as
cs

����cs 6¼ 0; Ys



¼ E½asjYs�

E½csjYs� þ
XN
u¼1

ð21Þu E½asjYs�hcuiþha; cui
E½cjYs�iþ1 ; (12)

where hcui is the uth central moment of cs and ha, cui is the
mixed central moment, which can be calculated as

hcui¼ E
	
ðcs 2E½cs�ÞujYs



¼

X2ni

k¼0

X2nj

z¼0

�
cðk;zÞði;jÞ 2 E½csjYs�

�u
p
ðk;zÞ
ði;j;sÞ

(13)

and

ha; cui ¼ E
	
ðas 2 E½asjYs�Þðcs2 E½csjYs�ÞujYs




¼
X2ni

k¼0

X2nj

z¼0

�
aðk;zÞði;jÞ 2 E½asjYs�

��
cðk;zÞði;jÞ 2 E½csjYs�

�u
p
ðk;zÞ
ði;j;sÞ;

(14)

where cðk;zÞði;jÞ is the total genetic variance from Reynolds et al.
(1983) formula, with k- and z-derived alleles in populations
i and j, respectively. For computational purposes, we use
only the first central and mixed central moments.

p
ðk;zÞ
ði;j;sÞ can be calculated using maximum likelihood simi-

larly to the method used for calculating p
ðkÞ
ði;sÞ for a single

population (Nielsen et al. 2012). However, this calculation
may not be desirable due to the high variance associated
with the estimation of so many parameters.

An alternative approach is to compute an estimate of the
two-dimensional site frequency spectrum (2D-SFS), Sðk;zÞði;jÞ , as

Sðk;zÞði;jÞ ¼ 1Pm
s¼0

P2ni
k¼0

P2nj

z¼0

�
hðkÞði;sÞh

ðzÞ
ð j;sÞ

� Xm
s¼0

hðkÞði;sÞh
ðzÞ
ð j;sÞ; (15)

where hðkÞði;sÞ and hðzÞðj;sÞ are the marginal likelihoods of observ-
ing k and z nonreference alleles at population i and j, re-
spectively, at site s, as presented in Nielsen et al. (2012).

Sðk;zÞði;jÞ is then used as a prior to compute the posterior
probability of quantities of interest. For instance, the expec-
tation of the genetic variance between populations (see
Equation 10) can be computed as

E½asjYs� ¼
X2ni

k¼0

X2nj

z¼0

aðk;zÞði; jÞ h
ðkÞ
ði; sÞh

ðzÞ
ð j; sÞS

ðk;zÞ
ði; jÞ : (16)

Finally, a method-of-moments estimator of FST over m sites
is given by Equation 4. When analyzing multiple sites, we do
not add the correction factor to the ratio of E[a|X] to E[c|X]
at each site because, for a large number of sites, the error
introduced by taking the ratio of two nonindependent

expectations will be minimal. We also tested the perfor-
mance of other methods to estimate FST from sequencing
data derived from the expectations of sample allele frequen-
cies (File S1).

These methods can be extended to nonpairwise defini-
tions of FST (Weir 1996). These formulations require the
estimation of a joint SFS among all populations, which can
be estimated in a similar fashion as in Equation 15.

Maximum-likelihood estimation: We also extend the pro-
cedure for ML estimation of FST and panc under the Beta-
binomial distribution (Balding and Nichols 1995; Balding
2003) (Equation 8) to the case of unknown genotypes.
These estimates, which we call FST.ML, are obtained by max-
imizing the likelihood function

P
�
Yði;sÞ; Yðj;sÞ

���panc;s; FST�
¼ P2ni

k¼0

P2nj

z¼0
P
�
Yði;sÞ

���p̂ði;sÞ ¼ k
2ni

�
P
�
p̂ði;sÞ ¼ k

2ni

���panc;s; FST�
3 P

�
Yðj;sÞ

���p̂ðj;sÞ ¼ z
2nj

�
P
�
p̂ðj;sÞ ¼ z

2nj

���panc;s; FST�
¼ P2ni

k¼0

P2nj

z¼0
hðkÞði;sÞP

�
p̂ði;sÞ ¼ k

2ni

���panc;s; FST�hðzÞðj;sÞ

3 P
�
p̂ðj;sÞ ¼ z

2nj

���panc;s; FST�;
(17)

where Y(i,s) and Y(j,s) are the observed read data at site s for
population i and j, respectively, and hðkÞði;sÞ and hðzÞðj;sÞ are again
the marginal likelihoods of the sample allele frequency for
population i and j, computed as in Nielsen et al. (2012).

Principal Components Analysis

A similar approach to the one used for correcting estimates
of FST can be used in PCA. The now-standard method for
calculation PCA in population genetics is based on Patterson
et al. (2006). For n individuals and m sites a normalized
covariance matrix C is calculated as

Cðw;yÞ ¼
1
m

Xm
s¼1

�
Gðw;sÞ2 2p̂s

��
Gðy;sÞ22p̂s

�
p̂sð12 p̂sÞ

; (18)

where bpi is the derived allele frequency at site s (the labeling
is again arbitrary) and G(w,s) is the number of derived alleles
for individual w at site s (G 2 {0, 1, 2} in the diploid case).
The denominator is inserted to account for genetic drift and
normalizes the standardized allele frequencies to have the
same variance (Patterson et al. 2006). However, other nor-
malizations can be chosen. An eigenvector decomposition of
C is then computed.

We propose computing an estimate of C(w,y) by integrat-
ing over the posterior genotype probabilities at site s for
individualw, P(G(w,s)|X(w,s)), and y, P(G(y,s)|X(y,s)), which can both
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be calculated as in Equation 9. The prior is calculated using the
sample allele frequencies p̂s at site s as in Kim et al. (2011).
Therefore, PðGðw;sÞ ¼ 2Þ ¼ p̂2s , PðGðw;sÞ ¼ 1Þ ¼ 2p̂sð12 p̂sÞ,
PðGðw;sÞ ¼ 0Þ ¼ ð12 p̂sÞ2, where G(w,s) is the number of derived
alleles for individual i at site s. Missing genotype data are then
implicitly incorporated in a Bayesian manner using the prior
from the sample allele frequencies.

Additionally, the C matrix is weighted by the probability
of each site being variable. This is motivated by the fact that,
at low to medium sequencing coverage, sites that have

a small probability of being variable in the sample can have
a small but nonnegligible contribution to the matrix C. As
they are several orders of magnitude more invariable than
variable sites, this can have a profound effect on the analy-
ses, even when weighting with genotype probabilities. In-
stead of using an arbitrary discrete SNP calling, or minor
allele frequency, cut-off, we propose weighting sites accord-
ing to their probability of being variable.

We, therefore, estimate the matrix C as (for w 6¼ y)

Cðw;yÞ ¼
1Pm

s¼1Pvar;s

Xm
s¼1

�P2
Gðw;sÞ¼0

P2
Gðy;sÞ¼0

�
Gðw;sÞ 22p̂s

��
Gðy;sÞ2 2p̂s

�
P
�
Gðw;sÞ

���Xðw;sÞ�P�Gðy;sÞ
���Xðy;sÞ��Pvar;s

p̂sð12 p̂sÞ
; (19)

where the probability of site s being variable, Pvar,s, is com-
puted as

Pvar;s ¼ 12
�
p
ð0Þ
s þ p

ð2nÞ
s

�
: (20)

We emphasize that this approach does not provide a form of
Bayesian PCA analysis. Rather, it is a modification of the Pat-
terson et al. (2006) approach for PCA analysis in the context
of population genetics, modified to incorporate uncertainty in
genotype calls by using an appropriate weighting of different
genotypes using their respective posterior probabilities.

