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ABSTRACT High-throughput genotyping and sequencing technologies can generate dense sets of genetic markers for large numbers
of individuals. For most species, these data will contain many markers in linkage disequilibrium (LD). To utilize such data for population
structure inference, we investigate the use of haplotypes constructed by combining the alleles at single-nucleotide polymorphisms
(SNPs). We introduce a statistic derived from information theory, the gain of informativeness for assignment (GIA), which quantifies the
additional information for assigning individuals to populations using haplotype data compared to using individual loci separately. Using
a two-loci–two-allele model, we demonstrate that combining markers in linkage equilibrium into haplotypes always leads to non-
positive GIA, suggesting that combining the two markers is not advantageous for ancestry inference. However, for loci in LD, GIA is
often positive, suggesting that assignment can be improved by combining markers into haplotypes. Using GIA as a criterion for
combining markers into haplotypes, we demonstrate for simulated data a significant improvement of assigning individuals to candidate
populations. For the many cases that we investigate, incorrect assignment was reduced between 26% and 97% using haplotype data.
For empirical data from French and German individuals, the incorrectly assigned individuals can, for example, be decreased by 73%
using haplotypes. Our results can be useful for challenging population structure and assignment problems, in particular for studies
where large-scale population–genomic data are available.

STRUCTURE of populations and assigning individuals to
populations have attracted considerable attention in

population genetics, conservation biology, and ecology
(Pritchard et al. 2000; Beaumont 2004; Manel et al. 2005;
Platt et al. 2010). Since the introduction of Wright’s FST
(Wright 1921, 1943), numerous studies of population struc-
ture have been conducted for a multitude of species, using
a variety of genetic or phenotypic markers. The recent de-
velopment of high-throughput genotyping and sequencing
technologies has resulted in a substantial increase in studies
of population structure that are based on a large number of
markers (e.g., Jakobsson et al. 2008; Platt et al. 2010; Von-
holdt et al. 2010). At the same time, powerful clustering
methods have been developed to infer population structure
on the basis of multiloci genetic data (e.g., Pritchard et al.
2000; Dawson and Belkhir 2001; Corander et al. 2003;

François et al. 2006; Huelsenbeck and Andolfatto 2007;
Alexander et al. 2009).

For most species, individuals rarely reproduce at random
and this can create genetically differentiated subgroups
within a population or species. Geographic barriers such as
mountains, rivers, and oceans can furthermore hinder
random mating, thereby causing populations to be struc-
tured (Hale et al. 2001; Rosenberg et al. 2005). In humans,
cultural differences, such as language or religious beliefs,
may play an additional role in shaping structure among
individuals (Cavalli-Sforza and Feldman 2003; Behar et al.
2010; Bryc et al. 2010). Large efforts have been made to
characterize population structure, both at the global level
(e.g., Rosenberg et al. 2002; Jakobsson et al. 2008; Li et al.
2008) and at smaller scales (e.g., Rosenberg et al. 2006;
Wang et al. 2007; Friedlaender et al. 2008; Novembre
et al. 2008; Segurel et al. 2008; Reich et al. 2009; Tishkoff
et al. 2009). Although population structure can give impor-
tant information on the demographic history of a species
and may lead to better understanding of evolutionary pro-
cesses, population structure may also complicate certain
investigations. For example, cryptic population structure
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can lead to false positives in association studies (Marchini
et al. 2004). Another problem may arise in forensics: if a sus-
pect originates from a population that is genetically differ-
entiated from the reference population, the difference in
allele frequencies may lead to incorrect conclusions about
matching DNA evidence to a suspect (Balding and Nichols
1994; Weir 1996; Aitken and Taroni 2004).

Assignment methods, in contrast to clustering methods,
use prior knowledge about candidate groups in addition to
genetic data to assign individuals of unknown origin to
groups (Paetkau et al. 1995; Manel et al. 2005). These meth-
ods have been extensively used for conservation manage-
ment (see, e.g., Wasser et al. 2004; Gaskin et al. 2009)
and parentage analysis (see, e.g., Nielsen et al. 2001). Meth-
ods that focus on finding potential hybrids of particular
types (e.g., first-generation offspring and backcrosses) have
also been developed (Anderson and Thompson 2002) and
used for identifying hybrids between closely related species
(Adams et al. 2007).

High-throughput sequencing and genotyping methods
have generated dense sets of single-nucleotide polymor-
phisms (SNPs) for large samples of individuals for several
organisms. Linkage disequilibrium (LD) is strong for many
SNPs in these dense sets (for most species), and these SNPs
are therefore not independent markers. To overcome the
problem of LD, some studies prune the set of SNPs before
inferring population structure (e.g., Novembre et al. 2008;
Bryc et al. 2010) and some studies analyze subsets of
markers and combine the results for different subsets
(Jakobsson et al. 2008). These approaches of overcoming
the problem caused by closely linked markers do not take
full advantage of all the information provided by the large
number of SNPs. Instead, it may be possible to combine
SNPs into haplotypes, which may integrate extra informa-
tion about ancestry, potentially from recombination events
that should in principle harbor information about ancestry
similar to mutation events. A previous study utilized haplo-
types for revealing population structure, which point at
somewhat different inference of population structure for
SNPs and haplotypes (Jakobsson et al. 2008). Using simu-
lations, Morin et al. (2009) demonstrated greater power of
population structure inference using haplotypes in many, but
not all, cases. However, it is unclear whether, and under
which conditions, haplotypes can be more powerful than
single SNPs for inferring population structure or assigning
individuals to populations.

In this article, we first investigate whether haplotype data
can increase the statistical power of assigning individuals to
populations compared to SNP data. Second, using a newly
developed statistic, the gain of informativeness for assign-
ment (GIA), we characterize under which circumstances it
may be advantageous to use haplotypes compared to using
SNPs for ancestry inference. Third, we demonstrate by sim-
ulations and by using empirical SNP data from Europeans
that assignment of individuals significantly improves
through combining SNPs into haplotypes guided by GIA.

Theory

We define a “haplotype locus” as the combination of more
than one SNP locus. The SNP loci in a haplotype locus are
not required to be consecutive along the chromosome. We
define a “haplotype allele” as a particular combination of
alleles at the SNP loci constituting the haplotype locus.
For instance, for a haplotype locus formed by x SNPs, 2x

distinct alleles can exist, but the number of observed haplo-
type alleles is typically much smaller than 2x if x is reason-
ably large. In addition, the number of distinct haplotype
alleles is upwardly bounded by the sample size.

