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ABSTRACT

Polyploidy is an important aspect of the evolution of flowering plants. The potential of gene copies to
diverge and evolve new functions is influenced by meiotic behavior of chromosomes leading to
segregation as a single locus or duplicated loci. Switchgrass (Panicum virgatum) linkage maps were
constructed using a full-sib population of 238 plants and SSR and STS markers to access the degree of
preferential pairing and the structure of the tetraploid genome and as a step toward identification of loci
underlying biomass feedstock quality and yield. The male and female framework map lengths were 1645
and 1376 cM with 97% of the genome estimated to be within 10 cM of a mapped marker in both maps.
Each map coalesced into 18 linkage groups arranged into nine homeologous pairs. Comparative analysis
of each homology group to the diploid sorghum genome identified clear syntenic relationships and
collinear tracts. The number of markers with PCR amplicons that mapped across subgenomes was
significantly fewer than expected, suggesting substantial subgenome divergence, while both the ratio of
coupling to repulsion phase linkages and pattern of marker segregation indicated complete or near
complete disomic inheritance. The proportion of transmission ratio distorted markers was relatively
low, but the male map was more extensively affected by distorted transmission ratios and multilocus

interactions, associated with spurious linkages.

OLYPLOIDY is common among plants (MASTERSON
1994; Levin 2002) and is an important aspect of
plant evolution. Widespread paleopolyploidy in flower-
ing plant lineages suggests that ancient polyploidization
events have contributed to the radiation of angiosperms
(Sovrtis et al. 2009; VAN DE PEER et al. 20092). Whole
genome duplications are thought to be the sources of
evolutionary novelty (OSBORN et al. 2003; FREELING and
Tromas 2006; CHEN 2007; HEGARTY and Hiscock 2008;
FraceL and WENDEL 2009; LerrcH and LErrca 2008).
Other attributes of polyploids considered to promote
evolutionary success include increased vigor, masking of
recessive alleles, and reproductive barriers arising from
loss of one of the duplicate genes (SOLTIS AND SOLTIS
2000; CoMAT 2005; OTTO 2007; VAN DE PEER el al. 2009b).
Among crop species, polyploidy likely contributed to
trait improvement under artificial selection (PATERSON
2005; UpaLL and WENDELL 2006; DuBcovsky and
Dvorak 2007; Hovav et al. 2008).
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Disomic inheritance in polyploids, in contrast to
polysomic inheritance, presents opportunities for
duplicated genes to diverge and evolve new functions.
The relative age of whole genome duplications and the
extent of homology between subgenomes greatly
influence chromosomal pairing at meiosis (SOLTIS and
Sortis 1995; WoLrre 2001; RaMsSEy and SCHEMSKE
2002). Polysomic inheritance resulting from random
chromosome pairing is associated with doubling of a
single set of chromosomes. Disomic inheritance result-
ing from preferential pairing is often associated with
polyploidy arising from combinations of divergent
genomes. The evolutionary process of diploidization
leads to a shift from random to preferential pairing that
is not well understood but is genetically defined
in systems such as Phl of wheat (Triticum aestivum) and
PrBn of Brassica napus (RILEY and CHAPMAN 1958; VEGA
and FELDMAN 1998; JENCZEWSKI et al. 2003). The degree
of preferential pairing also affects allelic diversity and
the ability to detect linkage. Accurate information about
chromosome pairing and whole or partial genome du-
plications is thus important for both evolutionary
studies and in linkage analysis.

Such information is extremely limited in the C4
panicoid species Panicum virgatum (switchgrass), which
is now viewed as a promising energy crop in the United
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States and Europe (LEwaNDOWSKI el al. 2003;
McLAUGHLIN and Kszos 2005) and is planted exten-
sively for forage and soil conservation (VOGEL and JunG
2001). Little is known about either its genome structure
or inheritance. Much current bioenergy feedstock de-
velopmentis focused on tetraploid cytotypes (2n = 4x=
36) due to their higher yield potentials, and an initial
segregation study indicated a high degree of preferential
pairing in a single F1 mapping population (Missaour
et al. 2005). A once-dominant component of the tall-
grass prairie in North America, switchgrass is largely
self-incompatible (MARTINEZ-REYNA and VOGEL 2002)
with predominantly tetraploid or octoploid cytotypes
(HurTQUIST et al. 1997; Lu et al. 1998). Limited gene
flow appears possible between different cytotypes sug-
gested by DNA content variation within collection sites
and seed lots (NIELSEN 1944; HULTQUIST el al. 1997;
NARASIMHAMOORTHY et al. 2008). True diploids appear
to be rare (NIELSEN 1944; YOUNG et al. 2010). Multi-
valents in meiosis have not been observed in tetraploids
or F1 hybrids between upland and lowland tetraploids,
although rare univalents occurred (BARNETT and
CARVER 1967; MARTINEZ-REYNA et al. 2001). However,
polysomic inheritance may occur with random bivalent
pairing (HOwWARD and SWAMINATHAN 1953).