Note that we estimate the joint posterior of the genotype
probabilities for the two individuals using the product of
their marginal genotype probabilities, i.e., we estimate
P(G(w,s), G(y,s)|X(w,s), X(y,s)) by P(G(w,s)|X(w,s))P(G(y,s)|X(y,s)).
P(G(w,s)|X(w,s)) and P(G(y,s)|X(y,s)) are not independent as
they are correlated through the underlying estimate of ge-
notype frequencies affecting the prior. However, as these
analyses are carried out conditional on an estimated allele
frequency, the approximation is accurate, although it ignores
the sampling variance in the estimate of the allele frequency.
Conditional on the allele frequency, P(G(w,s)|X(w,s)) and
P(G(y,s)|X(y,s)) are independent.

We also note that

E

24 X2
Gðw;sÞ¼0

X2
Gðy;sÞ¼0

�
Gðw;sÞ2 2p̂s

��
Gðy;sÞ2 2p̂s

�
P
�
Gðw;sÞ

���Xðw;sÞ�P�Gðy;sÞ
���Xðy;sÞ�

35¼ 0

(21)

for unrelated individuals under HWE assuming known allele
frequencies and a HWE-derived prior for the genotype
probabilities. This shows that the covariance function for
unrelated individuals is in fact expected to be zero using this
estimator, a necessary and desirable property for the method
to perform well. Proof of Equation 21 is provided in the Ap-
pendix. As we argue, the resulting PCA is greatly improved
over naïve methods using genotype calling under all the ex-
plored scenarios.

This approach could be extended to different strategies to
perform PCA from a matrix of genotype posterior probabil-

ities, for instance, ML methods that account for noise
contributions of each variable (Wentzell et al. 1997) or
Bayesian methods that use external information about the
data (Nounou et al. 2002).

Simulating sequencing data for multiple populations

We performed simulations to compare the performance of
these methods to estimate population genetic differentia-
tion, as well as to quantify the genotyping and SNP calling
accuracy, under a broad range of experimental conditions.
As in previous studies (Kim et al. 2010, 2011), we simulated
sequencing data rather than raw sequencing reads for com-
putational efficiency. We treated sites as independent of
each other and simulated genotypes for each individual as-
suming HWE and a specific population allele frequency. Spe-
cifically, we repeated the following procedure for each site.

First, for each site, we drew an ancestral allele frequency
panc from a distribution in [5 3 1023, 1 2 (5 3 1023)] with
density proportional to 1/x. This distribution is the expected
allele frequency distribution under a standard neutral infinite
sites model, truncated at the boundaries corresponding to
a population size of 200 individuals (see, e.g., Ewens
2004). We then simulated allele frequencies for two popula-
tions using the Balding–Nichols model (Balding and Nichols
1995) with mean equal to panc, as in previous studies (Pritch-
ard and Donnelly 2001; Price et al. 2006). We simulated two
independent samples, conditionally on FST and panc, from this
distribution to obtain allele frequencies for two populations
(see Equation 5). From these population allele frequencies,
we assigned genotypes according to HWE for each individual.

To simulate data from three populations, we first drew
population allele frequencies from the Balding–Nichols
model for two populations as described above. We then
assigned the first allele frequency to population 1 and used
the second allele frequency as the ancestral allele frequency
for populations 2 and 3. We then drew two population allele
frequencies from the Balding–Nichols model for a different
value of FST and assigned these allele frequencies to popu-
lations 2 and 3.
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To simulate NGS data, the number of reads at each locus
for each individual was simulated from a Poisson distribu-
tion as in Kim et al. (2010, 2011). Additionally, errors were
randomly introduced uniformly among nucleotides at a rate
of 0.0075. This value is comparable to error rates found in
previous studies (1000 Genomes Project Consortium 2010;
Li et al. 2010; Yi et al. 2010). The probability of a site being
polymorphic, Pvar, was varied from 0.02 to 1.

We computed genotype likelihoods from simulated
sequencing reads. Genotype likelihoods depend on both
base calls and quality scores and are proportional to the
probability, P(X|G), of the observed read data, X, at a site
for each individual given a certain genotype G. In the sim-
plest possible case, for read z at site s, we calculated the
genotype likelihood of a particular base v, L(z,v,s) with v 2
{A, C, G, T} as L(z,v,s) = (1 2 e) if v is the observed base at
read z, and L(z,v,s) = e/3 otherwise. Here e is the sequenc-
ing error used in the simulation setting. There are many
other methods for estimating e, including methods for es-
timating it directly from the data (e.g., Kim et al. 2011).
Genotype likelihoods at site s for individual w are then
calculated by taking the product of the likelihoods over
all r reads:

P
�
Xðw;sÞ

���Gðw;sÞ ¼ v1v2
�
¼ 1

2r
Yr
z¼1

�
Lðz;v1;sÞþ Lðz;v2;sÞ

�
: (22)

Using this procedure, we computed genotype likelihoods for
each individual at each site for all 10 possible genotypes. We
then computed posterior probabilities of genotypes and
sample allele frequencies, as previously described (see
Equation 9).

When calling genotypes, we assigned genotypes with
a posterior probability ,0.90 as missing data. We removed
sites where more than half of the individuals had missing
genotypes. With this procedure, we filtered�25% of the total
sites at 23 sequencing coverage. We computed FST only on
nonmissing genotypes, while for PCA we imputed missing
data with genotypes with the highest posterior probability.

To assess the accuracy of the per-site estimates of FST, we
simulated two data sets of 10k and 1k sites for each exper-
imental scenario to evaluate method-of-moments and ML
estimates, respectively, with FST varying from 0.01 to 0.4,
and with Pvar = 1. We verified convergence of optimization
algorithms for ML estimators of FST and discarded sites
where this condition was not met. We also simulated 1M
sites by concatenating 100 sets of 10k simulated sites with
FST values drawn from a Normal distribution N(0.2, 0.2)
truncated at 0.02 and 0.90, and Pvar = 0.10 to assess the
accuracy of multiple-sites estimates of FST. We simulated 20
individuals per population at low (23), medium (63), and
high (203) sequencing coverage.

To evaluate the performance of different methods for
estimating FST, we calculated two measures of deviation
from the true FST over m sites: the root-mean-square devia-
tion (RMSD),

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm
s¼1

�
F̂
ðsÞ

ST
2 FðsÞST

�2
vuut (23)

and mean bias

Mean  bias ¼ 1
m

Xm
s¼1

�
F̂
ðsÞ
ST 2 FðsÞST

�
; (24)

where FðsÞST and F̂
ðsÞ
ST is the estimated FST at site s from the case

of known genotypes and sequencing data, respectively.
To evaluate the accuracy of the PCA method, we

simulated 10k sites for each scenario with values of FST
ranging from 0.02 to 0.4 and with Pvar = 0.02, 0.1, or 1.
We simulated three populations with 20 individuals each at
23, 63, and 203 sequencing coverage. We performed 10
distinct simulations for each experimental condition to as-
sure robustness of our results. We assessed the accuracy of
inferred PCA plots using Procrustes analysis (Wang et al.
2010). Briefly, we measured the deviation of PC1 and PC2
computed from the case of known genotypes and the case of
unknown genotypes using sum-of-squares (SS), where SS
values closer to 0 indicate better fits.

Applications to real data

We analyzed a data set of wild and domesticated species of
silkworm, B. mori (Xia et al. 2009). The data consisted of 40
samples representing 29 domesticated lineages and 11 wild
lineages. Domesticated lineages are phenotypically and geo-
graphically separated into subgroups while all wild lineages
are from China. Samples were sequenced at an approximate
mean per-site coverage of 33. We analyzed chromosome 2
using the original genotype likelihoods by removing sites
where we had no information for at least one individual.
Details on the calculation of genotype likelihoods can be
found in the original article (Xia et al. 2009). Approximately,
200,000 sites were analyzed in total.