To develop a statistic that quantifies under which circum-
stances it is advantageous for ancestry inference to combine
markers into haplotype loci, we start by considering a model
of two multiallelic loci denoted locus A and locus B. The
combination of the two loci into a haplotype locus is
denoted locus H, and the possible haplotype alleles are the
combinations of alleles from locus A and locus B (see Figure
1 for notation). Note that this model can be generalized to
handle any number of markers by recursively merging two
loci into one multiallelic haplotype locus. Loci A and B may
be in LD, which can, for example, be quantified with the D
statistic (Lewontin and Kojima 1960). We consider K ran-
domly mating populations and we assume that the allele
frequencies at each locus in each population are known.

Rosenberg et al. (2003) derived a criterion on the basis of
information theory to evaluate the efficiency of a marker for
assigning individuals to one of K populations. This criterion, the
informativeness for assignment (IA), can be computed for bi- or
multiallelic loci, such as SNPs, microsatellites, or haplotype loci,

IA ¼
XN
j¼1

0
@2 �pjlog �pj þ

XK
i¼1

pðiÞj
K

log pðiÞj

1
A  ; (1)

where N is the number of alleles for the locus, K is the
number of populations, pðiÞj is the frequency of allele j in
population i, and �pj is the average frequency of allele j across
populations,

Figure 1 Notation for frequencies of the two alleles at locus A, the two
alleles at locus B, and the four alleles at haplotype locus H formed by
combining the alleles at locus A and locus B.
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�pj ¼
XK
i¼1

pðiÞj
K

:

Using the IA statistic, we define the GIA as

GIA ¼ IAðHÞ2 ½IAðAÞ þ IAðBÞ�; (2)

where IA(H) is the informativeness for assignment of the hap-
lotype locus and IA(A) and IA(B) are the informativeness of
locus A and locus B, respectively. Since IA is nonnegative and
bounded upward by log K, GIA is restricted to [22 log K, log K].

By comparing the information content about ancestry of
the haplotype to the sum of the information content of each
marker, GIA is specifically designed to answer the question
of whether two markers can improve the power of assigning
individuals to candidate populations by combining the markers
into a haplotype locus. As can been seen from Equations 1 and
2, to compute GIA, we need to know the allele frequencies of
the two loci and the allele frequencies of the haplotype locus.
When addressing assignment problems, phased data from
candidate populations can typically be used to estimate the
SNP and haplotype allele frequencies, followed by the use of
GIA to determine which loci to combine to haplotype loci for
optimal power. Guided by this information, individuals of
unknown origin could then be assigned to candidate popula-
tions on the basis of haplotype data (see the results section for
explicit examples of this procedure).

GIA is not a simple function of the allele frequencies and
the haplotype allele frequencies. For example, the sign of
GIA cannot be determined by a simple rule of thumb based
on allele frequencies. However, for the special case of
biallelic markers, we can show that when two loci are in
linkage equilibrium, GIA # 0. To arrive at that result, we
note that because the loci are biallelic, only the frequencies
of one allele for each locus are needed to characterize GIA.
Recall also that D can be defined as the difference between
the frequency of a haplotype allele and the product of the
frequencies of its constitutive alleles so that haplotype allele
frequencies in Equation 2 can be replaced by D and allele fre-
quencies (e.g., x11 = a1b1 + D).

Theorem. Let A and B be two biallelic loci and H be their
associated haplotype locus. Consider K randomly mating pop-
ulations. For population i, let aðiÞ1 and bðiÞ1 be the allele frequen-
cies at locus A and locus B, respectively. Then, for all the
frequency distributions of the alleles,

"i 2 1  . . .   K;   Di ¼ 0⇒GIA ¼ IAðHÞ2 IAðAÞ2 IAðBÞ# 0

with equality if and only if
PK

i¼1
Pi

k¼1ðaðiÞ1 2aðkÞ1 Þ
ðbðiÞ1 2bðkÞ1 Þ ¼ 0.

A proof of the Theorem is given in the Appendix. This
Theorem demonstrates that when locus A and locus B are
in linkage equilibrium within all populations, the haplotype
locus H provides less information (or the same amount) for

assigning individuals to populations than locus A and locus B
provide when used separately. Intuitively, since there is no cor-
relation between the allele frequencies at locus A and the allele
frequencies at locus B, we expect the combination of alleles into
haplotype alleles to arise randomly within each population.

GIA for two populations

We study Equation 2 for the two-population case (K = 2)
and for two biallelic markers. To reduce the complexity of
the problem, we assume that the level of LD is dominated by
linkage of the two markers and that the two populations
have similar demographic histories, so that D1 = D2 = D.
Five parameters characterize our problem: D, að1Þ1 , að2Þ1 , bð1Þ1 ,
and bð2Þ1 . The haplotype allele frequencies must be greater
than or equal to zero in both populations, which limits the
range of D and the range of the allele frequencies at locus A
and locus B; constraints are summarized in Table 1. As an
example, we study the behavior of GIA as a function of að1Þ1
and að2Þ1 for D = 0.1 and different fixed values of bð1Þ1 and
bð2Þ1 . Figure 2 shows that GIA is positive for some parts of the
parameter space, but it can also be negative, depending on
the values að1Þ1 , að2Þ1 , bð1Þ1 , and bð2Þ1 . Figure 2A shows the val-
ues of GIA when bð1Þ1 ¼ bð2Þ1 ¼ 0:2 and D = 0.1 for the entire
range of possible values of að1Þ1 and að2Þ1 , a case in which
locus B is uninformative on its own [IA(B) = 0] since it
has identical allele frequencies in both populations. GIA is
nonnegative for all possible values of að1Þ1 and að2Þ1 , which
means that the haplotype locus contains more information
for assigning individuals to populations than the two loci
used separately. The intuition behind this result is that locus
A has only two alleles, whereas the haplotype locus can have
up to four different alleles, increasing the possibility for the
haplotype alleles to uniquely characterize populations,
which makes the assignment of individuals easier.