Sustainable production of switchgrass for bioenergy to
meet the goal of reducing greenhouse gas emissions will
require advances in feedstock production that include
improvements in yield (CARROLL and SOMERVILLE 2009).
Switchgrass has extensive genetic diversity and potential
for genetic improvements, but each cycle of phenotypic
selection can take several years (MCLAUGHLIN and Kszos
2005; ParrisH and FIke 2005; BouToN 2007). Detailed
understanding of genome structure to enable efficient
marker-assisted selection (MAS) can speed this process
considerably. Complete linkage maps are therefore re-
quired to both understand chromosome pairing and
allow MAS.

We report the construction of the first complete
linkage maps of two switchgrass genotypes. The linkage
maps provide genetic evidence for disomic inheritance
in lowland, tetraploid switchgrass. Gene-derived markers
enabled a comparative analysis to sorghum, revealing
syntenic relationships between the diploid sorghum
genome and the tetraploid switchgrass subgenomes.
Transmission ratio distortion and multilocus interac-
tions were analyzed in detail to document their potential
influence on map accuracy and map-based studies in
switchgrass.

MATERIALS AND METHODS

Mapping population: A full-sib mapping population derived
from a cross between selected genotypes of switchgrass Kanlow
as the female parent and Alamo as the male parent was
produced and initial genotyping identified self-pollinated and
diploid individuals comprising 5% of the population. These

were eliminated and 238 F1 plants were used for mapping. The
male parent was an individual with good response to tissue
culture and was from seed obtained from colleagues in
Lincoln, Nebraska. The female parent was a randomly selected
individual from a commercial seed source (Osenbaugh Grass
Seed, Lucas, IA). The cultivars Kanlow and Alamo are of the
lowland ecotype and are expected to be tetraploid (2n = 4x =
36).

DNA extraction and molecular marker analysis: Total
genomic DNA was extracted from young leaves dried in silica
using the CTAB method of CHEN and RoNALD (1999). Pre-
viously identified simple sequence repeat (SSR) PCR primers
in existing switchgrass expressed sequence tags (ESTs) (Tosias
et al. 2006, 2008) were used and an additional 205 EST-
SSR primers were developed from the same EST data. EST
sequence-tagged-site (EST-STS) primer pairs were developed
by designing primers spanning predicted conserved introns
(supporting information, Table SI). Genomic SSR primers
were developed by sequencing GA/CT enriched genomic
libraries constructed from a pooled population of cultivar
Alamo as well as sequences submitted to GenBank by Lee
Gunter (Oak Ridge National Laboratory, TN) (Table SI).

Products were amplified in 5- to 10-ul PCR reactions, PEG
precipitated, and sized on an ABI3730x1 using PET-labeled size
standards. Amplicons were scored using Genemapper v. 3.7
(Applied Biosystems, Foster City, CA). The EST-SSR and EST-
STS markers were tested for amplification and polymorphism
in the parents and six random F1 individuals. Markers that
amplified one or more amplicons that were polymorphic in
the parents and/or the F1 were used for genotyping the whole
population. Markers with greater than 15% missing data were
omitted from analysis.

Segregation and linkage analysis: Determining allelic seg-
regation at a locus is difficult in polyploids, since not all
genotypes can be determined on the basis of marker pheno-
type alone (SORRELLS 1992; Wu et al. 1992). Thus, the linkage
analysis was conducted using polymorphic single-dose ampli-
cons (SDAs) following Wu et al. (1992). SDAs were identified
on the basis of presence in only one parent and goodness-of-fit
toa 1:1 presence to absence ratio in the F1 using the chi-square
test (o = 0.01). The next higher segregation ratio for poly-
morphism between parents is 3:1, which is the ratio expected if
double-dose amplicons were present in each of the subge-
nomes under disomic inheritance. In addition, transmission
ratio distorted (TRD) SDAs were defined as polymorphisms
thatwere presentin either one of the parents and did not fit the
1:1 ratio, but were below a 1.73:1 ratio, which represents equal
chissquare values for 1:1 and 3:1 ratios (MATHER 1957).
Remaining polymorphisms were tested for 3:1 and 5:1 ratios.
The next higher ratio beyond 3:1 is 5:1, which is expected for
double-dose amplicons under tetrasomic inheritance. Ampli-
cons that were shared between parents and single-dose in both
(SDxSD) were identified using the fit to the 3:1 ratio by chi-
square test (a = 0.01). See File SI for the raw genotypes.

The data were analyzed with JoinMap 4 (VAN Oo1jeN 2006)
using the outbreeder full-sib family (CP) as the population
type. Maternal and paternal maps were analyzed separately
following the two way pseudo-testcross strategy (GRATTAPAGLIA
and SEDEROFF 1994). The SDAs were grouped into linkage
groups at the minimum independence test LOD score of 8.0.
TRD-SDAs were excluded during construction of the frame-
work maps. Loci within linkage groups were ordered using the
maximum-likelihood mapping algorithm (JANSEN ez al. 2001).
Separate SDAs within a linkage group with equivalent or nearly
equivalent map positions with regard to the variation in the
data (JANSEN et al. 2001) were binned together and map order
was then determined using only one SDA from each bin. The
grouped SDAs that were not used in the linkage analysis were
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TABLE 1

Amplification, polymorphism, and segregation ratios of molecular markers in the switchgrass mapping population