We computed posterior probabilities of sample allele
frequencies and genotypes using ANGSD software (available
at http://www.popgen.dk/angsd). We then performed PCA
and estimated FST using the new proposed methods imple-
mented in a set of C/C++ programs (available at https://
github.com/mfumagalli/ngstools). All statistical analyses were
performed in the R environment (http://www.r-project.org).

Results

Quantifying population genetic differentiation from
sequencing data

We performed extensive simulations to evaluate the accu-
racy of estimating FST using different methods and under
different conditions. We first evaluated the accuracy of
method-of-moments estimates of per-site FST based on
called genotypes. Specifically, we assign genotypes for each
individual based on the the highest genotype posterior prob-
ability ðF̂ST:GCÞ (see Materials and Methods). This approach is
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representative of strategies currently used for genotype call-
ing, and it provides better genotype and SNP calling accu-
racies than other genotype calling strategies examined here
(Table S1, Table S2, and Table S3).

We then obtain a method-of-moments estimator of FST
from NGS data without calling genotypes by using posterior
probabilities of sample allele frequencies, which allows us to
compute expected genetic variance components between
and within populations (see Materials and Methods). Here,
we employ Equation 15 to estimate the 2D-SFS and use it as
a prior as in Equation 16. We call this estimator F̂ST:Ev.

Results show that this new method performs substan-
tially better than the method based on genotype calling
under the experimental conditions explored in this study,
especially at low sequencing coverage (Figure 1). F̂ST:Ev
tends to underestimate the true value of FST at 23 coverage,
but this bias is reduced at 63 coverage (Figure 1). We ob-
serve accuracy in our estimates that are comparable to that
of methods based on genotype calling for high coverage
sequencing data. We obtain similar results when using the
true 2D-SFS as a prior (Figure S1). We also observe that at
23 coverage, F̂ST:Ev is more accurate for estimating FST than
estimators based on computing the expected allele fre-
quency for each population (see File S1 and Table S4),
which overestimates FST (Figure S2).

Next, we compared the accuracy of a ML estimator of FST
from called genotypes under the Balding–Nichols model,
FST.ML.GC, to the proposed estimator based on the full likeli-
hood under the same model while taking genotype calling
uncertainty into account, FST.ML (see Materials and Meth-
ods). The results show that FST.ML outperforms the method

based on calling genotypes at 23 and 63 coverage (Figure
2). For higher sequencing coverage, both methods perform
very similarly. We also observe that ML estimates of the
ancestral population allele frequency are highly correlated
with the true values (Figure S3).

We also test the accuracy of estimating multiple-sites FST
on 10k sites from a larger set of 1M simulated positions
where only 10% of the sites are variable in the population
(see Materials and Methods). For this particular analysis we
chose the method-of-moments estimator because of its nat-
ural extension to multiple-sites estimation (Equation 4). At
23 sequencing coverage we underestimate the true FST
(Figure S4). This bias diminishes at 63 and disappears at
203. When we use the true 2D-SFS as a prior at 23 se-
quencing coverage, we underestimate the true FST when this
value is above the whole-region average (approximately
equal to 0.25), while we overestimate the true FST when
this value is below the whole-region average (Figure S4).
This bias is derived from using the 2D-SFS estimated from
the entire region as a prior. At 63 and 203 sequencing
coverage we observed unbiased estimates using the true
2D-SFS as a prior (Figure S4).

Principal components analysis

In traditional PCA, genotypes are called at each site for each
individual. We explore an alternative approach based on the
genotype posterior probabilities for each individual at each
site (see Materials and Methods).

At low sequencing coverage, the new method, which
does not rely on SNP or genotype calling, produces PCA plot
results that are essentially identical to those that use known

Figure 1 RMSD (left) and mean bias (right) for method-
of-moments estimates of FST under different sequencing
coverage (23, 63, and 203). We compared the accuracy
of the new method, which does not rely on genotype
calling ðF̂ST:EvÞ, and a method based on allele frequencies
estimated from called genotypes ðF̂ST:GCÞ (see Materials
and Methods). We simulated 20 individuals for each pop-
ulation and 10,000 sites for each scenario.
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genotypes (Figure 3). By contrast, direct genotype calling at
low sequencing coverage generally leads to a loss in the
ability to cluster individuals according to populations, which
is a problem that may persist even after removing outlier
individuals (Figure 3).

We replicated these findings under many different exper-
imental conditions and for multiple independent simulations
and assessed the accuracy of PCA plots using SS values from
PC1 and PC2 computed from known genotypes (seeMaterials
and Methods). The new method provides better accuracy than
the method based on genotype calling for all tested scenarios,
even at medium sequencing coverage (Figure S5). Generally,
we obtain lower SS values without normalization of the stan-
dardized allele frequencies (see Equation 18), and the new
method still outperforms an approach based on called geno-
types at low sequencing coverage (Figure S6). We next sim-
ulated only variable sites data at high sequencing coverage to
produce an ideal scenario for genotype calling. As expected,
procedures based on calling genotypes lead to accurate PCA
results under these conditions (Figure S7).

Notably, weighting each site by its probability of being
variable gives higher accuracy than simply weighing all sites
equally, especially when there are only a few variable sites in
the sample (Figure S8). This proposed method also performs
better than an approach based on computing expected gen-
otypes from genotype posterior probabilities (Skotte et al.
2012; Gompert et al. 2012) for low coverage data (Figure
S9). We also simulated one population with no genetic
structure but where half of the individuals were sequenced
at low coverage (23) while the rest were sequenced at high

coverage (203). We still observe an improvement in the
accuracy of the inferred PCA plots (Figure S10).

Analysis of real data

To illustrate the performance of the herein proposed
methods, we applied them to a data set of low-coverage
sequencing data. Specifically, we investigate the population
structure of wild and domesticated silkworm samples (Xia
et al. 2009). Despite using only a single chromosome of the
entire silkworm data set, we were able to detect fine-scale
population genetic structure. Indeed, the first component of
the PCA plot generated using the new method, which takes
statistical uncertainty in genotype calling into account,
shows a clear separation between wild and domesticated
lineages (Figure 4A). Moreover, the second component
divides the different lineages of domesticated silkworms into
their subgroups (Figure 4A). The first two principal compo-
nents explain 6.8 and 5.2% of the total genetic variation,
respectively. Of note is that we achieve a better separation
among the subgroups than in the original study using
whole-genome sequence data, where several subgroups ap-
pear to be intermixed (Xia et al. 2009).

We then applied naïve strategies of performing PCA
based on called genotypes using the maximum genotype
likelihood or genotype posterior probability at each site for
each individual. Results show several outlier individuals,
which may be the effect of systematically misassigned het-
erozygous sites (Figure S11). However, when including only
sites with estimated allele frequency greater or equal to two,
and using genotype calling based on genotype posterior

Figure 2 RMSD (left) and mean bias (right) for maximum-
likelihood estimates of FST under different sequencing cov-
erage (23, 63, and 203). We compared accuracy of the
new method, which does not rely on genotype calling
ðF̂ST:MLÞ, and the standard method applied to called gen-
otypes. ðF̂ST:ML:GCÞ (see Materials and Methods). We sim-
ulated 20 individuals for each population and 1000 sites
for each scenario.
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probabilities, we see a more accurate representation of the
genetic structure. (Figure S11). A similar result using this
allele frequency-filtered data set is obtained using the new
proposed method that does not rely on genotype calling
(Figure S11). Nonetheless, the new method applied to all
of the data provides larger fractions of explained variance
than the method based on genotype calling (Figure S12).

Finally, we estimated FST between wild and domesticated
samples for 20-kb nonoverlapping genomic windows. We
used the folded 2D-SFS due to uncertainty in assigning
the ancestral and derived state of alleles. The distribution
of the estimated FST values in 20-kb windows has mode
around 0.4 (Figure 4B), which is larger than what was found
in the original study (Xia et al. 2009).