Figure 2, B and C, shows that the sign and magnitude of
GIA varies depending on the values of the allele frequencies
at locus A. The borders of the surfaces are defined by the
constraints on að1Þ1 and að2Þ1 given in Table 1 and at each
border of the surfaces, at least one haplotype allele fre-
quency equals zero in one of the two populations, i.e., pri-
vate for one population. There are two interesting points on
the surfaces, the leftmost tip and the rightmost tip. Although
they share the same property of being the only cases where
two haplotype alleles are private, the rightmost tip yields the

Table 1 Constraints on D and allele frequencies for locus A and
locus B to ensure admissibility of haplotype allele frequencies in
population i

Constraints

Sign of D On D On b1�D On a1jD, b1

Positive
D#

1
4

����b121
2

����# ffiffiffiffiffiffiffiffiffiffiffiffiffi
124D

p D
12b1

# a1 #12
D
b1

Negative D$2
1
4

����b121
2

����# ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4D

p
2

D
b1

# a1$1þ D
12b1

The exponent (i) is omitted for convenience.
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maximum GIA whereas the leftmost tip yields a negative GIA.
The absolute difference jað1Þ1 2að2Þ1 j distinguishes the two points,
which is greater for the leftmost tip, resulting in a greater IA(A)
and therefore a smaller GIA than for the rightmost tip. Never-
theless, they are both local maxima, which is caused by the
often substantial informativeness of private alleles.

We also investigate the behavior of GIA as a function of D
when all the allele frequencies are fixed and GIA is therefore
completely determined by IA(H). Figure 3 shows four exam-
ples of GIA as functions of D, across the range of possible
values of D, for different values of að1Þ1 , að2Þ1 , bð1Þ1 , and bð2Þ1 . We
first observe that if D = 0, GIA # 0 (consistent with the
Theorem). For að1Þ1 ¼ 0:4, að2Þ1 ¼ 0:3, and bð1Þ1 ¼ bð2Þ1 ¼ 0:2
(Figure 3A), GIA is nonnegative for the whole range of D.
This example is similar to the example in Figure 2A, for
which locus B was also uninformative.

The sign and the magnitude of GIA varies as a function of
D for fixed allele frequencies of locus A and locus B. GIA can
be positive for the entire range of D (Figure 3A), negative for
the entire range (Figure 3D), or change sign depending on D
(Figure 3, B and C). The range of D is defined by the con-
straints that all haplotype allele frequencies have to be non-
negative. The two extreme values for each case in Figure 3
correspond to one of the eight haplotype allele frequencies
(four haplotype allele frequencies in each population) being
equal to zero in one population, which means being a private
allele for the other population.

In summary, although there are a number of predictable
behaviors of GIA—such as that GIA# 0 when markers are in
linkage equilibrium and that GIA is often large for cases
where private alleles exist—GIA is not a trivial function of
LD or allele frequencies.

Results

Comparing GIA and performance of assignment

To assess how haplotype loci that are constructed on the
basis of GIA perform for assigning individuals to populations,

we evaluate assignment in a two-population case for a wide
range of allele frequencies and levels of linkage disequi-
librium. We investigate a case of 200 haploid individuals,
100 individuals from each population, where each individual
is assumed to be typed for 40 pairs of SNPs. We generate
a discrete set of haploid gene copies (for a pair of SNPs) for
each population that satisfies a particular choice of allele
frequencies and levels of LD (see Table 2). This set of gene
copies is randomly permuted to generate a set of 40 pairs of
SNPs, which ensures that the pairs of SNPs are independent
of each other (conditional on the allele frequencies). This
procedure guarantees that all the SNP pairs have the same
allele frequencies for SNP A, SNP B, and the A–B haplotype
locus and consequently the same level of LD between the two
SNPs. Note that within a population, most of the LD in the
sample is a result of the linkage between the two SNPs in
each pair.

For these population-genetic data, we use the software
STRUCTURE (Pritchard et al. 2000; Falush et al. 2003), to
assign the 200 haploid individuals to two clusters (no-
admixture model, burn-in period of 20,000 iterations followed
by 5,000 iterations from which estimates were obtained),
using either the 80 SNPs or the 40 haplotype loci obtained
by combining each pair of SNPs into one haplotype locus.
From the STRUCTURE result, the mean incorrect assign-
ment proportion (MIAP) is computed, which is the average
proportion of individuals that are assigned to the incorrect
population. For a given set of allele frequencies, we generate
100 different replicate samples using the data-randomization
procedure described above, assign individuals to populations,
and compute the average (across replicates) of MIAP. For
comparison, FST values for the SNP pairs, as well as FST values
for the haplotype loci, are computed. Similarly to IA, FST also
relies on information about allele frequencies.

Table 2 shows the performance of the assignment based
on the 80 SNPs and based on the 40 haplotype loci for
various choices of allele frequencies and levels of LD. In
most cases when GIA is positive, the MIAP values are lower

Figure 2 GIA as a function of að1Þ1 , að2Þ1 , when D ¼ 0.1, for different fixed values of bð1Þ1 and bð2Þ1 . (A) bð1Þ1 ¼ 0:2 and bð2Þ1 ¼ 0:2; (B) bð1Þ1 ¼ 0:3
and bð2Þ1 ¼ 0:6; (C) bð1Þ1 ¼ 0:15 and bð2Þ1 ¼ 0:6.
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for the haplotype loci than for the SNPs. Similarly, when GIA
is negative, the MIAP values are in most cases lower for the
SNPs than for the haplotype loci. For the choices of allele
frequencies and levels of LD in Table 2, Figure 4 shows the
difference between the MIAP based on SNPs and the MIAP
based on haplotype loci (i.e., improved assignment due to
haplotype loci) as a function of GIA (Figure 4A), the mean
(across populations) of jD j (j�Dj, Figure 4B), the mean (across
populations) of r2 (�r2, Figure 4C), and the difference in FST
between the 40 haplotype loci and the 80 SNPs (Figure 4D).
The improved assignment due to using haplotype loci is pos-
itively correlated with GIA (Pearson’s r = 0.748, P = 4 ·
1025), and the correlation is nonsignificant with j�Dj and �r2

(r = 20.289, P = 0.16 and r = 20.302, P = 0.18, respec-
tively). The improved assignment is neither correlated with
FST for haplotype loci nor correlated with FST for SNPs (r =
20.037, P = 087 and r = 0.401, P = 0.06, respectively), but
it is positively correlated with the difference between FST for
haplotype loci and FST for SNPs (r = 0.790, P = 7· 1026).
GIA and the difference in FST values appear to be good indi-
cators of how assignment can be improved by combining
SNPs into a haplotype loci. The outlier observed far from
the regression line in Figure 4A corresponds to the 10th entry
in Table 2. For this set of allele frequencies, 40 pairs of SNPs
are enough to obtain a very accurate assignment (MIAP close
to 0) and there is not much room for improvement when
combining the SNPs into haplotype loci. GIA and the differ-
ence in FST values are correlated (r = 0.792), suggesting that

the two statistics contain similar information despite the fact
that GIA is based on a measure of information whereas FST
measures differentiation, but there are similarities of the two
statistics as well. Indeed, if the differentiation between the
two populations is easier to capture when considering haplo-
type loci compared to considering SNPs separately, we would
expect that assignment also improves for haplotype data com-
pared to SNP data.

