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ABSTRACT

The genetics of phenotypic variation in inbred mice has for nearly a century provided a primary weapon
in the medical research arsenal. A catalog of the genetic variation among inbred mouse strains, however, is
required to enable powerful positional cloning and association techniques. A recent whole-genome
resequencing study of 15 inbred mouse strains captured a significant fraction of the genetic variation among
a limited number of strains, yet the common use of hundreds of inbred strains in medical research
motivates the need for a high-density variation map of a larger set of strains. Here we report a dense set of
genotypes from 94 inbred mouse strains containing 10.77 million genotypes over 121,433 single nucleotide
polymorphisms (SNPs), dispersed at 20-kb intervals on average across the genome, with an average concor-
dance of 99.94% with previous SNP sets. Through pairwise comparisons of the strains, we identified an
average of 4.70 distinct segments over 73 classical inbred strains in each region of the genome, suggesting
limited genetic diversity between the strains. Combining these data with genotypes of 7570 gap-filling SNPs,
we further imputed the untyped or missing genotypes of 94 strains over 8.27 million Perlegen SNPs. The
imputation accuracy among classical inbred strains is estimated at 99.7% for the genotypes imputed with
high confidence. We demonstrated the utility of these data in high-resolution linkage mapping through
power simulations and statistical power analysis and provide guidelines for developing such studies. We also
provide a resource of in silico association mapping between the complex traits deposited in the Mouse
Phenome Database with our genotypes. We expect that these resources will facilitate effective designs of
both human and mouse studies for dissecting the genetic basis of complex traits.

PHENOTYPIC variation among inbred mouse strains
exposed to a disease-causing agent (be it genetic,

infectious, or environmental) provides potential insight
into human disease processes that often cannot be prac-
tically achieved through direct human studies. Indeed,
hundreds of phenotype measurements related to hu-
man diseases are available for dozens of inbred strains
in common use over the past 50–100 years (Bogue et al.
2007; Grubb et al. 2009). As with the direct study of

chronic disease in humans, key steps toward deter-
mining the genetic underpinnings of this phenotypic
variation are to develop a catalog of the genetic
variation among inbred mouse strains and to interpret
the structure of variation patterns across the strains.
Recent advances in high-throughput genotyping and
DNA resequencing technologies are making it possible
to rapidly uncover the genetic variation maps of many
model organisms (Lindblad-Toh et al. 2005; Mackay

and Anholt 2006; Borevitz et al. 2007; Frazer et al.
2007; International Hapmap Consortium 2007;
Star Consortium 2008). A recent whole-genome
resequencing study of 15 inbred mouse strains captured
a significant fraction of the genetic variation among a
limited number of strains, allowing researchers to infer
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patterns of genetic variation and to identify the
ancestral origin of the genetic variation (Frazer et al.
2007; Yang et al. 2007). Yet the availability and common
experimental employment of hundreds of inbred
strains, including .190 stocks available from the
Jackson Laboratory, motivates the need for a high-
density variation map for a larger set of strains. We have
assembled the Mouse HapMap, a resource consisting of
a dense set of genotypes for a total of 138,980 unique
biallelic single nucleotide polymorphisms (SNPs) in 94
inbred mouse strains at an average spacing of 20 kb on
chromosomes 1–19 and X.

This resource is ideal for performing high-resolution
mapping studies under QTL peaks. We evaluate the
feasibility and effectiveness of such studies by examining
a typical study from the Mouse Phenome Database (MPD)
(Bogue et al. 2007; Grubb et al. 2009) (http://www.jax.
org/phenome) and measure the statistical power to
detect genetic associations in regions of various sizes.
We provide several resources to the mouse genetics
community for supporting such studies and a webserver
that can estimate the significance threshold, compute
the statistical power of a proposed study, and perform in
the fine mapping of measured phenotypes. In addition,
we provide a database of associations for all phenotypes
contained in the MPD. The web resources are available
at http://mouse.cs.ucla.edu/.

MATERIALS AND METHODS

Array design: The Mouse HapMap genotypes were obtained
using two Affymetrix genotyping arrays with 20 or 36 perfect
match/mismatch probe pairs. SNPs were selected to be as
evenly spaced as possible across the NCBI build 33 and
mapped to NCBI build 37. Genotypes were called with the
Affymetrix DM algorithm, and the genotypes with low confi-
dence or with conflicting calls between replicated samples or
any discovery strain were called as missing.

Analysis of shared segments: We assigned each segment in
the 94 strains of the Mouse HapMap to a founder strain
representing a different ancestral origin as well as identified
shared segments among strains using a hidden Markov model
following the approach presented in Frazer et al. (2007). The
mapping with four founder strains was performed with a
hidden Markov model with four reference strains representing
possible founders with an additional state for unknown
reference, learning the parameters from the genotype data
using the expectation-maximization (EM) algorithm as de-
scribed in the imputation method. A hidden Markov model
with two states representing common and divergent regions
was constructed for each pairwise comparison, with a re-
combination parameter u ¼ 10�8 and a mutational parameter
m ¼ 0.03, estimated from the distribution of maximum-
likelihood parameters using the EM algorithm among all
4371 comparisons. The fraction of the genome with shared
segments was computed as the fraction of genome-wide SNPs
with the probability of shared segments .0.9. The number of
distinct ancestral segments at a genomic position was com-
puted by taking all the pairwise probabilities of shared
segments and performing hierarchical clustering with a
median agglomeration method by taking the pairwise proba-
bilities as elements of a similarity matrix.