Discussion

NGS technologies are now an essential tool for population
genetic studies. However, genotyping uncertainty associated
with low sequencing coverage and high sequencing error
can drastically bias downstream analyses (Nielsen et al.
2011). A recent study assessed the power to detect selective
events and infer demographic scenarios as a function of
sequencing coverage and error (Crawford and Lazzaro
2012). The results of the study show that weak selective
events are hardly detectable, and inferences of population

size changes are systematically biased for low-coverage data
(,103) (Crawford and Lazzaro 2012). Interestingly, the
authors determined that population genetic differentiation
was underestimated, even at medium to high sequencing
coverage, suggesting that multipopulation analyses are even
more sensitive to inaccuracy of NGS data (Crawford and
Lazzaro 2012).

In this study, we take full advantage of a recently
proposed Bayesian approach to taking sequencing data
uncertainty into account (Li 2011; Nielsen et al. 2012). This
method involves computing posterior probabilities for each
genotype and all possible sample allele frequencies from
genotype likelihoods. Estimation of classic population ge-
netic parameters within this new probabilistic framework
has previously been suggested (Yi et al. 2010; Li 2011; Niel-
sen et al. 2012) and in some cases implemented (Yi et al.
2010; Gompert and Buerkle 2011; Kang and Marjoram
2011). For instance, Gompert and Buerkle (2011) proposed
a hierarchical Bayes model for genomic population struc-
ture. Their method accounts for uncertainty in sampling
sequencing reads and measured population differentiation
in terms of haplotype distances. Also, Skotte et al. (2012)
and Gompert et al. (2012) used genotype expectations
rather than called genotypes for the analysis of population
structure. Here, we developed new methods for quantifying
population genetic differentiation in terms of FST without

Figure 3 PCA plots from known genotypes,
called genotypes using genotype posterior
probabilities with or without outlier individuals,
and using the new method without calling
genotypes (see Materials and Methods). We
simulated three populations of 20 individuals
each at 23 sequencing coverage. Colors are
coded according to each simulated population.
Purple and green/red populations are differen-
tiated by an FST of 0.4 while green and red
populations are differentiated by an FST of
0.15. We simulated 10,000 sites with 10% of
sites being variable in the population.
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relying on SNP or genotype calling. We simulated NGS data
to assess the accuracy of these new estimators under a wide
range of experimental scenarios.

Herein proposed methods for computing method-of-
moments FST estimators, based on computing the posterior
expected genetic variance components (see Materials and
Methods), offer a solution to the lack of accuracy for low
coverage data and outperform other examined estimators
under all tested conditions (Figure 1). While the improve-
ment offered by the new method is greatest and most notice-
able at low coverage, even at medium sequencing coverage,
it results in less biased estimates of FST (Figure 1). Similarly,
ML estimation of FST that accounts for uncertainty in geno-
type calls outperforms a method based on genotype calling
at low and medium coverage (Figure 2). These findings
suggest that the framework presented in this study can be
easily extended to other FST estimators. Overall, these
results highlight the importance of taking statistical uncer-
tainty into account when computing population genetic dif-
ferentiation from NGS data. The great improvement in
accuracy for low coverage data can be explained by the fact
that we do not call SNPs or genotypes. We can thus avoid
introducing errors during these processes, which can be par-
ticularly problematic for downstream analyses.

Errors introduced by calling SNPs and genotypes for low
coverage and quality data can be even more evident when
investigating population structure with PCA. Simple geno-
type calling provides very little ability to accurately identify
structure using PCA for low coverage data. However, the
new method based on genotype posterior probabilities
provides PCA plots that are almost identical to cases in
which true genotypes are known (Figure 3). Accuracy in
identifying population structure can be recovered when call-

ing genotypes by removing outlier individuals, low-quality
sites, and low-frequency variants, but at the price of losing
potential important information. Skoglund and Jakobsson
(2011) investigated population structure by randomly sam-
pled one read from each individual at each position. In this
way they could compare modern, high-quality data with the
low-pass ancient data. A disadvantage of this method is the
loss of information associated with using only a single read
from each individual, especially in the presence of sequenc-
ing errors.

We applied methods proposed in this study to a data set
comprising 40 silkworm samples sequenced at low coverage
(Xia et al. 2009). We used only a single chromosome of the
original data set and we did not apply any criteria for SNP
calling. Despite this, we were able to obtain a fine-scale map
of population genetic structure, clearly separating wild and
domesticated lineages of silkworm samples (Figure 4A). The
first principal component separates domesticated and wild
varieties, while the second component accurately divides the
domesticated lineage into subgroups. Genotype calling from
genotype posterior probabilities can provide an overall sim-
ilar representation of the genetic structure when using a con-
servative initial filtering of data.

Genotype calling using stringent data filtering and a con-
servative approach for SNP calling and rare variants removal
may be sufficient to give an overall picture of the genetic
population structure, for example, a reasonably representa-
tive PCA. Other analyses, such as estimation of FST, that rely
on accurate estimates of allele frequencies may be more dif-
ficult to rescue by conservative filtering because a fixed cut-
off for SNP calling cannot provide unbiased estimates of allele
frequencies (e.g., Johnson and Slatkin 2008). Furthermore,
the accuracy of genotype calling can be improved for human

Figure 4 (A) PCA plot for wild and domesticated B. mori samples using the method proposed in this study. (B) Distribution of FST between wild and
domesticated B. mori samples over 20-kb genomic windows.
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data by using imputation or haplotype-based genotype-calling
methods (e.g., Zhi et al. 2012), although such approaches are
not as easily applicable to most other species. The poor per-
formance of PCA after calling genotypes may largely be a re-
sult of inaccuracies in SNP calling rather than a consequence
of erroneous genotype calls at variable sites. However, when
simulating sequences with a larger proportion of polymor-
phic sites the new method still outperforms traditional
methods, even in the case of an uneven sequencing cover-
age among individuals (Figure S10). While more sophisticated
approaches have been developed to perform accurate SNP
calling (e.g., Kim et al. 2011), calling polymorphic sites using
all individuals may result in ascertainment biases, which can
influence estimates of population structure and divergence
(Albrechtsen et al. 2010). Additionally, a stringent SNP-call-
ing strategy implies that a large amount of data is discarded
from the analyses, potentially leading to loss of important
features of the data. For example, low-frequency variants,
which are more likely to be removed in a conservative SNP
calling strategy, can effectively distinguish closely related pop-
ulations. Moreover, highly differentiated SNPs among popula-
tions, which may be related to genetic adaptation, might be
lost in some analyses.

Like any other method for SNP-calling and allele-
frequency estimation, the approach herein discussed is
sensitive to the underlying base-calling algorithm and to
the accuracy of quality scores. By improving accuracy
and quality scores, current and future base callers can
both reduce sequencing costs and increase accuracy of all
downstream analyses of genetic variation. Furthermore,
data filtering is a complex procedure when sequencing
quality is low (e.g., Minoche et al. 2011). Many other pro-
tocols, other than the ones used in this article, can be adop-
ted to minimize the genotypes assignment bias.

We implemented the new proposed methods for estimat-
ing FST and perform PCA from NGS data in a fast, portable,
and memory-efficient set of C/C++ programs and distrib-
uted on a public repository for shared development. These
programs are directly integrated with ANGSD (http://www.
popgen.dk/angsd), a software for the analysis of NGS data
and easily integrable with other common software such as
SAMtools (Li et al. 2009) or GATK (Mckenna et al. 2010).
The computational cost associated with the new methods is
slightly higher than that of standard approaches (Table S5
and Table S6). However, the increased computational bur-
den is mostly associated with the computation of sample
allele frequency posterior probabilities, which can be used
for additional analyses. Notably, the computational cost
should not be prohibitive for any existing data sets.

