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ABSTRACT

Dissecting the genes involved in complex traits can be confounded by multiple factors, including
extensive epistatic interactions among genes, the involvement of epigenetic regulators, and the variable
expressivity of traits. Although quantitative trait locus (QTL) analysis has been a powerful tool for
localizing the chromosomal regions underlying complex traits, systematically identifying the causal genes
remains challenging. Here, through its application to plasma levels of high-density lipoprotein cholesterol
(HDL) in mice, we demonstrate a strategy for narrowing QTL that utilizes comparative genomics and
bioinformatics techniques. We show how QTL detected in multiple crosses are subjected to both
combined cross analysis and haplotype block analysis; how QTL from one species are mapped to the
concordant regions in another species; and how genomewide scans associating haplotype groups with
their phenotypes can be used to prioritize the narrowed regions. Then we illustrate how these individual
methods for narrowing QTL can be systematically integrated for mouse chromosomes 12 and 15, resulting
in a significantly reduced number of candidate genes, often from hundreds to ,10. Finally, we give an
example of how additional bioinformatics resources can be combined with experiments to determine the
most likely quantitative trait genes.

COMPLEX traits are the rule rather than the
exception in nature, regardless of whether one’s

scientific perspective originates within the realm of
agriculture, ecology, medicine, or another biological
discipline. Heritable phenotypic variation is the cor-
nerstone of natural and artificial selection. Simple one-
to-one relationships between traits and genes would
yield predictable and easily manipulated outcomes.
Indeed, farmers, horticulturists, and breeders have been
manipulating the traits of organisms for millennia
(Vila et al. 1997; Pringle 1998; Kislev et al. 2006).
However, almost all traits are controlled by complex
gene–gene and gene–environment interactions, and
the predictable manipulation of the genes or gene
products controlling them is anything but simple.
Successful dissection of the individual genetic com-
ponents of complex, or quantitative, traits will re-
veal invaluable insights into their regulation and
will provide targets for their manipulation. In addi-
tion, since the investigation of proximate factors and
the study of ultimate causes are complementary, this
reductionist approach of dissecting out quantitative
trait genes will likely prove to be a Rosetta stone for

comprehending the roles of adaptation, evolutionary
legacy, and pleiotropy in maintaining variation within
traits.

Model organisms facilitate the discovery of complex
trait genes through classical experimental techniques
and, more recently, through the application of bio-
informatics resources and tools. For biomedical re-
searchers, they also provide important models for
many human diseases. Using model organisms, many
complex traits of medical and agricultural importance
have been mapped to chromosomal regions by quanti-
tative trait locus (QTL) analysis (Moore and Nagle

2000; Peters et al. 2007). QTL mapping, based on
classical forward genetics techniques together with
statistical methodologies developed within the field of
quantitative genetics, has succeeded in exposing the
complex genetic architecture of many quantitative
traits. For example, 38 QTL for drought resistance have
been found in rice (Gramene: A Resource for Compar-
ative Grass Genomics, Version 23, March 2008; http://
www.gramene.org; Jaiswal et al. 2005), at least 40
unique QTL for milk yield have been mapped in cows
(QTL Map of Dairy Cattle Traits, March 2008; http://
www.vetsci.usyd.edu.au/reprogen/QTL_Map; Khatkar

et al. 2004), and 13 unique bone mineral density
QTL have been mapped in rats (Rat Genome Database,
March 2008; http://rgd.mcw.edu). However, despite the
thousands of known QTL and the well-understood
importance of elucidating their causal genes, relatively
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few quantitative trait genes (QTGs) have been identified
(Flint et al. 2005). Much of the difficulty associated with
proving QTGs lies in the prolonged and costly process of
narrowing a QTL to a region with few enough candidate
genes that each can be thoroughly tested.