Imputation of missing genotypes: We performed imputa-
tion using EMINIM (Kang et al. 2009) of the Perlegen/
National Institute of Environmental Health Sciences (NIEHS)
data (Frazer et al. 2007) in the 94 strains to increase the
number of genotypes available for the 94 strains. Briefly, a
hidden Markov model was constructed for each strain targeted
for imputation with 16 1 1 states per SNP representing each of
16 resequenced reference strains and a state representing an
equivocal reference strain. Unlike the previous methods
(Scheet and Stephens 2006; Marchini et al. 2007), the
maximum-likelihood parameters of genome-wide mutation
and the recombination parameters were learned from the data
using the EM algorithm and the forward–backward algorithm,
independently for each strain. For the leave-one-out imputa-
tion for experimentally missing genotypes in the resequenced
strains, 15 1 1 states were used, excluding the target strain for
imputation.

Threshold estimation: To control the false-positive rate of in
silico mapping, significance thresholds guaranteeing a 5%
false-positive rate were estimated for regions of size 10, 20, and
30 Mb via simulation. For each size n-Mb region, the genome
was split into non-overlapping bins of size n. For each of these
bins, a random phenotype capturing background genetic
effects was generated, and Efficient Mixed Model Association
(EMMA) (Kang et al. 2008) was used to perform association
between the phenotype and all SNPs within the region. The
most significant association was recorded for each bin. The
threshold was then determined by taking the P-value that was
the maximum among the smallest 5% of all P-values within this
set. A total of 10,000 simulations were performed.

Power simulation: Statistical power for in silico mapping was
estimated for a set of mouse strains by utilizing a simulation-
based framework. First, we generated a random phenotype
with a correlation structure that is consistent with the genetic
background by using a kinship matrix derived from the
relatedness between the strains. Second, we adjusted the
phenotypic values on the basis of a particular SNP having a
genetic effect. That is, the phenotype values for strains that
have one allele at the SNP were increased by a predetermined
amount corresponding to the strength of the genetic effect.
Finally, we used EMMA (Kang et al. 2008) to detect the
association of this SNP with this phenotype and recorded
whether or not EMMA reports an association stronger than the
significance threshold. This type of simulation was performed
over 10,000 SNPs chosen uniformly at random from a set of
.100,000. The statistical power is then defined as the fraction
of associations detected at the pre-determined significance
threshold.

Mapping resolution simulations: Mapping resolution was
estimated in each of the strain sets by utilizing a simulation-
based framework. Phenotype data were generated in a similar
manner as in the power simulations by using a randomly
chosen SNP with a genetic effect. EMMA was used to detect the
associations for all SNPs within 10 Mb of this SNP. For any
simulation where any SNP in the region exceeded the
significance threshold, we recorded the genomic distance
between the causal SNP and the SNP with the most significant
P-value in the region. This type of simulation was performed
over 10,000 SNPs chosen uniformly at random from a set of
.100,000. The mapping resolution was then defined as the
average of the distance between the most significant SNP and
the SNP simulated to have a genetic effect.

Additional strain selection: Using the Paigen2 mouse strain
set (Svenson et al. 2007) from the Mouse Phenome Database
as a starting point, we determined a new set of 33 inbred strains
that would provide an increase in power when compared with
the Paigen2 set. Our strain set was selected by first removing
both wild-type and some genetically similar strains from the
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original Paigen2 strain set of 42 strains [for high-density
lipoprotein (HDL) cholesterol]. The resulting 27 strains were
used as a template to build a new inbred panel. We used a
subset of Mouse HapMap strains as a candidate panel and
iteratively selected mice that were genetically dissimilar to the
template set. We selected candidate strains on the basis of their
maximum genetic correlation with all strains in the growing
template panel. The strain that had the maximum correlation,
which was minimum among all candidate strains, was selected,
and the procedure was repeated.

In-silico association mapping database: We downloaded the
individual phenotype measurements of the Mouse Phenome
Database (MPD) from the Jackson Laboratory and selected
474 quantitative phenotypes containing phenotype measure-
ments in at least 20 strains. We applied EMMA (Kang et al.
2008) as an implementation of linear mixed models to correct
for population structure and genetic relatedness, using the
kinship matrix generated as a genotype similarity matrix. The
variance component was based on a restricted maximum-
likelihood estimate, and a standard F test was performed as
previously suggested (Yu et al. 2006; Zhao et al. 2007). The false
discovery rate (FDR) significance level was estimated using the
q-value R package (Storey and Tibshirani 2003). The males
and females were mapped for association separately. The
genomic control inflation factor was computed by taking the
median P-value and computing the corresponding x2 statistic
divided by 0.455 (Devlin and Roeder 1999).

RESULTS

The Mouse HapMap resource: We have assembled a
dense set of genotypes for a total of 138,980 unique
biallelic SNPs in 94 inbred mouse strains at an average
spacing of 20 kb on chromosomes 1–19 and X. We
selected the most commonly used inbred laboratory
strains—especially targeting priority strains from the
Mouse Phenome Database (Bogue et al. 2007; Grubb

et al. 2009)—and 19 wild-derived strains both as ref-
erence out-groups and to help identify ancestry of
genomic segments (Table 1). Our data set is a com-
posite of 121,433 SNPs discovered and genotyped at
the Broad Institute by comparing data from the two
inbred mouse genome sequencing projects (Mouse

Genome Sequencing Consortium 2002; Mural et al.
2002), with additional discovery in a wild-derived strain
in regions of low marker density. In addition, we in-
cluded 7570 SNPs covering physical gaps in the Broad
Institute map revealed by examining data from the con-
current NIEHS/Perlegen effort to resequence 15 inbred
strains (Frazer et al. 2007) and 13,094 SNPs discovered
and genotyped at the Wellcome Trust Center for Human
Genetics (WTCHG) that could be mapped to Build 37
of the mouse genome.