As NGS technologies become more ubiquitous and
affordable, the frequency of large-scale population genetic
and quantitative studies will certainly increase. The methods
presented in this article provide tools for investigating
genetic variation for multiple populations at large scales
directly from high-throughput sequencing data.

Acknowledgments

We are grateful to Michael DeGiorgio and Gaston Sanchez at
the University of California, Berkeley, CA, for helpful
discussions. We thank Shiping Liu and Zengli Yan at Beijing
Genomics Institute, Shenzhen, China, for testing previous
versions of the programs, and three anonymous reviewers
for insightful comments on the manuscript. M.F. is sup-
ported by EMBO Long-Term Post-doctoral Fellowship (ALTF
229-2011). T.L. is supported by National Institutes of Health
(NIH) Genomics Training Grant (Grant T32HG000047-13).
E.H.S. is supported by National Science Foundation grant
DBI-0906065 and NIH grant 3R01HG03229-08S2. R.N. is
supported by NIH grant 3R01HG03229-07.

Literature Cited

1000 Genomes Project Consortium, 2010 A map of human ge-
nome variation from population-scale sequencing. Nature 467
(7319): 1061–1073.

1000 Genomes Project Consortium, 2012 An integrated map of
genetic variation from 1,092 human genomes. Nature 491
(7422): 56–65.

Albrechtsen, A., F. C. Nielsen, and R. Nielsen,
2010 Ascertainment biases in snp chips affect measures of
population divergence. Mol. Biol. Evol. 27(11): 2534–2547.

Auton, A., A. Fledel-Alon, S. Pfeifer, O. Venn, L. Segurel et al.,
2012 A fine-scale chimpanzee genetic map from population
sequencing. Science 336(6078): 193–198.

Balding, D. J., 2003 Likelihood-based inference for genetic corre-
lation coefficients. Theor. Popul. Biol. 63(3): 221–230.

Balding, D. J., and R. A. Nichols, 1995 A method for quantifying
differentiation between populations at multi-allelic loci and its
implications for investigating identity and paternity. Genetica 96
(1–2): 3–12.

Beaumont, M. A., and D. J. Balding, 2004 Identifying adaptive
genetic divergence among populations from genome scans.
Mol. Ecol. 13(4): 969–980.

Crawford,, J. E.,, and B. P. Lazzaro, 2012 Assessing the accuracy
and power of population genetic inference from low-pass next-
generation sequencing data. Frontiers Genet. 3: 66.

Ewens, W., 2004 Mathematical Population Genetics: Theoretical
Introduction. Springer-Verlag, New York.

Fletcher, R., 1987 Practical Methods of Optimization, Ed. 2. Wiley-
Interscience, New York.

Foll, M., and O. Gaggiotti, 2008 A genome-scan method to iden-
tify selected loci appropriate for both dominant and codominant
markers: a Bayesian perspective. Genetics 180: 977–993.

Gompert, Z., and C. A. Buerkle, 2011 A hierarchical bayesian
model for next-generation population genomics. Genetics 187:
903–917.

Gompert, Z., L. K. Lucas, C. C. Nice, J. A. Fordyce, M. L. Forister
et al., 2012 Genomic regions with a history of divergent selec-
tion affect fitness of hybrids between two butterfly species. Evo-
lution 66(7): 2167–2181.

Hellmann, I., Y. Mang, Z. Gu, P. Li, F. M. de la Vega et al.,
2008 Population genetic analysis of shotgun assemblies of ge-
nomic sequences from multiple individuals. Genome Res. 18(7):
1020–1029.

Holsinger, K. E., and B. S. Weir, 2009 Genetics in geographically
structured populations: defining, estimating and interpreting f
(st). Nat. Rev. Genet. 10(9): 639–650.

990 M. Fumagalli et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/195/3/979/5935465 by guest on 23 April 2024

http://www.genetics.org/content/suppl/2013/08/26/genetics.113.154740.DC1/FigureS10.pdf
http://www.popgen.dk/angsd
http://www.popgen.dk/angsd
http://www.genetics.org/content/suppl/2013/08/26/genetics.113.154740.DC1/TableS5.pdf
http://www.genetics.org/content/suppl/2013/08/26/genetics.113.154740.DC1/TableS6.pdf


Holsinger, K. E.,, P. O. Lewis, and D. K. Dey, 2002 A Bayesian
approach to inferring population structure from dominant
markers. Mol. Ecol. 11(7):1157–1164.

Huang, X., N. Kurata, X. Wei, Z. X. Wang, A. Wang et al., 2012 A
map of rice genome variation reveals the origin of cultivated
rice. Nature 490(7421): 497–501.

Hudson, R. R., M. Slatkin, and W. P. Maddison, 1992 Estimation
of levels of gene flow from dna sequence data. Genetics 132:
583–589.

Johnson, P. L., and M. Slatkin, 2008 Accounting for bias from
sequencing error in population genetic estimates. Mol. Biol.
Evol. 25(1): 199–206.

Kang, C. J., and P. Marjoram, 2011 Inference of population mu-
tation rate and detection of segregating sites from next-genera-
tion sequence data. Genetics 189: 595–605.

Keightley, P. D., and D. L. Halligan, 2011 Inference of site fre-
quency spectra from high-throughput sequence data: quantifi-
cation of selection on nonsynonymous and synonymous sites in
humans. Genetics 188: 931–940.

Kim, S. Y., Y. Li, Y. Guo, R. Li, J. Holmkvist et al., 2010 Design of
association studies with pooled or un-pooled next-generation
sequencing data. Genet. Epidemiol. 34(5): 479–491.

Kim, S. Y., K. E. Lohmueller, A. Albrechtsen, Y. Li, T. Korneliussen
et al., 2011 Estimation of allele frequency and association
mapping using next-generation sequencing data. BMC Bioinfor-
matics 12: 231.

Li, H., 2011 A statistical framework for snp calling, mutation discov-
ery, association mapping and population genetical parameter esti-
mation from sequencing data. Bioinformatics 27(21): 2987–2993.

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al.,
2009 The sequence alignment/map format and samtools. Bio-
informatics 25(16): 2078–2079.

Li, Y., N. Vinckenbosch, G. Tian, E. Huerta-Sanchez, T. Jiang et al.,
2010 Resequencing of 200 human exomes identifies an excess
of low-frequency non-synonymous coding variants. Nat. Genet.
42(11): 969–972.

Lynch, M., 2009 Estimation of allele frequencies from high-cover-
age genome-sequencing projects. Genetics 182: 295–301.

Marchini, J. L., and L. Cardon, 2002 Discussion on the meeting on
statistical modelling and analysis of genetic data. J. R. Stat. Soc.
Series B Stat. Methodol. 64(4): 737–775.

McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis et al.,
2010 The genome analysis toolkit: a mapreduce framework
for analyzing next-generation dna sequencing data. Genome
Res. 20(9): 1297–1303.

Metzker, M. L., 2010 Sequencing technologies: the next genera-
tion. Nat. Rev. Genet. 11(1): 31–46.

Minoche, A. E., J. C. Dohm, and H. Himmelbauer,
2011 Evaluation of genomic high-throughput sequencing data
generated on illumina hiseq and genome analyzer systems. Ge-
nome Biol. 12(11): R112.

Nicholson, G., A. V. Smith, F. Jonsson, O. Gustafsson, K. Stefansson
et al., 2002 Assessing population differentiation and isolation
from single-nucleotide polymorphism data. J. R. Stat. Soc. Se-
ries B Stat. Methodol. 64: 695–715.

Nielsen, R., 2005 Molecular signatures of natural selection. Annu.
Rev. Genet. 39: 197–218.