Improving assignment using GIA—a simulation study

For empirical population genetic data, allele frequencies and
levels of LD vary extensively among loci. GIA is defined for
multiallelic markers and can be used for assessing the
usefulness of combining not only pairs of SNPs, but also
haplotype loci themselves. Thus, GIA can be used for large
numbers of SNPs. To demonstrate the utility of GIA, we
compare the results of the assignment of 200 haploid
individuals originating from two populations and based on
1000 SNPs using different strategies of dealing with the
SNPs, e.g., by pruning the SNPs or combining them into
haplotype loci. We simulate the 200 haploid individuals
with the software ms (Hudson 2002) from a two-island
model with migration rate m (migrants per generation)
and an effective population size of 1000. Each haploid in-
dividual represents a DNA fragment of 4.2 Mb with a total
scaled recombination rate of r = 4Nr = 150 or r = 4Nr =
1500 (where N is the population size and r is the recombi-
nation rate per generation for the entire fragment). We

Figure 3 GIA as a function of D
for fixed values of the allele fre-
quencies in both populations. (A)
að1Þ1 ¼ 0:4, að2Þ1 ¼ 0:3, and
bð1Þ1 ¼ bð2Þ1 ¼ 0:2; (B) að1Þ1 ¼ 0:2,
að2Þ1 ¼ 0:3, bð1Þ1 ¼ 0:3, and bð2Þ1 ¼
0:6; (C) að1Þ1 ¼ 0:4, að2Þ1 ¼ 0:3,
bð1Þ1 ¼ 0:2, and bð2Þ1 ¼ 0:5; (D)
að1Þ1 ¼ 0:15, að2Þ1 ¼ 0:8, bð1Þ1 ¼
0:2, and bð2Þ1 ¼ 0:8.
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repeat the simulation 100 times for a given migration rate
and a given recombination rate. For each sample, we assign
the 200 individuals using STRUCTURE on the basis of seven
different treatments of the SNPs:

1. Using all 1000 SNPs.
2. Using a subset of the SNPs obtained by pruning. We

prune the set of SNPs with the program PLINK (Purcell
et al. 2007), to remove SNPs that are in high LD (rejec-
tion threshold of r2 = 0.1, windows of 20 SNPs, and
shifts of 5 SNPs).

3. Combining the SNPs into haplotype loci with a greedy
algorithm that recursively combines the pair of loci that
has the greatest GIA among all the pairwise comparisons
of loci until no remaining pair of loci has a positive GIA.
We refer to this strategy as MaxGIA.

4. Using a set of randomly formed haplotype loci with a
haplotype length distribution matching the haplotype
length distribution of the set in c. We call this strategy
RandomHaplotypes.

5. Using the set of SNPs and haplotype loci obtained with
the following algorithm: starting at the first SNP, if GIA is
positive between SNP 1 and SNP 2, combine them into
a haplotype. Compute GIA for the SNP 1–SNP 2 haplo-
type and SNP 3, and combine them into a haplotype if
GIA is positive. Repeat this process until a SNP s is found
for which the haplotype locus and SNP s have a nonpos-
itive GIA. Repeat the process starting from SNP s. We
refer to this strategy as NeighborGIA.

6. Using a set of haplotype loci formed by neighboring SNPs
obtained by randomly permuting the breakpoints of the
haplotype loci set in e, so that the haplotype length dis-
tribution is the same as in e. We call this strategy
RandomNeighbor.

7. Combining the SNPs into haplotype loci with a greedy
algorithm that recursively combines the pair of loci that
has the greatest d= FST(H)2 FST(M1, M2) among all the
pairwise comparisons of loci until no remaining pair of
loci has a positive d. FST(H) denotes FST for a haplotype
locus, and FST(M1, M2) denotes FST computed for the
two markers constituting the haplotype loci. We refer
to this strategy as MaxFST.

For each sample, migration rate, and strategy, we record
the performance of assigning individuals to populations that
is obtained from STRUCTURE (with the same settings
as above). Figure 5 shows MIAP for the different strategies
(no combination, pruning, MaxGIA, RandomHaplotypes,
NeighborGIA, RandomNeighbor, and MaxFST) for a range
of migration rates m and scaled recombination rates of
r = 150 and r = 1500. The GIA- and the FST-based strate-
gies require some knowledge about allele frequencies for
the considered markers, including the haplotype loci formed
in the iterative processes. In the context of an assignment
problem, this information can be obtained from phased
data for candidate populations. In this simulation study, we
estimate the allele frequencies directly from the sample and
use our knowledge of the individuals’ true ancestry. Thus,

Table 2 The mean incorrect assignment proportion (MIAP) obtained by assigning 200 haploid individuals to either of two populations
using STRUCTURE based on 80 SNPs, or based on 40 haplotype loci, and for various allele frequencies and levels of LD

að1Þ1 að2Þ1 bð1Þ1 bð2Þ1 j�Dj �r2 GIA MIAP SNPs MIAP hapl. FST (SNPs) FST (hapl.)