To evaluate the quality of these resources, we exam-
ined SNPs typed in common by Broad and WTCHG and
compared each resource to the genotypes of strains
produced from the NIEHS/Perlegen sequence data.
SNPs overlapping between the Broad and WTCHG sets
demonstrate a discordance rate of 0.00058, while SNPs
overlapping WTCHG and NIEHS/Perlegen sequence-
based genotypes demonstrate a discordance rate of

0.00688. The extremely high concordance of the Broad
and WTCHG data and significantly higher accuracy
than the array-based sequence genotypes are unsurpris-
ing; the Broad and WTCHG utilized established SNP
genotyping techniques and need distinguish only be-
tween two homozygous genotype classes. An interesting
disparity in discordance rate is observed between
Perlegen and WTCHG genotypes. When the WTCHG
genotype is the reference strain allele (C57BL/6J), the
disparity with Perlegen genotype is 0.00335 and is
0.0106 otherwise. This is consistent with the variant
discovery strategy employed by Perlegen, which empha-
sized low false-positive variant discovery at the expense
of a higher false negative rate (Frazer et al. 2007).
Figure 1 summarizes the genotype resources for each of
the 94 strains.

Haplotype structure among the strains: By using
these genotype resources, we are able to examine the
fine-level haplotype structure among the strains. For
example, a comparison of the six 129 strains shows that
they share the vast majority of their genomic segments,
but there are several notable differences. In particular,
there is a large disparity between 129P2/OlaHsD and
129X1/SvJ from 35 to 100 Mb on chromosome 7, and
there are also differences specific to 129S6/SvEv on
chromosomes 3, 5, and 12 (supporting information,
Figure S1). Similarly, comparisons between the 15 C57
strains revealed significant discrepancies between
C57BL/6J and the other C57 strains (Figure S2). We
also identified that some strains appear to result from
recent hybridizations between two or more strains. We
observed that HTG/GoSfSnJ shares .99.9% of the
genome with either BALB/cByJ or C57BL/6J (Figure
S3) and that NOR/LtJ shares .99.9% of segments with
either NOD/LtJ or C57BLKS/J, confirming the anno-
tated genealogical history (Beck et al. 2000) (Figure S4).
We also observed that two strains (RBA/DnJ and SOD/
EiJ) are ‘‘hybrid’’ strains with genetic content from both
classical inbred and wild-derived strains. (Figure S5).
When comparing the fraction of the genome shared by
any of the 12 classical inbred resequenced strains, there
is a clear difference between the rates of sharing with the
wider set of classical inbred strains (97% of the genome
on average and 81% minimum) and with the wild-
derived strains (28% on average, 56% maximum)
(Figure 2). We allocated ancestry of local genomic
regions to one of the four ‘‘founder’’ strains using the
methods described previously for resequencing data
(Frazer et al. 2007). For each of the remaining 90
strains, we identified the fractions of genomic regions
unequivocally close to the domesticus, musculus, casta-
neus, and molossinus strains. On average, these ancestral
strains contribute 32.3%, 9.19%, 4.52%, and 11.8%,
respectively; 42.2% of the observed total genomic
regions are ambiguous for ancestry, meaning either
that the ancestry is not precisely represented by any of
the four founder strains (37.3%) or that two or more
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TABLE 1

Strains used in Mouse HapMap projects and their availability in other resources

Strain name
Perlegen

resequenced
WTCHG

genotyped
Additional
gap-filling

Wild-derived or
classical inbred

129P2/OlaHsD X X X IN
129S1/SvImJ O O X IN
129S2/SvHsd X X X IN
129S4/SvJae X X X IN
129S6/SvEv X O X IN
129T2/SvEms X X O IN
129X1/SvJ X O O IN
A/J O O X IN
AKR/J O O X IN
B6A6ESlineRegeneron X X X IN
BALB/cByJ O O X IN
BALB/cJ X O X IN
BPH/2J X O O IN
BPL/1J X O O IN
BPN/3J X O O IN
BTBRT,1.tf/J O O X IN
BUB/BnJ X O O IN
C2T1ESlineNagy X X X IN
C3H/HeJ O O X IN
C3HeB/FeJ X O X IN
C57BL/10J X O X IN
C57BL/6ByJ X X X IN
C57BL/6J O* O X IN
C57BL/6JBomTac X X X IN
C57BL/6JCrl X X X IN
C57BL/6JOlaHsd X X X IN
C57BL/6NCrl X X X IN
C57BL/6NHsd X X X IN
C57BL/6NJ X X X IN
C57BL/6NNIH X X X IN
C57BL/6NTac X X X IN
C57BLKS/J X X O IN
C57BR/cdJ X O O IN
C57L/J X O O IN
C58/J X O O IN
CALB/RkJ X O X WI
CAST/EiJ O O X WI
CBA/J X O O IN
CE/J X O O IN
CZECHII/EiJ X X O WI
DBA/1J X O O IN
DBA/2J O O X IN
DDK/Pas X X X IN
DDY/JclSidSeyFrkJ X O O IN
EL/SuzSeyFrkJ X O X IN
FVB/NJ O O X IN
Fline X X X IN
HTG/GoSfSnJ X X X IN
I/LnJ X O O IN
ILS X O X IN
IS/CamRkJ X O X WI
ISS X O X IN
JF1/Ms X X O WI
KK/HlJ O O X IN
LEWES/EiJ X O X WI
LG/J X O O IN
LP/J X O O IN

(continued )
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ancestral subspecies share haplotypes in these regions
(4.86%). The fractions of regions identified as having
domesticus or unknown ancestry differ from previous
studies (Frazer et al. 2007) due to the sparser resolution
of the SNP map and the SNP ascertainment bias
inherent in both current and former data sets. We note
that these ancestry estimates make many assumptions,
one of which is that the founder strains represent the
true ancestral populations of the strains. Other studies
that make slightly different assumptions such as Yang

et al. (2007) differ in their ancestry estimates. All of the
classical inbred strains and hybrid strains share pre-
dominantly domesticus ancestry [with Yang et al. (2007)
having a higher estimate of the percentage of domesticus
ancestry compared to Frazer et al. (2007)], while the

wild-derived strains are divided into four groups corre-
sponding to their respective ancestral subspecies: this is
also reflected in the phylogeny derived from the Mouse
HapMap data (Figure 3).