Nielsen, R., J. S. Paul, A. Albrechtsen, and Y. S. Song,
2011 Genotype and snp calling from next-generation sequenc-
ing data. Nat. Rev. Genet. 12(6): 443–451.

Nielsen, R., T. Korneliussen, A. Albrechtsen, Y. Li, and J. Wang,
2012 Snp calling, genotype calling, and sample allele fre-
quency estimation from new-generation sequencing data. PLoS
ONE 7(7): e37558.

Nounou, M. N., B. R. Bakshi, P. K. Goel, and X. Shen, 2002 Bayesian
principal component analysis. J. Chemometr. 16: 576–595.

Patterson, N., A. L. Price, and D. Reich, 2006 Population structure
and eigenanalysis. PLoS Genet. 2(12): e190.

Press, W., S. Teukolsky, W. Vetterling, and B. Flannery,
2007 Numerical Recipes: The Art of Scientific Computing, Ed.
3. Cambridge University Press, Cambridge, UK.

Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A.
Shadick et al., 2006 Principal components analysis corrects for
stratification in genome-wide association studies. Nat. Genet. 38
(8): 904–909.

Pritchard, J. K., and P. Donnelly, 2001 Case-control studies of
association in structured or admixed populations. Theor. Popul.
Biol. 60(3): 227–237.

Reynolds, J., B. S. Weir, and C. C. Cockerham, 1983 Estimation of
the coancestry coefficient: basis for a short-term genetic dis-
tance. Genetics 105: 767–779.

Rice, S. H., 2008 A stochastic version of the price equation reveals
the interplay of deterministic and stochastic processes in evolu-
tion. BMC Evol. Biol. 8: 262.

Rice, S. H., and A. Papadopoulos, 2009 Evolution with stochastic
fitness and stochastic migration. PLoS ONE 4(10): e7130.

Riebler, A., L. Held, and W. Stephan, 2008 Bayesian variable se-
lection for detecting adaptive genomic differences among pop-
ulations. Genetics 178: 1817–1829.

Rubin, C. J., M. C. Zody, J. Eriksson, J. R. Meadows, E. Sherwood
et al., 2010 Whole-genome resequencing reveals loci under
selection during chicken domestication. Nature 464(7288):
587–591.

Skoglund, P., and M. Jakobsson, 2011 Archaic human ancestry in
East Asia. Proc. Natl. Acad. Sci. USA 108(45): 18301–18306.

Skotte, L., T. S. Korneliussen, and A. Albrechtsen, 2012 Association
testing for next-generation sequencing data using score statistics.
Genet. Epidemiol. 36(5): 430–437.

Wang, C., Z. A. Szpiech, J. H. Degnan, M. Jakobsson, T. J. Pember-
ton et al., 2010 Comparing spatial maps of human population-
genetic variation using procrustes analysis. Stat. Appl. Genet.
Mol. Biol. 9(1): 13.

Weir, B. S., 1996 Genetic Data Analysis II. Sinauer Associates,
Sunderland, MA.

Weir, B. S., and C. C. Cockerham, 1984 Estimating f-statistics for
the analysis of population structure. Evolution 38: 1358–1370.

Weir, B. S., and W. G. Hill, 2002 Estimating f-statistics. Annu. Rev.
Genet. 36: 721–750.

Wentzell, P. D., D. Andrews, D. C. Hamilton, F. Faber, and B. R.
Kowalski, 1997 Maximum likelihood principal component
analysis. J. Chemometr. 11: 339–366.

Wright, S. 1951 The genetical structure of populations. Ann. Eu-
genics 15: 323–354.

Xia, Q., Y. Guo, Z. Zhang, D. Li, Z. Xuan et al., 2009 Complete
resequencing of 40 genomes reveals domestication events and
genes in silkworm (bombyx). Science 326(5951): 433–436.

Xu, X., X. Liu, S. Ge, J. D. Jensen, F. Hu et al., 2011 Resequencing
50 accessions of cultivated and wild rice yields markers for
identifying agronomically important genes. Nat. Biotechnol.
30(1): 105–111.

Yi, X., Y. Liang, E. Huerta-Sanchez, X. Jin, Z. X. Cuo et al.,
2010 Sequencing of 50 human exomes reveals adaptation to
high altitude. Science 329(5987): 75–78.

Zhi, D., J. Wu, N. Liu, and K. Zhang, 2012 Genotype calling from
next-generation sequencing data using haplotype information of
reads. Bioinformatics 28(7): 938–946.

Communicating editor: M. A. Beaumont

Genetic Variation from NGS Data 991

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/195/3/979/5935465 by guest on 23 April 2024



Appendix
Let Gi and Xi be random variables representing the genotype and read data, respectively, from individual i. Likewise, let gi be
a realization of Gi, and let xi be a realization of Xi, i = 1, 2. We then wish to prove that

EX1;X2

"X
g1

X
g2

ðg12E½G1�Þðg22 E½G2�Þpðg1jx1Þpðg2jx2Þ
#
¼ 0; (A1)

where the sums, here and in the following, are over all supported values of the variable under the summation sign. We use
a simplified notation so that expectation operators implicitly are taken with respect to the random variable(s) inside the
argument of the expectation operator, except when otherwise indicated by the use of subscripts. Also, we use the short-hand
notation p(gi) for the probability of the random variable Gi taken on the value gi.

First note that, for unrelated individuals, G1 and G2 are independent and that X1 and X2 are independent assuming a fixed
known allele frequency and assuming random mating. Next also note that

EXi ½gipðgijxiÞ�¼ gipðgiÞ (A2)

and

EXi ½pðgijxiÞ� ¼ pðgiÞ: (A3)

Then

EX1;X2

"P
g1

P
g2
ðg1 2 E½G1�Þðg22 E½G2�Þpðg1jx1Þpðg2jx2Þ

#
¼ P

g1

P
g2

�
EX1;X2 ½g1g2pðg1jx1Þpðg2jx2Þ�2EX1;X2 ½g1E½G2�pðg1jx1Þpðg2jx2Þ�

þ EX1;X2 ½g2E½G1�pðg1jx1Þpðg2jx2Þ� þ EX1;X2 ½g1g2pðg1jx1Þpðg2jx2Þ�
�

¼ P
g1

P
g2
ðEX1 ½g1pðg1jx1Þ�EX2 ½g2pðg2jx2Þ�2 EX1 ½g1pðg1jx1Þ�EX2 ½E½G2�pðg2jx2Þ�

2 EX2 ½g2pðg2jx2Þ�EX1 ½E½G1�pðg1jx1Þ� þ EX1 ½g1pðg1jx1Þ�EX2 ½g2pðg2jx2Þ�Þ
¼ P

g1

P
g2
ðg1g2pðg1Þpðg2Þ2 g1pðg1ÞE½G2�pðg2Þ2 g2pðg2ÞE½G1�pðg1Þþ E½G1�E½G2�pðg1Þpðg2ÞÞ

¼ E½G1�E½G2�2 E½G1�E½G2�2E½G2�E½G1�þ E½G1�E½G2�
¼ 0:

The interchange of summations in the first step is justified because all sums are finite. The second equality is true because
of the independence assumption. The third equality is verified by substitution of the expressions in (A2) and (A3). The fourth
equality follows from the independence assumption and the definition of expectation.
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File S1

Accuracy of genotype calling

We tested the accuracy of different methods for genotype calling on simulated data. Specif-
ically, our goal was to quantify the overall genotyping error and the False Positive and False
Negative rates in SNP calling, using different strategies to assign individual genotypes.

First, we called genotypes solely based on directly tabulating the occurrence of alternative
bases among reads. Specifically, an individual was considered heterozygous if the minor allele
was observed at least once among all reads for the individual (we label this procedure GC1).
In a second scenario, to be heterozygous required that the minor allele was observed at least
twice among all reads (GC2). These methods represent strategies for data analysis similar
to the ones used on SNP genotype data and Sanger sequencing data where the genotypes
for each individual are assumed to be be unambiguously determined.