Female parent

Male parent

Total Polymorphic

Both parents

Markers amplicons  amplicons 1.1 1:1 (TRD%) 31 5:1 1.1 1:1 (TRD) 3:1 5:1 3:1 (SDxSD)
EST-SSR 420 1364 945 354 13 2 0 342 62 11 0 91
Genomic SSR 181 620 509 209 6 2 0 191 24 8§ 3 29
EST-STS 36 109 55 20 0 0 0 22 4 0 0 6
Total 637 2093 1509 583 19 4 0 555 90 19 3 126

“TRD, transmission ratio distorted. Markers were considered TRD if segregation ratio was less than 1.73:1 and deviated

significantly from 1:1 by the chi-square test (o« = 0.01)

’Markers monomorphic between parents and segregating in 3:1.

treated as accessory loci to those that were mapped. SDAs were
placed on the map using the regression mapping algorithm as
described in Stam (1993), with the relative order obtained
above fixed at the minimum LOD score of 8.0 and maximum
recombination fraction of 0.35. The Kosambi mapping func-
tion was used to obtain map distance. When two groups of
SDAs within the LG were notlinked at the threshold, they were
accepted as linked if atleast one SDA was linked to two or more
SDAs in the other group. To allow linkage of the two groups,
i.e., the presence of at least two independent linkages at the
threshold, lower LOD thresholds were used. Subsequently,
SDxSD amplicons and TRD-SDAs were added to the frame-
work map as additional accessory loci at the strongest cross link
(SCL) parameter threshold of 8.0.

Each linkage group (LG) is expected to belong to one of
nine homology groups (HGs) based on the basic chromosome
number in switchgrass. LGs were grouped into HGs when at
least two pairs of loci derived from the same SSR or STS marker
were shared (MING et al. 1998). Within each HG, LGs from two
parental maps were identified as homologous on the basis of
one or more shared SDxSD amplicons.

Genome length (G) was estimated on the basis of the
framework map by the method of HULBERT et al. (1988) as
modified by method 3 of CHAKRAVARTI et al. (1991). A pairwise
linkage threshold of LOD 8.0 was used for the estimation of G,
because the LGs were grouped at LOD 8.0. Genome coverage
was calculated for each framework map using

c=1- e*?dn/(}7

where ¢ is the proportion of the genome within d cM of a
framework marker, Gis the estimated genome length, and nis
the number of framework markers in the map (LANGE and
BorHNKE 1982).

Disomic and polysomic polyploids differ in the population
size thatis required to detect repulsion phase linkages because
of recombination resulting from independent assortment in
repulsion linkages under polysomic inheritance (Wu et al.
1992; Qu and Hancock 2001). For the population size of 238,
the expected ratio of coupling to repulsion phase linkages is
1:1 and 1.55:1 for disomic and tetrasomic inheritance, re-
spectively (Wu et al. 1992). The observed ratio of the loci
linked in coupling phase vs. repulsion phase at LOD greater
than 3.0 was tested for fit to the expected ratios by the
chi-square test. The homogeneity chi-square test was used to
assess whether the ratios across LGs were homogeneous within
each parents (d.f. = 17) prior to pooling the data.

The proportion of SSR or STS markers with amplicons that
mapped across subgenomes was assessed on the maps. The

expected proportion of markers with SDAs and/or SDxSD
amplicons in both subgenomes was estimated under no
subgenome differentiation, using parental genotypes simu-
lated with SPIP v1.0 (ANDERSON and DunaAaM 2005) on the
basis of allele frequencies obtained at 21 of the mapped EST-
SSR markers in 38 and 40 individuals from Kanlow and Alamo
(Table S2). The 21 markers produced amplicons consistent
with a single disomic locus, enabling estimation of allele
frequencies within cultivars. Of the 21 markers used, 9 and 12
had dinucleotide and trinucleotide SSR motifs, respectively.
To simulate the effect of no divergence between subgenomes,
genotypes in both subgenomes were randomly sampled from
the same allele pool. The proportion of markers with SDAs
and/or SDxSD amplicons from both subgenomes was ob-
tained out of the 21 markers. The mean and standard
deviation for the proportion of markers with amplicons
mapping in both subgenomes were estimated using 1000
simulated parental pairs.

Transmission distorted markers in multilocus interactions:
To assess the extent of multilocus interactions between un-
linked loci associated with single-locus transmission ratio
distortions, all mapped TRD-SDAs were tested for indepen-
dence against all SDAs in other LGs in both male and female
maps using the two-locus genotypes in the two-by-two contin-
gency chi-square test. Since comparisons were made among
unlinked SDAs, the significance was evaluated with a correc-
tion for 770 comparisons of 22 LGs with at least one TRD-SDA
with 35 other LGs (P < 6.49 X 107?).