To investigate the average sizes of shared haplotype
segments among strains, we identified common (low
SNP density) and divergent (high SNP density) ances-
tral segments across the genome for each pair of inbred
strains using a hidden Markov model (Frazer et al.
2007). Among the 4371 possible pairwise comparisons
of the 94 strains, an average of 32.5% of the genomic
regions are shared between any pair of strains (Figure
4). The average number of shared ancestral segments
genome-wide is 280 per comparison, which is about one
segment per 10 Mb. On average, there are 176 segments

TABLE 1

(Continued)

Strain name
Perlegen

resequenced
WTCHG

genotyped
Additional
gap-filling

Wild-derived or
classical inbred

Lline X X X IN
MA/MyJ X O O IN
MAI/Pas X X X WI
MOLF/EiJ O O X WI
MOLG/DnJ X X O WI
MRL/MpJ X O O IN
MSM/Ms X O O WI
NOD/LtJ O O X IN
NON/LtJ X O O IN
NOR/LtJ X O X IN
NZB/B1NJ X X O IN
NZL/LtJ X X O IN
NZO/HlLtJ X O O IN
NZW/LacJ O O X IN
O20 X X X IN
P/J X O X IN
PERA/EiJ X O O WI
PERC/EiJ X O O WI
PL/J X O O IN
PWD/PhJ O X X WI
PWK/PhJ X O O WI
Qsi5 X X X IN
RBA/DnJ X O O HY
RF/J X O X IN
RIIIS/J X O O IN
SEA/GnJ X O O IN
SEG/Pas X X X WI
SJL/J X O O IN
SKIVE/EiJ X O X WI
SM/J X O O IN
SOD1/EiJ X X O HY
SPRET/EiJ X O O WI
ST/bJ X O X IN
SWR/J X O O IN
TALLYHO/JngJ X X O IN
WSB/EiJ O O X WI
ZALENDE/EiJ X O X WI

C57BL/6J is not included in the 15 resequenced strain, but it is the reference strain that has been fully se-
quenced. O, included; X, excluded. HY, hybrid strain; IN, inbred strain; WI, wild-derived strain.
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.1 Mb covering 28.8% of the genome, and 39 segments
longer than 5 Mb covering 15.6% of the genome, which
is reflective of the tight recent co-ancestry of these
strains. Given a cross between any of the two parental
strains, it is possible to estimate the genomic region
excluded from mapping variations associated with
phenotype traits due to the shared segments between
them. For example, in mapping studies using BXD
recombinant-inbred strains, 48.6% of genomic regions

are shared between parental strains, and loci in these
regions will not be mapped to traits.

To ascertain whether intervening genotypes might be
successfully imputed from the resequencing data, we
counted how many distinct haplotypic segments exist
for each genomic region and compared this with the
numbers derived from the resequencing data by com-
bining the shared segment analysis using hierarchical
clustering. The average number of distinct segments

Figure 1.—Classifica-
tion of 94 strains used in
the Mouse HapMap projects
on the basis of the availabil-
ity in other resources, includ-
ing 8.27 million NIEHS/
Perlegen resequencing-
based SNPs, WTCHG SNPs,
and additional gap-filling
SNPs. (C57BL/6J is not
included in the 15 rese-
quenced strains, but it is
the reference strain that
has been fully resequenced.)

Figure 2.—A histogram
of the fractions of genome
covered by shared seg-
ments with one of the 12
classical inbred strains over
78 nonresequenced Mouse
HapMap strains. The classi-
cal inbred strains are in
blue, the hybrid strains in
red, and the wild-derived
strains in green.
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within any region is estimated to be 4.70 over 73 classical
inbred strains. This limited diversity likely reflects
recent bottlenecks, where a limited number of chromo-
somes from the founder strains gave rise to the modern
inbred strains (Wade et al. 2002; Frazer et al. 2004,
2007). Among the 12 resequenced classical inbred
strains, an average of 3.46 ancestral segments were
identified. Like the analysis of shared segments, these
results suggest that most of the genetic variation existing
among the classical inbred strains can be explained by
the variation present in the resequenced strains.

Integrating NIEHS/Perlegen resequencing and Hap-
Map data: Now confident that we could identify

segment ancestry by reference to the 16 resequenced
strains, we proceeded to impute genotypes for the 8.27
million NIEHS/Perlegen SNPs on the 78 genotyped
strains using a hidden Markov model that determines
genome-wide transition and mutation parameters using
the EM algorithm (Dempster et al. 1977; Kang et al.
2009). A feature of the technique that we used for
imputation is the ability to obtain confidence levels for
each prediction (Kang et al. 2009). We were able to call
the majority of SNPs (79.2%) with high confidence
(posterior probability .0.98) when genotypes were
successfully called in all 16 resequenced strains (see
Table 2 for details). We found that confidence scores