Current NGS studies perform genotype calling on genotype likelihoods. We therefore
computed genotype likelihoods for each individual at each site as described in Equation 22,
and called the genotype with the highest likelihood (we label this procedure GC3). Bayesian
methods assign individual genotypes from genotype likelihoods and a specific prior. We
calculated genotype posterior probabilities as in Equation 9. The prior is calculated from
the estimated per-site population allele frequencies (Kim et al., 2011). We assigned the
genotypes with the highest posterior probability. We label this procedure GC for consistency
with the main text.

We simulated sequencing data at different sequencing coverage as previously described
(see Material and Methods). In particular, we simulated a total of 7M sites. In order to rule
out the effect of different imputation strategies in case of missing data, we retained only sites
where we had data for all individuals. Even if this is not a common practice, it allows us
to directly compare different genotype calling procedures. Missing data in case of genotype
calling from posterior probabilities is handled by the use of a prior estimated from the whole
data (see Materials and Methods). For these reasons, the actual genotyping accuracy in
case of genotype calling from counts of reads and genotype likelihoods will be lower that the
values herein presented.

Results show that the lowest genotyping error is achieved when calling genotypes from
genotype posterior probabilities at almost all simulated scenarios (Table S1). At low sequenc-
ing coverage, the lowest False Positive rate in SNP calling is obtained with GC2 although the
rate steadily increases when more reads data is available (Table S2). GC provides the lowest
False Negative rate in SNP calling at low coverage (Table S3). In general, calling genotypes
from posterior probabilities provides the optimal balance between False Positive and False
Negative rates in SNP calling. We should also notice that these results are conservative
towards accuracy of GC because missing data, which are removed from these analyses, are
likely to bias other genotype calling procedures at a larger extent.

Other methods to estimate FST without calling genotypes

We tested two additional methods to quantify population genetic differentiation with-
out calling genotypes. One possible strategy for estimating FST is to calculate the pos-
terior expectation of the sample allele frequencies, and then use these expectations to
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compute a method-of-moments estimator of FST . Recalling Materials and Methods, let
π
(k)
(i,s) = P (p̂(i,s) = k/(2ni)|Y(i,s)) be the posterior probability that a site in population i

has derived sample allele frequency p̂(i,s) = k/(2ni), in a sample of ni diploid individuals,
given the read data Y(i,s). Then the expected sample allele frequency, and its square value,
conditional on the read data, at site s for population i is given by:

E[p̂(i,s)|Y(i,s)] =

2ni∑

k=0

(
k

2ni

)π
(k)
(i,s) (1)

and

E[p̂2(i,s)|Y(i,s)] =

2ni∑

k=0

(
k

2ni

)2π
(k)
(i,s). (2)

Similarly, the expected square difference in the sample allele frequency between two distinct
populations i and j is given by:

E[(p̂(i,s)− p̂(j,s))
2|Ys] = E[p̂2(i,s)+ p̂2(j,s)−2p̂(i,s)p̂(j,s)|Ys] = E[p̂2(i,s)|Y(i,s)]+E[p̂2(j,s)|Y(j,s)]−2E[p̂(i,s)× p̂(j,s)|Ys]

(3)

where

E[p̂(i,s) × p̂(j,s)|Ys] =

2ni∑

k=0

2nj∑

z=0

(
k

2ni

)(
z

2nj

)π
(k,z)
(i,j,s) (4)

and π
(k,z)
(i,j,s) is the joint posterior probability of sample allele frequencies P (p̂(i,s) =

k/(2ni), p̂(j,s) = z/(2nj)|Ys) . We substituted these expectations in the original FST for-
mulation (Equations 1-4). We label this estimator FST.Ef2.

Alternatively, we simply computed an estimate of the sample allele frequency p̂(i,s) at site
s for population i as:

p̂(i,s) = argmax π(i,s) (5)

and substituted these values in the original FST formula (Equations 1-4). We label this
estimator FST.Ef1. Table S4 summarizes all tested methods to estimate FST from NGS data
used in this study.

Results from simulated data show that FST.Ef1 and FST.Ef2 have greater accuracy than
methods based on genotype calling, but less that the new method based on the expectations
of genetic variance components (Figure S2).
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Supporting Tables

Table S1: Genotype calling errors. Genotype calling errors (in %) for different scenarios
of sequencing depth and different genotype calling procedures. GC1 and GC2 assign a
heterozygous state if at least 1 or 2 alternate alleles are observed, respectively. GC3 and
GC assign genotypes according to the maximum genotype likelihood or genotype posterior
probability, respectively. We retained only sites with no missing data.
Sequencing depth Number of valid sites GC1 GC2 GC3 GC

2X 2,148 2.53 1.72 2.53 1.77
6X 633,751 4.45 0.63 3.27 0.47
20X 700,007 13.36 0.47 0.074 0.0076
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Table S2: SNP calling false positive rates. SNP calling false positive rates (in %) for
different scenarios of sequencing depth and different genotype calling procedures. GC1 and
GC2 assign a heterozygous state if at least 1 or 2 alternate alleles are observed, respectively.
GC3 and GC assign genotypes according to the maximum genotype likelihood or genotype
posterior probability, respectively. We retained only sites with no missing data.
Sequencing depth Number of valid monomorphic sites GC1 GC2 GC3 GC

2X 2,001 43.28 0.15 43.18 35.78
6X 588,989 83.28 1.75 72.48 11.18
20X 650,838 99.70 17.55 2.93 0.22
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Table S3: SNP calling false negative rates. SNP calling false negative rates (in %) for
different scenarios of sequencing depth and different genotype calling procedures. GC1 and
GC2 assign a heterozygous state if at least 1 or 2 alternate alleles are observed, respectively.
GC3 and GC assign genotypes according to the maximum genotype likelihood or genotype
posterior probability, respectively. We retained only sites with no missing data.
Sequencing depth Number of valid polymorphic sites GC1 GC2 GC3 GC

2X 147 4.76 57.14 4.76 1.36
6X 44,762 0.26 5.87 0.39 1.58
20X 49,169 0.0041 0.016 0.018 0.042
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Table S4: FST estimators. Names, brief descriptions, referring Equations and Figures for
all different FST estimators tested in this study.

Name Description Equation(s) Figure(s)

F̂ST.GC from called genotypes 9 1-2, S1

F̂ST.Ef2 from expectation of sample allele frequency 28-31 S2

F̂ST.Ef1 from sample allele frequency 32 S2
calculated as the maximum posterior probability

F̂ST.Ev from expectation of genetic variance components 10-12 1-2, S1

F̂ST.ML.GC ML estimator from called genotypes 9 2

F̂ST.ML ML estimator without calling genotypes 17 2
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Table S5: Computational time for FST computation. Computation time, in seconds, to
compute FST for different number of simulated sites (S) and sample size (N) for each of the 2
populations, at 2X sequencing depth. ’Genotype p.p.’ includes computing genotype posterior
probabilities. ’Frequency p.p.’ includes estimating the SFS and computation sample allele
frequency posterior probabilities and it is required to compute F̂ST.Ev. F̂ST.Ev also includes
estimating the 2D-SFS. Calculations were run on a Unix desktop machine, Intel Core 2 Duo
CPU E8600 @ 3.33GHz x 2. Maximum memory usage was < 0.1G.