Comparative mapping: Assembled EST sequences corre-
sponding to EST-SSR and EST-STS markers used for mapping
were aligned to predicted protein coding sequences of rice
(Oryza sativa ssp. japonica) present in release 6.1 of the MSU
rice genome annotation projectand sorghum (Sorghum bicolor)
predicted coding sequences released in genome annotation
Sbil.4 (http:/www.phytozome.net). BLAST nucleotide align-
ments with an Ewvalue threshold of 1 X 10 ' or lower were
considered. Orthologous pairs of sequences in switchgrass and
sorghum were defined as the best matches that both matched
the same rice gene. The corresponding sorghum and rice
genome coordinates were then used for comparison to the
map positions of all loci detected by the corresponding EST-
SSR or EST-STS marker excluding alternate alleles of allelic
pairs linked in repulsion on the same LG. Naming of LGs was
based on published comparative maps between Setaria italica
(foxtail millet) and rice that allowed alignment using rice as a
common reference (DEvos et al. 1998). For determining
syntenic relationships and collinearity with sorghum, putative
sorghum-—switchgrass orthologs were counted for each switch-
grass LG and grouped by HG. For assessing gene collinearity,
only framework SDAs were evaluated, while all TRD, SDxSD,
and accessory loci were omitted.
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RESULTS

Marker segregation: A total of 420 EST-SSR, 181
genomic SSR, and 36 EST-STS markers generated 2093
amplicons, of which 1509 were polymorphic between
the parents (Table 1). Of the polymorphic amplicons,
583 segregated as SDAs in the female parent and 555 in
the male parent (a = 0.01). In addition, 19 (3%) and 90
(14%) amplicons were identified as TRD-SDAs for the
female and male parent, respectively. The remaining
236 polymorphic amplicons were tested for segregation
ratios consistent with double dose across subgenomes
(A=A-x— — — =) under disomic (3:1) or tetrasomic (5:1)
inheritance. Only three (0.2%) amplicons fit the 5:1
ratio, whereas 23 (1.5%) amplicons segregated 3:1, and
three (0.2%) fit both ratios (a = 0.01). All three
amplicons that fit the 5:1 ratio and two of the three
that fit both ratios segregated in the male parent. On
the basis of the 3:1 ratio (e = 0.01) and presence in
both parents, 126 amplicons were classified as SDxSD
(A— — —xA— - —-).

Switchgrass linkage maps are complete and highly
collinear: In both female and male maps, 18 linkage
groups formed at the minimum LOD score of 8.0. Seven
and three SDAs in the female and male parent, re-
spectively, remained ungrouped. Of the equivalent or
nearly equivalent SDAs, 39 and 28 in the female and
male maps, respectively, were apparently allelic and an
additional 225 nonallelic SDAs were combined into 89
bins in the female and 162 into 80 bins in the male maps
(Figure 1). A total of 299 SDAs in the female map and
352 in the male map were ordered and placed on each
LG (Table 2) at the threshold of LOD 8.0 and re-
combination fraction of 0.35, with the exception of
three LGs: Ila-f, VIIIb-f, and Illa-m. These groups con-
sisted of two clusters of SDAs at the threshold but were
joined at lower LOD scores of 6.0, 6.0, and 4.0, re-
spectively. Naming of linkage groups was based on
inferred syntenic relationships between switchgrass and
foxtail millet (see below), with the addition of an arbi-
trary subgenome designation and male (m) or female
(f) designation. Excellent correspondence between
male and female maps was observed (r = 0.896, P <
0.0001).

Including accessory SDAs there were 563 SDAs in
the female framework map spanning 1376 cM and 542
SDAs in the male framework map spanning 1645 cM
(Tables 2 and 3). The average length of LGs and
interlocus distance per LG were 76.5 and 5.5 ¢M in
the female map and 91.4 and 5.0 cM in the male
map. The total number of SDAs that were not grouped
into a LG or placed on the maps was 9 (1.4%) and 4
(0.7%) in the female and male framework maps,
respectively.

Estimated total genome size for switchgrass using the
method of HULBERT et al. (1988) were 1515 and 1935 cM
for the female and male genomes, respectively, based on
the framework maps. For both framework maps, 97% of
the genome was estimated to be within 10 ¢M of a
mapped marker.

Fourteen of the 19 maternal TRD-SDAs were mapped
to the framework map, and 75 of the 90 paternal TRD-
SDAs were mapped to the framework map (Table 2). Of
the 126 SDxSD amplicons, 38 and 40 were placed on the
female and male maps, respectively. One additional SDA
that did not map in the framework map was placed on
each of the maps when the TRD and SDxSD amplicons
were added. The addition of these 53 loci on the female
map and 116 loci to the male map increased the overall
map length by 24 and 103 cM, respectively.

The LGs in both female and male maps grouped into
nine HGs on the basis of marker sharing, as expected
from the tetraploid genome structure of 2n = 4x = 36.
Within seven of the nine HGs, two pairs of homologs
were identified on the basis of shared SDxSD amplicons.
In the remaining two HGs, II and VII, only one of the
homologous pairs shared SDxSD amplicons.