Figure 3.—A phylogeny of the 94 Mouse HapMap strains. The domesticus wild-derived strains are in blue, and the non-domesticus
wild-derived strains are in red. The reference strain is in green. SOD1/EiJ and RBA/DnJ are hybrid strains.
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vary greatly, with 11 wild-derived strains having no high-
confidence imputed genotypes because their estimated
mutation rates were very high. In contrast, all 9 strains
with the C57BL/6 prefix have .99.7% with a high-
confidence call rate, due to their genetic proximity to
the reference strain C57BL/6J. We were also able to
impute genotypes missing in the 16 resequenced
strains, but only 17.2% of these with high confidence
due to poor probe quality resulting in unreliable data
(Table 2). We estimated the accuracy of our imputed
genotypes in two different ways. First, we used a leave-
one-out cross-validation approach to impute genotypes

for each of the 16 resequenced strains using the
remainder. When considering the SNPs with complete
data in the resequenced strains, the average leave-one-
out imputation error over the 12 classical inbred
resequenced strains was 1.59%, dropping to 0.27%
when only high-confidence genotypes were used (Table
3, Table S1). We found that these rates varied sub-
stantially among the 12 classical inbred strains (range:
1.17–3.63%; high-confidence genotype error range:
0.21–0.67%). These errors increase when considering
the four wild-derived strains, with the total imputation
error ranging from 13.0% to 34.1% (Table S2). These

Figure 4.—A histogram
of the fractions of shared
genomic segments be-
tween each of 4371 pairs
among the 94 strains.

TABLE 2

Classification of imputed genotypes that are untyped or experimentally missing

Genotype confidence

SNP quality High confidence Medium confidence Low confidence Total

Ungenotyped 8.22 million NIEHS/Perlegen genotypes over 78 nonresequenced strains
Fully resequenced 235,728,507 (36.7) 48,532,073 (7.57) 13,431,178 (2.09) 297,691,758 (46.4)
Mostly resequenced 137,628,908 (21.5) 34,464,866 (5.37) 21,237,494 (3.31) 193,331,268 (30.2)
Poorly resequenced 72,753,547 (11.3) 25,350,239 (3.95) 52,284,738 (8.15) 150,388,524 (23.4)
Total 446,110,962 (69.5) 108,347,178 (16.9) 86,953,410 (13.6) 641,411,550 (100)

Experimentally missing NIEHS/Perlegen genotypes over 16 resequenced strains
Mostly resequenced 1,109,113 (7.58) 958,986 (6.56) 1,316,561 (9.00) 3,384,660 (23.1)
Poorly resequenced 1,407,303 (9.62) 1,753,637 (12.0) 8,077,233 (55.2) 11,238,223 (76.9)
Total 2,516,416 (17.2) 2,712,673 (18.6) 9,393,794 (64.2) 14,622,883 (100)

Missing genotypes in the combined set
Total 744,725 (58.8) 263,196 (20.8) 257,847 (20.4) 1,265,768 (100)
Grand total 449,372,103 (68.4) 111,323,047 (16.9) 96,605,051 (14.7) 657,300,201 (100)

The percentage of imputed genotypes in each category is shown within parentheses. The confidence level corresponds to the
predicted posterior probability of the imputation method. The level of resequencing corresponds to the number of missing gen-
otypes in the 16 resequenced strains.
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error differences likely reflect the divergent ancestry of
the imputed strains because the marker set remains
biased toward the strains used for SNP discovery. Next,
we estimated accuracy by comparing our imputed
genotypes to data previously generated by the WTCHG
on 47 of the 78 genotyped strains (Table 4) and found a
total error rate of 4.86% (2.26% when excluding the 11
wild-derived and hybrid strains). Restricting our sample
to the 71.7% of the imputed genotypes called at high-
confidence genotypes reduces this error to 0.37%, .10
times smaller than recently published results for this
marker subset using a different method (Szatkiewicz

et al. 2008). As in the previous error estimate, the
imputation error again differs greatly by strain, ranging
from 0.065% to 20.9% (0.019% to 4.41% for high-
confidence imputed genotypes) (Table S3).

In summary, we were able to impute 657,300,201
genotypes across 8.27 million markers in 94 inbred
strains, including 14,622,883 experimentally missing
genotypes in the resequencing strains and 1,265,768
genotypes missing in the combined genotype sets
(Table 2). This creates a near-comprehensive snapshot
of variation in commonly available mouse strains.

To estimate the cost effectiveness of expanding this
resource, we evaluated the potential imputation cover-
age made possible by increasing either the number of
resequenced strains or the number of SNPs in the
HapMap as discussed in File S1, Figure S6, and Table S4.

Trait mapping with the Mouse HapMap resource:
This detailed picture of haplotype diversity in the mouse
allows us to map traits in the inbred strains by correlat-

ing genomic ancestry to trait measurements, rather than
generating de novo experimental crosses. This in silico
association mapping has two advantages: (1) it allows us
to capture the full spectrum of diversity in the inbred
strains rather than a subset used as progenitors of an
experimental cross and (2) phenotypic noise can be
minimized by performing replicates on genetically
identical individuals. In particular, this approach should
complement traditional QTL linkage mapping (often
successful at locating large chromosomal segments) by
providing a higher resolution, association-based com-
ponent and indeed has already yielded several positive
results (Grupe et al. 2001; Liao et al. 2004; Pletcher

et al. 2004; Guo et al. 2006; Liu et al. 2006; Moran et al.
2006; Cervino et al. 2007; Guo et al. 2007; Liu et al. 2007;
McClurg et al. 2007; Tang et al. 2008). The basic idea
behind this type of study is that a region is first identified
through a genetic cross or some other means, resulting
in a large QTL region typically in the tens of megabases
in length that contains many genes. Several dozen
inbred strains are then phenotyped, and association
analysis is performed in this region.