0.41 0.60 0.17 0.05 1.5 · 1024 1.3 · 1026 26.29 · 1024 0.0976 0.1209 0.0606 0.0498
0.62 0.81 0.38 0.25 0.0384 0.0500 1.59 · 1022 0.1212 0.0719 0.0517 0.0844
0.38 0.17 0.11 0.15 0.0413 0.0998 1.03 · 1022 0.1642 0.1140 0.0612 0.0689
0.47 0.32 0.21 0.12 0.0685 0.1500 1.07 · 1022 0.4286 0.1519 0.0301 0.0589
0.11 0.23 0.26 0.18 0.0514 0.1846 7.55 · 1022 0.4186 0.0015 0.0229 0.0568
0.05 0.01 0.13 0.05 0.0215 0.2004 23.23 · 1023 0.2422 0.2625 0.0257 0.0226
0.61 0.88 0.15 0.03 0.0589 0.2514 22.19 · 1022 0.0372 0.0460 0.1400 0.1168
0.31 0.35 0.23 0.30 0.1018 0.2981 3.01 · 1022 0.4736 0.1376 20.0022 0.0260
0.08 0.21 0.03 0.11 0.0522 0.3599 28.53 · 1023 0.1740 0.1988 0.0503 0.0419
0.38 0.17 0.11 0.23 0.0895 0.3659 5.78 · 1022 0.0444 0.0047 0.0731 0.0901
0.04 0.08 0.05 0.08 0.0222 0.3996 5.33 · 1022 0.3738 0.0353 6.17 · 1024 0.0527
0.71 0.61 0.60 0.49 0.1575 0.4560 23.96 · 1023 0.4205 0.4962 0.0133 0.0081
0.28 0.14 0.25 0.22 0.1196 0.4974 8.11 · 1023 0.3747 0.2859 0.0194 0.0133
0.05 0.01 0.11 0.01 0.0172 0.5645 6.02 · 1023 0.1701 0.0768 0.0562 0.0687
0.18 0.36 0.28 0.37 0.1582 0.6043 2.12 · 1022 0.2387 0.0851 0.0378 0.0460
0.17 0.37 0.13 0.25 0.1327 0.6486 21.07 · 1022 0.1516 0.1618 0.0653 0.0597
0.14 0.34 0.19 0.38 0.1521 0.6913 21.75 · 1022 0.1042 0.1251 0.0848 0.0733
0.01 0.06 0.99 0.89 0.0316 0.7582 27.37 · 1023 0.1759 0.1227 0.0576 0.0539
0.33 0.26 0.33 0.24 0.1843 0.8138 22.45 · 1023 0.4545 0.4920 0.0057 0.0044
0.08 0.10 0.08 0.14 0.0798 0.8413 9.66 · 1023 0.4378 0.2871 0.0011 0.0040
0.06 0.08 0.06 0.10 0.0642 0.8913 4.35 · 1023 0.4408 0.3645 20.0028 20.0020
0.28 0.07 0.28 0.07 0.1283 0.9516 23.5 · 1022 0.0483 0.0474 0.1332 0.1294
0.81 0.69 0.81 0.69 0.1839 1 29.67 · 1023 0.3272 0.4344 0.0280 0.0280

Values of jDj and r2 are means across populations. The values presented are averages across 100 replicate cases. GIA, FST based on the 80 SNPs, and FST based on the 40
haplotype loci are given for comparison. FST values are computed using equation 5.3 in Weir (1996). For MIAP, the smallest values between SNPs and haplotypes of incorrect
assignments are highlighted in boldface type. Hapl., haplotypes.
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improvement based on the GIA or the FST strategy is to some
degree magnified by the fact that we are using information
about the individuals’ true ancestry to compute the allele
frequencies. However, the NeighborGIA strategy uses the
same information as the MaxGIA and MaxFST strategies,
and the improvement obtained for the MaxGIA and MaxFST

strategies cannot be explained solely by using information
about the individuals’ ancestry.

For both recombination rates, the MaxGIA and MaxFST
strategies for combining SNPs show the fewest incorrect
assignments, but recombination rate has a strong impact on
the accuracy of the assignment. For the high-recombination

Figure 4 The difference in assignment accuracy (MIAP) based on SNPs and haplotypes as a function of GIA, LD (j�D j and�r2), and the difference between
FST for haplotype loci and FST for SNPs (values are given in Table 2). A linear regression line is included for each comparison. (A) GIA, r ¼ 0.748, y ¼ 4.1x +
0.046 (P¼ 4 · 1025); (B) j�Dj, r¼20.302, y¼20.75x + 0.14 (P¼ 0.16); (C)�r2, r ¼20.289, y¼20.13x + 0.14 (P¼ 0.18); (D) FST(Haplotypes)2 FST(SNPs),
r ¼ 0.790, y ¼ 6.1x + 0.040 (P ¼ 7 · 1026).

Figure 5 Mean incorrect assignment proportion (MIAP)
computed on the basis of assignment of 200 individuals
using STRUCTURE for different strategies of combining
SNPs and for different migration rates. A total of 1000
SNPs for a fragment of DNA are simulated for 200 haploid
individuals, 100 from each of two populations, and with
a scaled recombination rate (r) of 150 (A) or 1500 (B) for
the entire DNA fragment. MIAP values are averages across
100 replicate simulations and error bars give the interval
61.96 times the standard error of the mean. Mean FST
(based on SNPs) is included for comparison and shown
as a dashed line.
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case (r = 1500), the markers are less correlated and the set
of markers carries more information about ancestry than the
markers in the low-recombination case. Furthermore, as
expected, when the migration rate increases (and FST
decreases), MIAP also increases for all seven strategies.
However, for the high-recombination case and a migration
rate of 0.01, the MaxGIA and MaxFST strategies can uncover
the structure with (on average) ,2% incorrect assignment
compared to 37% using the full set or the pruned set of SNPs
(Figure 5B). Combining neighboring SNPs that have positive
GIA also improves the assignment, but to a lesser extent
than the MaxGIA strategy. For both choices of recombination
rates, the strategies that combine SNPs into haplotypes in a
random manner (RandomHaplotypes and RandomNeighbor)
result in poor assignment. Thus, the improved assignment
for MaxGIA, and to some degree NeighborGIA, compared to
the pruning or no combination strategies is likely to be the
result of using GIA as a criterion for combining SNPs into
haplotypes and not just a result of randomly combining
SNPs into haplotypes. However, for r = 1500, the strategy
RandomNeighbor, which consists of randomly combining
neighboring SNPs, increases the accuracy of the assignment
compared to the pruning or no combination strategies. Fi-
nally, we note that the accuracy of the assignment for the
pruned set of SNPs is similar to that of the assignment based
on the full set of SNPs, suggesting that the removed SNPs
contained redundant information about ancestry.

In the case of 1% migrants per generation (m = 0.01, the
greatest migration rate that we investigate), the distribution
of MIAP for the 100 replicates varies depending on the strat-

egy for treating the SNP data. Six distributions of MIAP
(based on different treatments of the SNPs) for the low-
recombination case (r = 150) are shown in Figure 6 and
the corresponding distributions of MIAP for the high-
recombination case (r = 1500) are shown in Figure 7.
For r= 150, the distribution of MIAP based on the MaxGIA
strategy is spread over a range of values compared to the
results of the other strategies, which are skewed toward
0.5, the expected value of MIAP for random assignment of
individuals to populations (but note that this expected value
may be slightly smaller for finite population sizes and un-
labeled populations). So, as also shown by the mean MIAP
in Figure 5A, MaxGIA is the most accurate strategy, but there
are also cases of poor assignment using this strategy. If we
increase the recombination rate, all six distributions of MIAP
move away from 0.5, except for RandomHaplotypes. The
distributions of MIAP for RandomNeighbor, pruning, or no
combination strategies are similar and have large variances.
The distribution of MIAP for the MaxGIA strategy is skewed
toward 0, demonstrating superior assignment accuracy com-
pared to the other strategies.