The subgenomes within all HGs did not significantly
differ in the number of mapped EST-SSR amplicons
with the exception of HG VIII (Table S3). This allowed
the estimated allelic frequencies at 21 of the mapped
markers from a sample of the parental cultivars to be
used for assessing subgenome differentiation. The
expected proportion of markers present in both sub-
genomes was 0.629 = 0.100 (SD) assuming no subge-
nome divergence. The total number of amplicons
detected in the parental cultivars varied across markers

F1GURE 1.—Female and male parental linkage maps of tetraploid switchgrass. The gray segments in LGs, Ila-f, VIIIb-f, and Illa-m,
indicate linkage identified at lowered LOD scores of 6.0, 6.0, and 4.0, respectively. The accessory loci are listed next to mapped
loci, but apparently allelic accessory and framework SDAs with identical map positions are shown together. Accessory loci are those
assessed as equivalent or nearly equivalent to the mapped loci based on the plausible map position in the maximum-likelihood
algorithm in JoinMap4 (VAN Oor1jen 2006). The linkage groups were grouped into homology groups based on shared markers.
The homologs were identified on the basis of the single-dose by single-dose amplicons shared by the parents. The Roman numeral
designation of each homology group (I-IX) follows the foxtail millet chromosomes. The name of each linkage group includes the
homology group, and the letter a or b arbitrarily designates the subgenomes. The letters f and m at the end of the linkage group
name denote female and male parental map, respectively. TRD-SDAs are noted with asterisks: (*) P < 0.01, (¥*) P < 0.001, and
(***¥) P<0.0001. Significant two-locus interactions detected for TRD-SDAs are denoted next to the LG on which interacting loci
are located and the number of loci is indicated beside it in brackets. SDxSD amplicons are in dark blue color with the letter d
appended to the name. All loci mapped across subgenomes with the same SSR or STS marker on the maps are highlighted with
matching colors.
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the expected proportion of markers present in both
subgenomes was lower at 0.569 (SD 0.106). In the linkage
maps constructed 68 of 613 (0.111) mapped across
subgenomes. When only EST-SSR markers were consid-
ered, as in the simulation, 47 of 393 (0.120) mapped
across subgenomes indicating significant divergence.
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FiGure 1.—(Continued)

Inheritance in switchgrass is disomic: The ratio of
coupling to repulsion phase linkages detected at the
minimum LOD score of 3.0 in each map was tested for
homogeneity across LGs, and pooled data were tested
for fit to the expected 1:1 and 1.55:1 ratios for disomic
and tetrasomic inheritance, respectively. The LGs within
each parent showed homogeneity with respect to the test
for both ratios. The observed ratio of coupling to
repulsion phase linkages conformed to the 1:1 ratio in
both female and male maps but significantly deviated
from the 1.55:1 ratio (Table S4).

Putative allelic pairs amplified with the same SSR or
STS marker were considered individually for evidence
of rare nonhomologous pairing. Although most of the
LGs displayed indications of complete preferential
pairing, all LGs had at least one putative allelic pair
that was not completely complementary, i.e., presence

or absence of both alleles in the same individual (Table
S5). Twenty-nine out of 36 LGs displayed at least one
fully complementary allelic pair and 5 of the remaining
LGs had at least one putative allelic pair with only one
noncomplimentary genotype. In all LGs with two or
more pairs of allelic markers, the number of non-
complimentary genotypes varied with the average per
LG ranging from 0.3 in VIIIb-fto 7.8 in IVh-f.

The extent and distribution of TRD loci on the
maps: Single-locus distortion: Among the segregating
SDAs in the female and male parents, 3 and 14% were
classified as TRD, respectively (Table 2). At least one
TRD-SDA mapped on 10 and 12 LGs on the female and
male maps, respectively (Figure 1). In the male map, 65
out of 75 TRD-SDAs mapped in 14 clusters of two or
more markers on seven LGs within four HGs (I, I, V, and
VII). The number of markers per cluster ranged be-
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TABLE 2

Female and male framework maps and the two parental maps after adding transmission distorted and shared single-dose
amplicons between parents to the framework map

With distorted and shared single-dose

Framework amplicons included
Female map Male map Female map Male map

Number of mapped polymorphisms

Total 563 542 616 658

Single dose (accessory) 299 (264) 352 (190) 300 (264) 353 (162)

Distorted N/A N/A 14 75

Single dose X single dose N/A N/A 38 40

Per linkage group, average (range) 17 (6-28) 20 (5-34) 20 (9-31) 26 (8-42)
Unmapped single dose 9 4 8 3
Total number of linkage groups 18 18 18 18
Total map length (cm) 1376 1645 1400 1748
Average linkage group length (range) (cm) 76 (45-129) 91 (27-176) 78 (47-129) 97 (32-173)

tween two and eight. In the female map, there was only a
single cluster of three markers on LG VIb-f, and the
remaining 11 did not cluster with another TRD-SDA.
Two-locus interactions: Overall, significant two-locus
interactions between unlinked loci were found at only
1 of 14 TRD-SDAs in the female map (7%), whereas 39
of 75 (52%) TRD-SDAs were involved in interactions
with unlinked marker(s) in the male map. No within-
parent interactions were detected in the female map. In
contrast, within the male map, two-locus interactions
involved 38 of the 39 interacting TRD-SDAs and totaled
160 pairs. These involved 42 interactions between la-m

and Ib-m, and 117 between Va-m and VIIb-m, while a
single pair of interacting loci was found on LGs IVa-m
and Ib-m.

Between-parent interactions were detected at one
TRD-SDA on the female map with two on the male map.
A total of 27 marker pairs were significant for two-locus
interactions, including eight between /la-fand Ila-m, 10
between /Va-fand IVa-m, and nine between Vb-fand Vb-
m. All between-parent interactions detected were on
homologous chromosomes in HGs II, IV, and V.