The association analysis requires two steps. The first is
to determine an appropriate significance threshold that
depends on the size of the QTL region. The second is to
perform the association on each marker within this
region. The key idea increasing the power of this
approach is that since only the markers under the
QTL are examined, the significance threshold will be
much less conservative than a genome-wide significance
threshold. We perform simulations to evaluate the

TABLE 3

Leave-one-out imputation error rates of 12 resequenced classical inbred strains using Mouse HapMap
SNPs, WTCHG SNPs, and gap-filling Perlegen SNPs

Genotype confidence

SNP quality High confidence (%) Medium confidence (%) Low confidence (%) Total (%)

Fully resequenced 0.27 (46.1) 6.40 (2.79) 19.0 (2.73) 1.59 (51.7)
Mostly resequenced 0.40 (25.3) 3.94 (3.50) 16.1 (2.98) 2.26 (31.8)
Poorly resequenced 0.76 (9.59) 4.05 (2.62) 15.8 (4.29) 5.18 (16.5)
Total 0.37 (81.1) 4.74 (8.91) 16.8 (10.0) 2.40 (100)

The percentage of imputed genotypes in each category is shown within parentheses.

TABLE 4

Imputation error rates of 47 inbred strains genotyped only in WTCHG SNPs, using Mouse HapMap
SNPs, and gap-filling Perlegen SNPs

Genotype confidence

SNP quality
High confidence

(%)
Medium confidence

(%)
Low confidence

(%) Total (%)

36 classical inbred strains 0.35 (88.9) 9.63 (6.74) 29.7 (4.37) 2.25 (100)
All 47 strains 0.37 (71.7) 8.85 (16.7) 27.0 (11.5) 4.86 (100)

The percentage of imputed genotypes in each category is shown within parentheses.
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statistical power and mapping resolution of such an
approach as well as provide insights into the design of
such studies.

Statistical power of in silico association: As has been
previously shown by several studies (Payseur and Place

2007; Manenti et al. 2009), data sets consisting of several
dozen strains do not have enough statistical power to
detect weak effects (5% variance explained) with
genome-wide significance. We evaluate the feasibility
and effectiveness of mapping in a localized region the
size of a typical QTL peak. One complication in our
analysis is that the high degree of relatedness between
strains described above introduces a systematic bias in
association mapping in silico: an inflation of test statistics

leading to false-positive associations, caused by popula-
tion structure and genetic relatedness among the strains
(Aranzana et al. 2005; Yu et al. 2006; Zhao et al. 2007;
Kang et al. 2008). For example, among the 180 phe-
notypes deposited in the Mouse Phenome Database at
the Jackson Laboratory with .30 distinct strains, 59%
(106) of them have .50% of the interstrain phenotypic
variance explained by population structure and genetic
relatedness measured by using a variance component
test (Figure 5). At an FDR level of 0.05, 51% (91) of the
phenotypes are significantly associated with population
structure. We and others have shown that these issues
can effectively be corrected using linear mixed models
(Yu et al. 2006; Zhao et al. 2007; Kang et al. 2008). To
evaluate the effectiveness of fine mapping through in
silico association, we use the Paigen2 study as a typical
study representative of the types of studies in the MPD
study (Svenson et al. 2007). The Paigen2 study contains
phenotype measurements for HDL cholesterol in 42
strains—33 classical inbred strains and 9 wild-derived
strains—and contains an average of 21 replicates per
strain (Table 5). While this study is somewhat larger
than most of the studies in the MPD, we chose this study

Figure 5.—Distribution of the frac-
tion of phenotypic variation explained
by population structure among the
strains over 180 quantitative pheno-
types deposited in the MPD with $30
strains.

TABLE 5

Inbred strains included in Paigen2 study phenotyped for
HDL cholesterol

Paigen2 classical inbred strains

Paigen2
wild-derived

strains

129S1/SvImJ C57L/J NOD/ShiLtJ CAST/EiJ
A/J C58/J NON/ShiLtJ CZECHII/EiJ
AKR/J CBA/J NZB/BlNJ JF1/Ms
BALB/cByJ CE/J NZW/LacJ MOLF/EiJ
BTBR T1tf/J DBA/1J PL/J MSM/Ms
BUB/BnJ DBA/2J RF/J PERA/EiJ
C3H/HeJ FVB/NJ RIIIS/J PWK/PhJ
C57BL/10J I/LnJ SEA/GnJ SPRET/EiJ
C57BL/6J KK/HlJ SJL/J WSB/EiJ
C57BLKS/J LP/J SM/J
C57BR/cdJ MA/MyJ SWR/J

Note that the Paigen2 study reports 43 strains because they
include phenotype measurements for BALB/cJ that we ig-
nore.

TABLE 6

Paigen2 strain sets significance thresholds

Strain set
10-Mb
region

20-Mb
region

30-Mb
region

Paigen2 All (42) 0.0001568 0.0000399 0.0000092
Paigen2 Inbred (33) 0.0001821 0.0000463 0.0000097
Paigen2 Modified (33) 0.0002380 0.0000716 0.0000201

a ¼ 0.05 pointwise P-value significance thresholds. The
Paigen2 Inbred set consists only of the 33 classical inbred
strains contained in Paigen2.
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to examine because it contained many phenotypes and
included both wild-derived and classical inbred strains,
which allowed us to explore study design choices in
terms of the strains chosen.