To get an idea of how many SNPs make up the haplotype
loci that are constructed using the MaxGIA strategy, we
compute the distribution of the number of SNPs in haplo-
type loci for four different migration rates and for two
different recombination rates (Figure 8). All the length dis-
tributions show a clear mode, and the value of the mode
appears to increase with increasing migration rate. This
observation suggests that when it becomes more difficult
to assign individuals to populations because of higher

Figure 6 Histograms of the
mean incorrect assignment prob-
abilities (MIAP) for 100 replicates
of simulated data from a two-
island-model with migration rate
m = 0.01 and a scaled recombi-
nation rate of r = 150. The simu-
lated SNP data are combined
according to six different strate-
gies, no combination, pruned
set, MaxGIA, RandomHaplotypes,
NeighborGIA, and RandomNeigh-
bor, and MIAP is computed for
each strategy on the basis of as-
signment of individuals using
STRUCTURE.
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migration rate, longer haplotype loci may increase the accu-
racy of the assignment. For the low-recombination case (r =
150), there is also a second mode at one single SNP (for all
but the lowest migration rate), showing that many SNPs are
not combined with other SNPs for these cases. In general,
however, the recombination rate appears to have little impact
on the length distribution of the majority of haplotype loci.

Improving assignment using GIA—POPRES data

To investigate whether haplotype loci can improve ancestry
inference for empirical population genetic data, we use SNP-
chip data from the POPRES panel that contain some 1385
individuals from Europe (Nelson et al. 2008), which have
been genotyped for some 500,000 SNPs. We phased all indi-
viduals using fastPHASE (Scheet and Stephens 2006), ver-
sion 1.4 (“haplotype clusters” set to 20 and 20 runs of the
EM algorithm), which generated “best guess” estimates of
the phase of each of the two haploid copies for each
individual.

We conduct a cross-validation study for the 89 French and
70 German individuals (one German outlier individual was
removed) in the POPRES collection (Nelson et al. 2008) and
focus on the phased data of 105,341 SNPs on chromosomes
1, 2 and 3 (FST = 0.00068). To construct a training set, 45
French individuals and 35 German individuals were ran-
domly sampled, and the remaining 44 French and 35 German
individuals make up the validation set. Each chromosome is
divided into windows of 10 SNPs and using the MaxGIA
strategy, we build a set of haplotype loci using estimated
allele frequencies from the training set of individuals for each

10 SNP-window. This set contains 54,762 haplotype loci and
the configuration of SNPs is known so that we can combine
the SNPs in the validation set to make up the same haplotype
loci. We perform the assignment of the individuals in the
validation set using STRUCTURE and using principal compo-
nent analysis (PCA), for either the entire set of SNPs or the
set of haplotype loci. For STRUCTURE, we compute the frac-
tion of the validation individuals that are misclassified using
the training individuals as known populations (supervised
clustering), as well as the fraction of misclassified individuals
in the training set alone (based on unsupervised clustering).

There was no obvious clustering of individuals in the
training set using either SNPs or haplotype loci (50%
correctly classified individuals for both types of data).
Assigning individuals in the validation sets also performs
poorly for both haplotype loci (51% correctly classified
individuals) and SNPs (61% correctly classified individuals).
However, PCA based on the haplotype data differentiate the
individuals in both the training set and the validation set
(Figure 9, C and D), and validation individuals can be
assigned to populations with high accuracy (87.3%) in con-
trast to using SNPs (53.2% correctly assigned individuals in
the validation set; Figure 9, A and B), corresponding to
a 73% reduction of incorrectly assigned individuals using
haplotypes. If we instead use data from all chromosomes,
the fraction of incorrectly assigned (validation) individuals
is reduced by 33% for haplotypes compared to SNPs. To
perform the PCA, the haplotype data are transformed to
a matrix of haplotype alleles vs. individuals where entries
in the matrix denote 0, 1, or 2 copies of a haplotype allele in

Figure 7 Histograms of the
mean incorrect assignment prob-
abilities (MIAP) for 100 replicates
of simulated data from a two-
island model with migration rate
m = 0.01 and a scaled recombi-
nation rate of r = 1500. The sim-
ulated SNP data are combined
according to six different strate-
gies, no combination, pruned
set, MaxGIA, RandomHaplo-
types, NeighborGIA, and Ran-
domNeighbor, and MIAP is
computed for each strategy on
the basis of assignment of indi-
viduals using STRUCTURE.
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a particular individual. For both the training set and the
validation set, the first component of such PCA based on
haplotypes reveals a clear clustering of the individuals,
according to French or German origin. The assignment of
the validation individuals to candidate populations is deter-
mined by the smallest distance along PC1 to the mean co-
ordinate of either the French training set or the German
training set.

To investigate a more challenging and realistic applica-
tion, we assign 209 individuals from Switzerland (84 Swiss–
German and 125 Swiss–French), using a training set of 89
French and 70 German individuals from the POPRES data.
The level of differentiation among groups is low, for exam-

ple, FST = 0.00012 for Swiss-French vs. Swiss-German,
FST = 0.00028 for French vs. Swiss-French, FST = 0.00022
for German vs. Swiss-German, FST = 0.00034 for
French vs. Swiss-German, and FST = 0.00047 for German
vs. Swiss-French. We use the same procedure and the same
105,341 SNPs as for the cross-validation study above, and
the haplotype loci (in total 50,268) are constructed using
the MaxGIA strategy for 10-SNP windows based on all the
French and German individuals. The Swiss-French and the
Swiss-German individuals are just barely better than ran-
domly assigned to candidate populations using SNPs
(54.5% correctly classified individuals, Figure 10A). Using
haplotypes only slightly improves the assignment (58.4%

Figure 8 Distribution of the length in number of SNPs of
the haplotype loci constructed with the MaxGIA strategy,
computed for 100 replicate simulations and for four dif-
ferent migration rates. Results for two different recombi-
nation rates are presented: (A) a high-recombination case
(r = 150) and (B) a low-recombination case (r = 1500).
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correctly classified individuals), corresponding to 7% fewer
misclassified individuals compared to using SNPs (Figure
10B). If we instead conduct a cross-validation study of the
Swiss-French and the Swiss-German individuals (similar to
the study above for the French and the German individuals),
the incorrectly assigned individuals can be reduced 28.6%
by using haplotypes instead of SNPs. Finally, we note that
the assignment strategy based on the first PC is rather crude,
and there is additional information about population assign-
ment in the remaining PCs that may improve the assignment
accuracy further.