Comparative mapping: The map positions of EST-
SSR or STS markers designed against assembled switch-

TABLE 3

Locus frequency and length comparison between female and male linkage groups

Female Male

Total Length ~ Average Total Length ~ Average

LG (cM) interlocus Mapped Accessory Total LG (cM) intermarker Mapped Accessory Total
la-f 88 3.1 28 32 60  Ia-m 76 3.3 15 12 27
Iv-f 97 44 24 17 41 Ib-m 60 5.1 13 1 14
Ilaf 84 4.9 18 11 29 Ila-m 100 3.8 29 8 37
1-f 65 6.3 19 15 34 IIb-m 27 5.7 6 0 6
Hlaf 90 5.2 12 7 19 Ila-m 133 8.1 23 8 31
1IIb-f 73 8.2 11 6 17 LIb-m 121 5.7 30 6 36
Va-f 59 2.8 11 4 15 IVa-m 96 6.0 15 8 23
IVb-f 69 7.3 12 10 22 IVb-m 81 5.3 19 12 31
Va-f 102 4.2 19 9 28  Va-m 125 3.6 23 9 32
Vo-f 84 5.6 17 14 31 Vbm 126 4.5 23 9 32
Via-f 76 3.6 13 5 18 Via-m 90 4.5 14 5 19
VIb-f 45 5.6 9 7 16 Vib-m 81 5.4 19 9 28
VIla-f 59 6.3 22 48 70 Vila-m 73 3.3 23 26 49
VIIb-f 72 4.7 24 42 66  VIIb-m 41 6.9 12 20 32
VIIa-f 57 5.3 13 0 13 Villa-m 32 5.0 5 7 12
VIIIb-f 57 11.4 6 5 11 VIIIb-m 77 5.5 17 18 35
IXa-f 71 3.3 17 19 36  IXa-m 129 4.2 32 10 42
IXb-f 129 59 24 13 37  IXb-m 176 4.2 34 22 56
Total 1376 299 264 563 1645 352 290 542
Average 76.5 5.5 16.6 14.7 31.3 91.4 5.0 19.6 10.6 30.1
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F1GUre 2.—Comparison of linkage groups to sorghum genome. Each homology group was drawn around a radius along with
the syntenic chromosome(s) of sorghum. Sorghum chromosomes are indicated in red while switchgrass linkage groups are
depicted in green or light green for the female linkage group’s A and B subgenomes, respectively, or blue and light blue for
the male A and B subgenomes, respectively. Individual loci are plotted around the radius with likely allelic pairs plotted as
one unit and accessory loci stacked in their respective map locations. Black dots indicate nondistorted EST-SSR markers, green
dots indicate nondistorted genomic SSR, light red dots indicate SDxSD markers, and blue dots indicate TRD-SDA markers. Links
between maps were bundled together if the distance between individual links (either markers detected with the same SSR or STS
marker or based on sequence identity) were less than 10 Mbp (sorghum) or 12.3cM (switchgrass) on both chromosomes/linkage
groups. Light gray link color indicates correspondence between male and female linkage groups; dark gray indicates correspon-
dence between different subgenomes. Links derived from SDxSD markers are indicated in light red. Linkages between sorghum
chromosomes and individual switchgrass linkage groups are colored on the basis of the corresponding switchgrass linkage group.
Homology group I (A), II (B), IIT (C), IV (D), V (E), VI (F), VII (G), VIII (H), IX (I).

grass EST sequences were compared to the genome tion would allow. Table 4 shows the number of orthol-
coordinates of sorghum genes determined to be ortho- ogous pairs for each switchgrass homology group across
logs. This allowed a global assessment of synteny all sorghum chromosomes. There exists a one-to-one
between switchgrass and sorghum and determination relationship between the 10 sorghum chromosomes and

of gene collinearity to the extent that our map resolu- 9 switchgrass homology groups with sorghum chromo-
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TABLE 4

Likely orthologous gene pairs in Sorghum and switchgrass

Sorghum chromosome

Switchgrass
homology group 1 2 3 4 5 6 7 8 9 10
I 3¢ 0 0 40 (27)" 0 2 0 1 0 1
II 2 34 (20) 0 1 0 4 0 0 5 0
111 2 1 2 2 0 0 1 12 (5) 15 (4) 0
v 0 0 0 0 0 0 0 0 0 22 (17)
A% 1 2 26 (31) 5 1 2 3 2 1 1
VI 0 0 0 0 0 2 19 (11) 0 0 0
VI 3 2 2 1 2 64 (45) 2 0 1 0
VIII 0 0 1 0 11 (7) 0 0 0 1 0
IX 41 (27) 6 4 4 1 0 1 0 1 6
Grand Total 52 45 35 53 15 74 26 15 24 30
“Number of loci (excluding alternate alleles of allelic pairs) present in both subgenomes A and B that had likely orthologs in
sorghum.