We performed simulations to obtain both the signif-
icance threshold and statistical power. As described in
Kang et al. (2008), the statistical power depends on the
background genetic effect or intuitively on how much
the intrastrain relatedness explains the phenotypic
variance. In our framework, this relatedness is modeled
with a variance component defined by the genetic
similarity between the strains. We performed our
simulations by varying the background genetic effect
from 25% to 75% to capture the wide range of potential
phenotypes. For actual phenotype values, the back-
ground genetic effect can be estimated from a pheno-
type by comparing the interstrain variance to the
intrastrain variance after fitting the variance component
model. Using simulations (see methods), we computed
the 0.05 level of significance for 10-, 20-, and 30-Mb
regions (see Table 6). We found that the level of the
background genetic effect did not affect the signifi-
cance threshold (data not shown), but the choice of
strains had a significant effect. We can observe this
phenomenon by comparing the significance threshold
of the full set of 43 strains to the significance threshold
of using just 33 classical inbred strains.

Using these thresholds, we performed an additional
set of simulations to compute the power to detect
various genetic effect sizes under the different back-
grounds and region sizes shown in Table 7. The results
show that the statistical power of a study of this size is
high either for phenotypes where the background
genetic effect is low or for strong genetic effects. Since
both the threshold and power depend on the strain set
and are estimated using computationally intensive
simulations, we provide a webserver resource (http://
mouse.cs.ucla.edu/) for performing these simulations
and threshold estimation.

We note that any set of strains is able to map only traits
linked to variation that is polymorphic within the set of
strains. Since the Mouse HapMap consists mostly of

TABLE 7

Statistical power of in silico association mapping

25% genetic
background effect

50% genetic
background effect

75% genetic
background effect

Region size Strain set 5% 10% 20% 5% 10% 20% 5% 10% 20%

10-Mb region Paigen2 Full (43) 0.8553 0.9951 1.0000 0.3632 0.7680 0.9777 0.1429 0.3855 0.7449
Paigen2 Inbred (33) 0.6185 0.9207 0.9942 0.1891 0.4379 0.7689 0.0754 0.1723 0.3795
Paigen2 Modified (33) 0.8667 0.9897 1.0000 0.4145 0.7162 0.9395 0.1910 0.3825 0.6505

20-Mb region Paigen2 Full (43) 0.8060 0.9918 1.0000 0.3032 0.7084 0.9639 0.1078 0.3232 0.6883
Paigen2 Inbred (33) 0.5196 0.8783 0.9885 0.1305 0.3449 0.6859 0.0484 0.1207 0.2910
Paigen2 Modified (33) 0.7919 0.9785 1.0000 0.3043 0.6072 0.8919 0.1218 0.2736 0.5346

30-Mb region Paigen2 Full (43) 0.7517 0.9881 1.0000 0.2506 0.6518 0.9481 0.0830 0.2663 0.6270
Paigen2 Inbred (33) 0.4909 0.8652 0.9867 0.1156 0.3195 0.6622 0.0428 0.1067 0.2707
Paigen2 Modified (33) 0.7649 0.9739 0.9998 0.2770 0.5709 0.8737 0.1045 0.2427 0.4966

TABLE 8

Resolution of in silico association mapping using the
Paigen2 data set

Strain set
1st

quartile Median Mean
3rd

quartile

Paigen2 All (42) 0.1137 1.3570 2.7170 4.6930
Paigen2 Inbred (33) 0.4276 2.6610 3.5420 6.0960
Paigen2 Modified (33) 0.2224 1.4350 2.7440 4.7950

Data are given in megabases.

TABLE 9

Modified inbred strain set to increase statistical power

Paigen2 overlap strains
Additional

strains
Paigen2

removed strains

129S1/SvImJ LP/J BPN/3J CAST/EiJ
A/J MA/MyJ ILS CZECHII/EiJ
AKR/J NOD/ShiLtJ ISS JF1/Ms
BALB/cByJ NON/ShiLtJ Fline MOLF/EiJ
BUB/BnJ NZB/BlNJ BPH/2J MSM/Ms
C3H/HeJ NZW/LacJ BPL/1J PERA/EiJ
C57BL/6J PL/J PWK/PhJ
C58/J RF/J SPRET/EiJ
CBA/J RIIIS/J WSB/EiJ
CE/J SEA/GnJ BTBR
DBA/2J SJL/J C57BL/10J
FVB/NJ SM/J C57BLKS/J
I/LnJ SWR/J C57BR/cdJ
KK/HlJ C57L/J

DBA/1J

We removed the wild-derived strains and 6 inbred strains that
are very genetically similar to other strains in the study and re-
placed these strains with more distant classical inbred strains.
The number of strains in the new set, 33, is equal to the num-
ber of classical inbred strains phenotyped in Paigen2.
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SNPs that are polymorphic among the laboratory strains
(not wild-derived), there is little power to detect SNPs
that are polymorphic only among the wild-derived strains.
Our simulation framework essentially ignores this prob-
lem since the possible set of simulated genetic variants
are, by necessity, within the set of data used to generate
the simulation. Alternative strategies for mapping traits,
such as genetic crosses that include wild-derived strains
or inbred strains with significant proportions of wild-
derived strain ancestry [such as the Collaborative Cross
(Churchill et al. 2004)], will have higher power to map
traits to loci polymorphic among wild-derived strains.
Furthermore, the statistical power to map a trait to a
specific locus greatly depends on the number of strains
carrying the minor allele of the locus, which is similar
to the effect of minor allele frequency on the power of
human association studies.

Resolution of in silico association mapping: The
main advantage of the in silico approach is the increased
resolution compared to traditional QTL approaches. To
evaluate the resolution, we again performed simula-
tions using the set of strains in the Paigen2 study. We
performed 10,000 simulations, and for each simulation
we generated phenotype data assuming a randomly
selected causal variant and then performed association
mapping over the generated phenotypes and recorded
the difference between the genomic location of the
most associated marker and the causal variant. The
resolution experiments demonstrate that the median
distance between the actual causal variant and the
closest marker is �3 Mb (Table 8), a significant
improvement over a traditional cross.