Discussion

As genotyping technologies improve, population-genetic
data sets increase in number of markers. For example,
millions of SNPs have been typed for hundreds of humans
(International HapMap 3 Consortium 2010). This develop-

ment leads to an increase in marker density and substantial
levels of LD between many markers. In this study, we focus
on how to use dense sets of SNPs for assigning individuals of
unknown origin to candidate populations. The idea is to
incorporate information from recombination events through
combining SNPs into haplotype loci. We describe a new
statistic, the gain of informativeness for assignment from
haplotype data, as a decision criterion for combining SNPs
into haplotype loci. GIA compares the informativeness for
assignment contained in a haplotype locus with the sum of
the informativeness for assignment contained in each consti-
tutive locus forming the haplotype locus. If the data consist of
genotype data from diploids, a phasing step is needed to infer
the phase of the two chromosomes in each individual before
GIA can be used to construct a set of haplotype loci. We show
that combining SNPs into haplotype loci using GIA improves
the accuracy of assigning individuals to populations, whereas
a strategy of randomly combining SNPs into haplotype loci

Figure 9 Principal component analysis (PCA) for the individuals in the training set (A and C) and for both the training and the validation individuals (B
and D), based on 105,341 SNPs (A and B), and based on the 54,762 haplotype loci constructed from the training set (C and D). Each plot shows the two
first PCs. French individuals are represented by squares, red for training, orange for validation. German individuals are represented by triangles, blue for
training and green for validation.
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leads to less efficient assignment. This result demonstrates
that not all haplotypes improve assignment and that combin-
ing markers sometimes results in poorer assignment, which
may appear surprising since haplotype loci are multiallelic
and should therefore be more informative about ancestry
(compared, for example, with the use of microsatellites in
forensics). However, if we consider the extreme situation
where all SNPs are combined into one haplotype locus, most

individuals would have (two) unique haplotype alleles and
the information on ancestry would be nearly zero. There may
be an optimum number of SNPs to include in haplotype loci,
but this value will depend on both SNP density and levels of
LD, which both vary across the genome. The observed modes
for the distribution of number of SNPs in haplotype loci
(Figure 8) give an indication of the optimum for the particu-
lar cases that we investigate.

We use simulations based on a two-island model with
continuous migration between the populations and empir-
ical data from the POPRES panel (Nelson et al. 2008) to
investigate how different strategies can improve assignment
of individuals to populations. Similar to many empirical pop-
ulation studies, the simulated data may contain recent
migrants from one population to the other. In our setup,
an individual is considered to be incorrectly assigned when
it is not assigned to the population it was sampled from,
regardless of whether the individual was a very recent mi-
grant or not. This means that among the individuals deemed
incorrectly assigned, there may be a proportion of recent
migrants who are justifiably assigned to the population of
their recent ancestry (which is not the population they were
sampled from). We may therefore expect a small fraction of
incorrectly assigned individuals regardless of the assignment
approach, but this phenomenon will have little effect on our
simulation study. Indeed, for a migration rate m = 0.01 and
a sample size of 200, we expect 2 individuals to be first-
generation migrants in the sample, with a variance of 2,
but this number is too small to explain the high number of
incorrectly assigned individuals using, for example, the en-
tire set of SNPs or the pruned set of SNPs (Figures 5–7).

GIA is well adapted for assignment problems where
individuals or segments of genomes are assigned to a pop-
ulation among candidate populations for which we have
estimates of allele frequencies for the SNPs and for the
haplotype loci. In particular, a recursive greedy algorithm
was found to improve assignment substantially. Interest-
ingly, assignment based on the same greedy algorithm, but
using FST (the difference between haplotype-based FST and
single-marker–based FST) instead of GIA to determine which
markers to combine, also performs much better than assign-
ment based on single SNPs (Figure 5). This observation
suggests that it is the guided combination of SNPs into hap-
lotypes that leads to the improved assignment and not a par-
ticular property of GIA, although GIA is a useful tool for
determining which SNPs to combine.

For population structure problems, GIA cannot be used
directly because it requires some knowledge about the allele
frequencies within the populations, but it could potentially
be integrated into MCMC algorithms for estimating popula-
tion structure, where the algorithms involve a step of
partitioning individuals, such as in BAPS (Corander et al.
2003, 2004), TESS (Chen et al. 2007; Durand et al. 2009),
or STRUCTURE (Pritchard et al. 2000; Falush et al. 2003).
Briefly, for a particular proposed partition, allele frequencies
can be estimated from the partitioned sample, and GIA can

Figure 10 Principal component analysis for 125 Swiss–French individuals
(orange squares), 84 Swiss–German individuals (green triangles), 89 French
individuals (red squares), and 70 German individuals (blue triangles). (A)
Individuals plotted in the two first PCs based on 105,341 SNPs. (B) Indi-
viduals plotted in the two first PCs based on 50,268 haplotype loci con-
structed from a training set of the French and the German individuals.
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be computed and used to improve the inference of popula-
tion structure.

We have demonstrated that haplotypes contain addi-
tional information about population structure and that using
haplotypes instead of single SNPs can improve assignment
of individuals to populations. The GIA statistic determines
when it is possible to improve the assignment of individuals
to populations by combining markers into haplotypes and it
can be used as a tool for population structure inference
methods to capitalize on dense sets of genetic markers.
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Appendix

We rewrite Equation 2. Denote the frequency of allele u at locus A in population i by aðiÞu , the frequency of allele v at locus B in
population i by bðiÞv , and the frequency of allele uv of the haplotype locus, formed by allele u at locus A and allele v at locus B
in population i by xðiÞuv,

GIA ¼ PU
u¼1

PV
v¼1

 
2 �xuvlog �xuv þ

PK
i¼1

xðiÞuv
K

log xðiÞuv

!

2
XU
u¼1

 
2 �aulog �auþ

XK
i¼1

aðiÞu
K

log aðiÞu

!

2
XV
v¼1

 
2 �bvlog �bv þ

XK
i¼1

bðiÞv
K

log bðiÞv

!
; (A1)

with U and V denoting the number of alleles at locus A and locus B, respectively, and using the convention of 0 log 0 = 0.