’Number of loci participating in collinear stretches of four or more indicated in parentheses.

somes 8 and 9 both matching switchgrass homology
group III (Figure 2 and Table 4). Two large stretches of
complete map collinearity to sorghum chromosomes 6
and 1 were found. Collinearity with chromosome 6
extended for 13 gene/marker pairs and represented 58
cM of linkage group VIIb-f, which encompassed 22 Mbp
of the long arm of sorghum chromosome 6, or 35% of
the overall chromosome length. Collinearity with sor-
ghum chromosome 1 extended for 11 gene/marker
pairs over 124 cM of linkage group IXa-m, which
encompassed 71 Mbp, or 91% of the chromosome.
Comparative maps have been published for foxtail
millet interspecific crosses (DEvOs et al. 1998) and rice
using RFLP loci. For the purposes of applying a consis-
tent nomenclature between switchgrass linkage groups
and foxtail millet we compared these published dataand
our mapped STS and EST-SSR markers through com-
parison of the matrices of shared map features using rice
as a common reference genome. The data indicated a
close one-to-one relationship between linkage groups
I-IX of foxtail millet and individual switchgrass homol-

ogy groups.

DISCUSSION

Linkage maps: Switchgrass linkage maps were con-
structed using a full-sib population derived from a cross
between two heterozygous genotypes sampled from
lowland tetraploid cultivars Kanlow and Alamo as female
and male, respectively. Each of the parental maps
contained a complete representation of 18 LGs in which
the expected nine pairs of homeologues were identified.
These linkage maps are the first to have been constructed
for switchgrass representing all LGs. A thorough cover-
age of the genome is indicated by the estimate of 97% of
the genome residing within 10 cM of the mapped
markers in both framework maps. Accordingly, the

number of unmapped SDAs was small for both female
(1.5%) and male (0.7%) parents. Construction of two
separate parental maps, each with two subgenomes,
allowed detailed comparisons between maps and sub-
genomes within the study to identify false linkages and to
confirm linkages identified at lower LOD scores. Good
coverage of the genome enabled a robust analysis of the
meiotic behavior, genome structure, and syntenic rela-
tionships to other grasses in this study.

Comparative analysis: The syntenic relationships
evident through our usage of switchgrass expressed
sequences for marker design and the high levels of gene
sequence conservation within the Poaceae provide the
first high level genome structural information available
for switchgrass. Marker collinearity with sorghum, the
most closely related reference genome available, was
particularly strong within homology groups VII and IX.
Comparative maps have been published for foxtail millet
(DEVOS et al. 1998), pearl millet (Pennisetum glawcum)
(DEvOs et al. 2000), and rice using RFLP loci. When
evaluating these published data with our map compar-
isons to the rice genome it was clear that segments of
collinearity to rice could be used as a basis for maintain-
ing consistent nomenclature. A close relationship be-
tween each of the switchgrass homology groups and
linkage groups I-IX of foxtail millet existed; thus we
adopted the same group designations.

Preferential pairing at meiosis and disomic inheri-
tance: The ratio of coupling to repulsion phase linkages,
marker segregation ratios, and recombination fractions
between putative allelic markers are consistent with
complete or near complete preferential pairing. None
of the LGs deviated significantly from the ratio of 1:1
coupling to repulsion phase linkages, but all deviated
significantly from 1.55:1 (Table S4), indicating that
linkages in both phases were equally efficiently detected
as expected under complete preferential pairing in
disomic inheritance (Wu et al. 1992; Qu and HAaNCOCK
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2001). Concordant with the preferential pairing in-
dicated by the ratio of the two linkage phases detected,
only three polymorphic amplicons fit the tetrasomic
double-dose segregation ratio of 5:1. The three ampli-
cons were segregating in the male parent, which was
more severely affected by TRD than the female parent.
Thus, they may be SDAs (1:1) or double-dose amplicons
(3:1) with distorted segregation rather than tetrasomic
double-dose amplicons (5:1). Meiotic behavior inferred
in this study agrees with the published cyotological
observations of meiotic chromosomes (BARNETT and
CARVER 1967; MARTINEZ-REYNA ef al. 2001) and the
linkage mapping analysis (Missaoul et al. 2005).

Although 29 of the 36 LGs displayed at least one
completely complementary putative allelic pair suggest-
ing complete preferential pairing of homologous chro-
mosomes (Qu and Hancock 2001), a substantial
number of putatively allelic pairs were noncomplemen-
tary to various degrees. These inconsistent genotypes
could be caused by low frequency pairing of homeolo-
gous chromosomes. However, for the LGs with the most
frequent occurrences of the inconsistent genotypes,
theirhomeologues did not display correspondingly high
frequencies in most cases, suggesting that homeologous
pairing is not the cause. Furthermore, there are a variety
of other possible causes for the genotypes deviating from
disomic inheritance. The observed nonparental geno-
types may actually be recombination between closely
linked duplicated loci that appear to be allelic markers.
Mutations and genotyping artifacts including allele
dropouts, PCR-mediated recombination (CRONN et al.
2002), and experimental error could result in non-
parental genotypes. Chromosomal rearrangements may
also underlie the genotypes deviating from complete
preferential pairing (CLOUTIER ¢t al. 1997).