Design of in silico association studies: Interestingly,
as shown in Table 8, there was only a moderate power
loss when we considered using only the 33 classical
inbred strains from the Paigen2 study. Part of the reason

for this is that, for the SNPs that are unique to the wild-
derived strains and are not polymorphic in the classical
inbred strains, the power to detect associations at these
SNPs is low since there are relatively few wild-derived
strains included in the study.

We further explored how the choice of strains included
in the study affects statistical power. We note that among
the strains included in the Paigen2 study, there are several
strains from the C57 group that are very genetically
similar. A total of 6 strains of the 33 inbred strains are
very similar to other strains in the set. We constructed a
new set of inbred strains, removing these similar strains
and replacing them with more distant classical inbred
strains (Table 9). Using power simulations, we observed
that this set of 33 strains has more power than the set of
classical inbred strains included in the Paigen2 study and,
surprisingly, has comparable power to the complete
Paigen2 set of (43) strains (Table 7). These simulations
are computationally intensive, and as a resource for the
community, we provide a webserver (http://mouse.cs.
ucla.edu) for performing these simulations.

Mouse Phenome Association Database: To enable
the research community to have access to the population-
structure-corrected associations, we have developed a
corrected association database in conjunction with the
MPD, in which we find that 71/180 phenotypes collected
in .30 strains have at least one significant association
(P , 1 3 10�6). The database contains results for both
the genotyped and the imputed SNPs. Among the phe-
notypes, 11 (6.1%) phenotypes showed significant asso-
ciations across .20 different genomic regions, which
may indicate residual bias from other sources generat-
ing false positives. This may be compared to 24 (13%)
phenotypes showing association without population
structure correction to .20 different genomic regions,
while the total number of phenotypes with significant

Figure 6.—Number of phenotypes
with multiple genomic regions with sig-
nificant associations illustrating the de-
gree of inflated false positives over 180
quantitative phenotypes deposited in
the MPD with $30 strains.
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associations is similar (Figure 6). When comparing the
‘‘inflation factor’’ suggested by genomic control be-
tween different statistical tests, the t-test showed much
higher overall inflation (l¼ 2.08 6 1.29) compared to
the linear mixed model (l¼ 1.15 6 0.18) over the 180
MPD phenotypes, confirming that the rates from the
conventional t-test were overly inflated false-positive
rates (Figure 7).

DISCUSSION

We have described a high-density genotype resource
for 94 inbred mouse strains and have demonstrated the
viability of applying such a resource to fine mapping
using in silico association. Our genotype data are avail-
able at http://mouse.cs.ucla.edu/mousehapmap/. In
addition, we have established a website (http://mouse.
cs.ucla.edu/) at which researchers can download geno-
type data and access a genome browser that allows the
visualization of the haplotype and shared segment
analyses. The website also supports inbred association
mapping, allowing users to upload their collected
phenotypes, and computes the significance thresholds
and estimated statistical power. The website (http://
mouse.cs.ucla.edu) includes association results using
the genotypes and all collected phenotype data in the
Mouse Phenome Database.

A major concern for in silico association mapping has
been that the effect of population structure potentially
causes false positives. We have shown previously that
EMMA corrects for this population structure using a
linear mixed model (Kang et al. 2008) with a variance
component using a kinship matrix obtained from the
genetic similarity between strains. However, even with
the correction, there is a slight inflation of statistics
observed for some phenotypes in the associations in the
Mouse Phenome Database. This inflation may be caused
by a variety of factors, including different amounts of
phenotypic variance in each strain, the kinship matrix
not completely capturing the background genetic
effects, and other confounding effects such as ‘‘cage
effects,’’ which are correlated with the strains. We report
the genomic control l-values (Devlin and Roeder

1999) as a means of quantifying the amount of inflation,
and we urge users of the association database to take this
inflation factor into account when interpreting the
results of the phenotype associations.

Our study is one of several recent efforts for de-
veloping genetic and genomic resources for inbred
mouse strains. Recently, Yang et al. (2009) developed a
novel high-density genotyping array, which includes
many SNPs chosen from both the Mouse HapMap and
the Perlegen resequencing data (Frazer et al. 2007). In
addition, the Wellcome Trust Sanger is currently se-
quencing 17 mouse genomes (Sudbery et al. 2009)
(http://www.sanger.ac.uk/resources/mouse/genomes/).
Both of these efforts in combination with existing re-
sources will lead to more dense and accurate genetic
maps for laboratory strains.

Fine mapping of QTL loci by performing in silico
association using inbred strains is just one of several
approaches recently proposed to increase the mapping
resolution of traditional QTL approaches. Alternate
strategies include using the Collaborative Cross
(Churchill et al. 2004), which contains a large number
of inbred strains derived from eight parental inbred
strains; using a breeding strategy to avoid population
structure; using the Hybrid Mouse Diversity Panel
(Bennett et al. 2010), which combines classical inbred
strains with recombinant inbred strains; and using
outbred stock (Valdar et al. 2006). Each of these
strategies has advantages and disadvantages.

The mouse community is just one of many commu-
nities developing genetic and genomic resources for
mapping complex traits. Similar efforts are being un-
dertaken for many model organisms including Arabi-
dopsis (Borevitz et al. 2007), Drosophila (Mackay and
Anholt 2006), dog (Lindblad-Toh et al. 2005), and rat
(Star Consortium 2008).
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Figure 7.—Comparison of genomic
control ‘‘inflation factors’’ between t-test
and linear mixed model across 180 MPD
phenotypes.
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