Theorem. Let A and B be two biallelic loci and H be their associated haplotype locus. Consider K randomly mating pop-
ulations. For population i, let aðiÞ1 and bðiÞ1 be the frequencies of the minor allele at locus A and locus B, respectively. Then, for all
the frequency distributions of the alleles,

"i 2 1  . . .K;   Di ¼ 0⇒GIA ¼ IAðHÞ2 IAðAÞ2 IAðBÞ# 0

with equality if and only if
PK

i¼1
Pi

k¼1ðaðiÞ1 2aðkÞ1 Þ ðbðiÞ1 2bðkÞ1 Þ ¼ 0.
Proof of Theorem. Equation 3 with two biallelic loci (U = 2 and V = 2) gives

GIA ¼ 2
X2
u¼1

X2
v¼1

�xuvlog �xuv þ
X2
u¼1

�aulog �au þ
X2
v¼1

�bvlog �bv

þ  
1
K

XK
i¼1

 X2
u¼1

X2
v¼1

xðiÞuv log xðiÞuv 2
X2
u¼1

aðiÞu log aðiÞu 2
X2
v¼1

bðiÞv log bðiÞv

!
:
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Using the fact that aðiÞu ¼ xðiÞu1 þ xðiÞu2 and bðiÞv ¼ xðiÞ1v þ xðiÞ2v , we obtain

GIA ¼ 2
X2
u¼1

X2
v¼1

�xuvlog �xuv þ
X2
u¼1

�aulog �au þ
X2
v¼1

�bvlog �bv þ 1
K

XK
i¼1

 X2
u¼1

X2
v¼1

xðiÞuv log
xðiÞuv

aðiÞu bðiÞv

!
:

Since all the Di = 0, xðiÞuv ¼ aðiÞu bðiÞv for all populations, and log ðxðiÞuv=  aðiÞu bðiÞv Þ ¼ 0, the third term disappears. We define a ¼ �x11,
b ¼ �x12, g ¼ �x21, and d ¼ �x22. The a, b, g, and d variables are not independent since they sum to 1. Thus, GIA can be written
as a function f of a, b, and g,

GIA ¼ f ða;b; gÞ
¼ ðaþ bÞlogðaþ bÞ þ ðgþ dÞlogðgþ dÞ þ ðaþ gÞlogðaþ gÞ þ ðbþ dÞlogðbþ dÞ

2alog a2blog b2 glog g2 dlog d;

with d = 12 a2 b2 g. The function f is twofold differentiable on the open space S = {a . 0, b. 0, g . 0ja + b + g , 1}
and we look for the set of points where the gradient of f is equal to zero; in other words, we are looking for the critical points
of f. The first partial derivatives of f are

@f
@a

ða;b; gÞ ¼ log
�ðaþ bÞðaþ gÞd
ðdþ bÞðdþ gÞa

�
@f
@b

ða;b; gÞ ¼ log
�ðaþ bÞd
ðdþ gÞb

�
@f
@g

ða;b; gÞ ¼ log
�ðaþ gÞd
ðdþ bÞg

�
:

The first partial derivatives of f are all equal to zero if and only if ad = bg. The nature of the critical points can be
investigated by looking at the Hessian matrix H. We can show that for ad = bg, H can be written as

H ¼ 2
1
ad

XTX;

with X the row vector (a2 d, a + g, a+ b) and XT its transposed vector.H is thus negative and the critical points defined by
ad = bg are maxima of f. Since the equation ad = bg defines a continuous surface in the open space S, defining all values of
S on which f reaches a maximum, the value of f on this surface is constant:

f ða;b; gÞ ¼ log

 
ðaþ bÞaþbðaþ gÞaþgðbþ dÞbþdðgþ dÞgþd

aabbggdd

!

¼ log

"�ðaþ bÞðaþ gÞ
a

�a�ðaþ bÞðbþ dÞ
b

�b�ðaþ gÞðgþ dÞ
g

�g�ðbþ dÞðgþ dÞ
d

�d
#
:

Using the equality ad = bg, we have

ðaþ bÞðaþ gÞ ¼ a2 þ ðbþ gÞaþ bg
¼ aðaþ bþ gÞ þ ad
¼ a:

Similar computations can be done for the three remaining factors and we find that the maximum value for f on S is therefore
0. This maximum is global on S and since f is extendable by continuity on the border of S, it is also a maximum on the closed
space �S. Therefore, for all the values of the haplotype allele frequencies, GIA is less than or equal to zero. Equality is obtained
when �x11�x22 ¼ �x12�x21:

�x11�x22 ¼ �x12�x21⇔
1
K2

 XK
i¼1

aðiÞ1 bðiÞ1

! XK
k¼1

�
12 aðkÞ1

	�
12 bðkÞ1

	!
¼ 1

K2

 XK
k¼1

�
12 aðkÞ1

	
bðkÞ1

! XK
i¼1

aðiÞ1
�
12 bðiÞ1

	!

⇔
XK
i¼1

XK
k¼1

�
aðiÞ1 bðiÞ1

�
12 aðkÞ1

	�
12 bðkÞ1

	
2 aðiÞ1

�
12 bðiÞ1

	�
12 aðkÞ1

	
bðkÞ1

	
¼ 0
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⇔
XK
i¼1

XK
k¼1

h
aðiÞ1
�
12 aðkÞ1

	�
bðiÞ1
�
12 bðkÞ1

	
2
�
12 bðiÞ1

	
bðkÞ1

	i
¼ 0

⇔
XK
i¼1

XK
k¼1

h
aðiÞ1
�
12 aðkÞ1

	�
bðiÞ1 2 bðkÞ1

	i
¼ 0

⇔
XK
i¼1

Xi
k¼1

h
aðiÞ1
�
12 aðkÞ1

	�
bðiÞ1 2 bðkÞ1

	i
þ
XK
i¼1

XK
k¼i

h
aðiÞ1
�
12 aðkÞ1

	�
bðiÞ1 2 bðkÞ1

	i
¼ 0

⇔
XK
i¼1

Xi
k¼1

h
aðiÞ1
�
12 aðkÞ1

	�
bðiÞ1 2 bðkÞ1

	i
þ
XK
k¼1

Xk
i¼1

h
aðiÞ1
�
12 aðkÞ1

	�
bðiÞ1 2 bðkÞ1

	i
¼ 0

⇔
XK
i¼1

Xi
k¼1

h
aðiÞ1
�
12 aðkÞ1

	�
bðiÞ1 2 bðkÞ1

	i
þ
XK
i¼1

Xi
k¼1

h
aðkÞ1

�
12 aðiÞ1

	�
bðkÞ1 2 bðiÞ1

	i
¼ 0

⇔
XK
i¼1

Xi
k¼1

h�
aðiÞ1
�
12 aðkÞ1

	
2 aðkÞ1

�
12 aðiÞ1

		�
bðiÞ1 2 bðkÞ1

	i
¼ 0

⇔
XK
i¼1

Xi
k¼1

h�
aðiÞ1 2 aðkÞ1

	�
bðiÞ1 2 bðkÞ1

	i
¼ 0:

At line 5, we add terms for k = i but all those terms are equal to zero. This achieves the proof of the Theorem.
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