Substantial subgenome differentiation is indicated by
the small proportion of markers detecting alternate
alleles across subgenomes, which was significantly lower
than the simulated proportion that accounted for
estimated allele frequencies in the parental cultivars,
probability of SDA and SDxSD amplicons being included
in the linkage map, and the proportion of EST-SSR
motif types. The observed cross subgenomic EST-SSR
markers would represent 20% transferability between
the subgenomes on the basis of the simulated proportion
as 100%. Between species within a genus, EST-SSR
marker transferability reported varies from 26 to 100%
(Ma et al. 2009; Moccia et al. 2009; SHARMA et al. 2009;
TANG et al. 2009). Transferability reported between
species from different genera varies between 11 and
86% (SAHA et al. 2004; VARSHNEY el al. 2005; HEESACKER
et al. 2008; CHAPMAN et al. 2009; CHOUDHARY e al. 2009;
RaJr et al. 2009; Sim et al. 2009). The subgenome trans-
ferability of EST-SSR markers in switchgrass estimated in
this study is comparable to transferability between dis-
tantly related species within a genus or species from
closelyrelated genera in other plants. If the alleles within

asubgenome are more closely related to each other than
between subgenomes (HUANG et al. 2003), the low cross
subgenome transferability would be largely due to
divergence between homeologues attributable to muta-
tions, sequence losses, and chromosomal rearrangements
leading to diploidization and/or divergence prior to
polyploidization. Complete preferential pairing at meio-
sis, or a pattern of inheritance that is at least effectively
disomic, would be expected in switchgrass to maintain the
highly distinct subgenomes.

Transmission ratio distortion: TRD and interactions
between unlinked markers resulting in transmission
distortions can introduce inaccuracies in linkage maps
due to spurious linkages, biased estimates of recombi-
nation fractions, and incorrect marker order (LORIEUX
et al. 1995; CLOUTIER et al. 1997). Inaccurate linkage
maps negatively affect the identification of quantitative
trait loci (VoL and Xu 2000). In this study, although
the proportion of TRD-SDAs for both parents was
within the lower range found in intraspecific linkage
analyses (JENCZEWSKI et al. 1997; ANHALT et al. 2008),
the TRD-SDAs appeared to be a significant source of
map inaccuracies in the male map. The male map was
more severely affected by TRD, and the TRD-SDAs in
the male map were clearly associated with spurious
linkages that prompted their exclusion from the frame-
work map. Heterozygosity for translocations may un-
derlie such spurious linkages if they are linked to
transmission distorters (SANTOS et al. 2006). In addition,
if more than one transmission distorter locus underlie
TRD or TRD is due to epistatic interactions, estimates of
recombination fractions are biased (LORIEUX et al. 1995;
Lu et al. 2002). Significant two-marker interactions in
the male often involved nondistorted markers, suggest-
ing that biased estimation of recombination fractions
may affect the framework map. The longer male map
may be interpreted as greater rate of recombination in
the male parent, but could also be an artifact of the
biased estimates of recombination fractions caused by
interacting TRD markers.

TRD is commonly observed in linkage mapping
studies and is caused by a variety of processes underlying
meiotic drive or pre- or postzygotic viability differences
(LyTrTLE 1991; ZAMIR AND TADMOR 1986). Because of
the structure of the fullsib mapping population,
interactions detected between parents indicate post-
zygotic mechanisms causing TRD. All the detected
interactions were between homologs in similar regions
of the LGs, suggesting that these interacting markers
may be linked to alleles at a single locus. Since the
parents of the mapping population are from two
cultivars of geographically distant origins, in Oklahoma
(Kanlow) and Texas (Alamo), the interactions are less
likely due to deleterious recessive alleles (DIWAN et al.
2000) but may represent a developing reproductive
barrier between diverging populations (MULLER 1939;
Dosznuansky 1951). Alternatively, they may be linked to
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transmission distorter loci common to populations
within the species.

Identification of map regions with consistent TRD
within the species would benefit the design of marker-
assisted breeding strategies (Lu et al. 2002; ANHALT et al.
2008). Map regions containing self-incompatibility loci
are often TRD and exhibit consistent interactions with
other LGs across mapping populations in Lolium perenne
(THOROGOOD et al. 2002, 2005; ANHALT et al. 2008).

Many examples of TRD in grasses are cross specific,
but we investigated possible prezygotic effects on the
basis of published mapping studies of § and Z self-
incompatibility loci in rye (Secale cereale). HACKAUF and
WEHLING (2005) performed comparative mapping be-
tween rye and rice to identify genes colocalized to the Z
locus. They found that rice BACs carried orthologs of
the three rye STS markers cosegregating with Zin their
mapping populations. When aligned with switchgrass
the closest distorted marker was sww3008_189 present
on linkage group VIIb-m, suggesting that the TRD at the
marker may be related to the Zlocus. Analysis of wheat—
rye-rice—switchgrass synteny placed the S locus tenta-
tively on HGIII; however, there were no TRD markers in
the region expected.

The complete linkage maps have indicated that the
subgenomes of the tetraploid, lowland switchgrass eco-
types should be considered independent due to a high
degree of preferential pairing. Furthermore, conserved
gene order between switchgrass and other grass taxa
indicated by our comparison with sorghum is likely to
facilitate map-based cloning and translational approaches
using information from other grasses and cereals. How-
ever, the presence of segregation distortion, multilocus
interactions, and an unknown degree of selfing can
complicate interpretation of the genetic maps. The
marker resources presented should provide impetus for
development of further populations and QTL studies.
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