S N Simulation Genotype p.p. Frequency p.p. F̂ST.GC F̂ST.Ef1 F̂ST.Ef2 F̂ST.Ev

10k 20 3 2 25 < 1 < 1 < 1 2
10k 40 6 3 116 < 1 < 1 < 1 10
50k 20 14 7 167 < 1 < 1 < 1 12
50k 40 29 14 357 < 1 < 1 < 1 47
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Table S6: Computational time for PCA computation. Computation time, in seconds,
to perform PCA for different number of simulated sites (S) and sample size (N) for each
of the 3 populations, at 2X sequencing depth. ’Genotype p.p.’ includes computing geno-
type posterior probabilities. ’Frequency p.p.’ includes estimating the SFS and computation
sample allele frequency posterior probabilities and it is required to perform PCA as in ’w/o
GC (2)’. ’GC’ refers to estimate C from called genotypes. ’w/o GC (1)’ and ’w/o GC (2)’
estimate C without calling genotypes. ’w/o GC (2)’ also weights each site by its probability
of being variable. Computations refer to estimation of the reduced matrix C as in Equation
18 and do not include the eigenvector decomposition. Calculations were run on a Unix desk-
top machine, Intel Core 2 Duo CPU E8600 @ 3.33GHz x 2. Maximum memory usage was
< 0.1G.
S N Simulation Genotype p.p. Frequency p.p. GC w/o GC (1) w/o GC (2)
10k 20 4 1 76 < 1 < 1 < 1
10k 40 8 3 143 2 3 2
50k 20 20 6 408 2 3 3
50k 40 41 12 561 11 17 18

Fumagalli et al. S9

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/195/3/979/5935465 by guest on 23 April 2024



Supporting Figures
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Figure S1: RMSD (left panel) and mean bias (right panel) for estimating FST under different
sequencing coverage (2X, 6X and 20X). We compared the accuracy of the new method which
does not rely on genotype calling (F̂ST.Ev), while also using the true 2D-SFS as a prior,
and a method based on allele frequencies after calling genotypes (F̂ST.GC) (see Material
and Methods). We simulated 20 individuals for each population and 10, 000 sites for each
scenario.
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Figure S2: RMSD (left panel) and mean bias (right panel) for estimating FST at 2X sequenc-
ing coverage. We compared the accuracy of the new method which does not rely on genotype
calling (F̂ST.Ev) and of two methods based on computing population allele frequency as the
sample allele frequency with the highest posterior probability, F̂ST.Ef1, and as the expected

allele frequency, F̂ST.Ef2 (see Material and Methods). We simulated 20 individuals for each
population and 10, 000 sites for each scenario.
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Figure S3: Ancestral population allele frequency estimated from a Maximum Likelihood
procedure with unknown genotypes versus the true value used in the model. We simulated
20 individuals for each population and a total of 7, 000 sites, using data from Figure 2.

Fumagalli et al. S13

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/195/3/979/5935465 by guest on 23 April 2024



0.1 0.2 0.3 0.4 0.5 0.6

0.
1

0.
2

0.
3

0.
4

0.
5

FST

2X
From known genotypes

F
ro

m
 u

nk
no

w
n 

ge
no

ty
pe

s

0.1 0.2 0.3 0.4 0.5 0.6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

FST

6X
From known genotypes

F
ro

m
 u

nk
no

w
n 

ge
no

ty
pe

s
0.1 0.2 0.3 0.4 0.5 0.6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

FST

20X
From known genotypes

F
ro

m
 u

nk
no

w
n 

ge
no

ty
pe

s
0.1 0.2 0.3 0.4 0.5 0.6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

FST

2X
From known genotypes

F
ro

m
 u

nk
no

w
n 

ge
no

ty
pe

s 
us

in
g 

th
e 

tr
ue

 2
D

−
S

F
S

 a
s 

a 
pr

io
r

0.1 0.2 0.3 0.4 0.5 0.6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

FST

6X
From known genotypes

F
ro

m
 u

nk
no

w
n 

ge
no

ty
pe

s 
us

in
g 

th
e 

tr
ue

 2
D

−
S

F
S

 a
s 

a 
pr

io
r

0.1 0.2 0.3 0.4 0.5 0.6

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

FST

20X
From known genotypes

F
ro

m
 u

nk
no

w
n 

ge
no

ty
pe

s 
us

in
g 

th
e 

tr
ue

 2
D

−
S

F
S

 a
s 

a 
pr

io
r

Figure S4: FST for 100 10kb regions where only 10% of the sites are variable in the population.
FST is computed using the estimated global 2D-SFS (first row) or the true 2D-SFS as a prior
(second row) (see Material and Methods). Dotted line represents the diagonal while the
continuous line is the regressed line between true and estimated FST . We simulated a total
of 1M sites at 2X, 6X and 20X sequencing coverage and 20 individuals for each population.
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Figure S5: Sum-of-squares (SS) between PC1 and PC2 computed from called genotypes from
genotype posterior probabilities (on x-axis) or with the new proposed method which does
not rely on genotype calling (on y-axis). We simulated 3 populations of 20 individuals at
2X, 6X and 20X sequencing coverage. Populations are differentiated by FST of 0.4 - 0.15,
0.2 - 0.05 and 0.1 - 0.02. We simulated 10, 000 sites with 2% and 10% of sites being variable
in the population.
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Figure S6: Sum-of-squares (SS) between PC1 and PC2 computed from called genotypes
from genotype posterior probabilities (on x-axis) or with the new proposed method which
does not rely on genotype calling (on y-axis). We did not normalize the standardized allele
frequencies to have the same variance. We simulated 3 populations of 20 individuals at 2X,
6X and 20X sequencing coverage. Populations are differentiated by FST of 0.4 - 0.15, 0.2 -
0.05 and 0.1 - 0.02. We simulated 10, 000 sites with 2% and 10% of sites being variable in
the population.
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Figure S7: PCA plots from known genotypes and from called genotypes using genotype pos-
terior probabilities. We simulated 3 populations of 20 individuals each at 20X sequencing
coverage. Colors are coded according to each simulated population. Blue and green/red pop-
ulations are differentiated by an FST of 0.4 while green and red populations are differentiated
by an FST of 0.15. We simulated 10, 000 sites, all variable in the population.
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Figure S8: Sum-of-squares (SS) between PC1 and PC2 computed with the new proposed
method, which does not rely on genotype calling, (on y-axis) or with the new method but
without weighting each site for its probability to be variable (on x-axis). We simulated
3 populations of 20 individuals at 2X, 6X and 20X sequencing coverage. Populations are
differentiated by FST of 0.4 - 0.15, 0.2 - 0.05 and 0.1 - 0.02. We simulated 10, 000 sites with
2% and 10% of sites being variable in the population.
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Figure S9: Sum-of-squares (SS) between PC1 and PC2 computed with the new proposed
method, which does not rely on genotype calling, (on y-axis) or with a method based on
computing the expectations of genotypes from genotype posterior probabilities (on x-axis).
We simulated 3 populations of 20 individuals at 2X sequencing coverage. Populations are
differentiated by FST of 0.4 - 0.15, 0.2 - 0.05 and 0.1 - 0.02. We simulated 10, 000 sites with
2% and 10% of sites being variable in the population.
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Figure S10: Sum-of-squares (SS) between PC1 and PC2 computed from called genotypes
(on x-axis) or with the new proposed method which does not rely on genotype calling (on
y-axis). We simulated 1 populations of 40 individuals: half of them were sequenced at 2X
coverage and the other half were sequenced at 20X coverage. We simulated 10, 000 sites with
10% of sites being variable in the population.
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Figure S11: PCA plots for wild and domesticated samples using different strategies of calling
genotypes and of filtering data. Legend is the same as Figure 4. Specifically, each lineage has
a different shape pattern: hollow circles, wild lineage; hollow triangle: domesticated strain
1; plus sign, domesticated strain 2; multiplication sign, domesticated strain 3. Silkworm
systems are colored-coded: green, Japanese; orange, tropical; blue, European; pink, mutant
system; purple domesticated from China; red, wild from China.
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Figure S12: Percentage of explained variance from first components of PCA for wild and
domesticated samples from called genotypes or without calling genotypes.
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