This ability to reduce QTL to a small number of
testable candidate genes will be essential for increasing
the rate at which QTGs are identified and proven. We
present here an effective strategy for narrowing QTL
that harnesses the power of a variety of methods by
combining results from experimental crosses with the
newer bioinformatics tools and statistical methods
reviewed recently (DiPetrillo et al. 2005). We system-
atically demonstrate the step-by-step integration of ex-
perimentally determined QTL with combined cross results,
haplotype block analyses, comparative genomics, and
genomewide haplotype association mapping (HAM)
using plasma levels of high-density lipoprotein choles-
terol (HDL) in inbred lines of mice as an example
complex trait.

The effectiveness of integrating these methods for
narrowing QTL regions, and hence reducing candidate
gene lists, is illustrated using two different mouse
chromosomes as specific examples. Our analysis of
mouse chromosome 12 illustrates the application and
integration of all four bioinformatics tools, and our
analysis of mouse chromosome 15 provides an example
of the effectiveness of this strategy even when not all
tools are applicable.

METHODS AND RESULTS

To visualize this integration of QTL-narrowing meth-
ods, we first standardized a system for representing the
different components of our analysis on chromosome
maps. Here we represent the mouse chromosomes
using one column per 1.0 Mb in Excel spreadsheets,
but any program with the ability to manipulate in-
formation in rows and columns would suffice. Alterna-
tively, the genome browsers Ensembl (http://www.
ensembl.org) and UCSC Genome Bioinformatics (http://
genome.ucsc.edu) include software that enables users
to upload customized data sets, in a mutually compat-
ible format, as additional annotation tracks (Kent et al.
2002; Hubbard et al. 2006; Kuhn et al. 2007). One
advantage of using the genome browser tools is that the
data set is automatically updated as new builds are
released.

After constructing chromosome maps of appropriate
lengths, we add the following: (1) the peak and 95%
confidence intervals for all relevant QTL analyses, (2)
the peak and 95% confidence intervals for combined
cross analyses, (3) the regions where QTL of other
species are homologous to the study organism’s QTL,
(4) the results of haplotype block analyses, and (5) the
results of HAM analyses. Figure 1 illustrates the results
of this process for our two murine HDL QTL examples.

QTL mapping: HDL cholesterol is a highly complex
trait, as evidenced by �40 unique QTL influencing
plasma HDL levels in mice. These unique loci were
estimated from the 111 HDL QTL identified by 23
different inbred line crosses (Rollins et al. 2006). We
placed the peak location and the 95% confidence
intervals of each cross onto our chromosome maps. If
published crosses reported no confidence intervals, we
estimated them to be 20 cM surrounding the peak.
Because genetic linkage positions (in centimorgans)
from QTL analyses are based on recombination fre-
quencies, precise conversion to physical positions (in
megabases) is difficult to standardize. To standardize
our conversion of centimorgans to megabases, first we
created a publicly available database (http://cgd.jax.org)
linking centimorgans to megabases in mice through
MIT markers, commonly used sequence-tagged sites
developed by the Whitehead Institute at MIT. Second,
for the edges and peaks of our QTL and combined
crosses, we averaged the megabase values for the
relevant centimorgan positions and calculated their
standard deviations. For the edges, we chose the most
inclusive MIT marker within one standard deviation of
the mean megabase value; for the peaks, we chose the
MIT marker closest to the mean megabase value.

Figure 1A shows mouse chromosome 12 with its three
known HDL QTL: 129S1/SvImJ 3 RIIIS/J (129 3 RIII)
(Lyons et al. 2004), C57BL/6J 3 129S1/SvImJ (B6 3

129) (Ishimori et al. 2004), and RF/J 3 NZB/B1NJ
(RF 3 NZB) (Wergedal et al. 2007). We also present
mouse chromosome 15 (Figure 1B) with only its mid-
region HDL QTL illustrated: MRL/lpr 3 BALB/cJ
(MRL 3 BALB) (Gu et al. 1999). Although chromosome
15 has HDL QTL at its proximal, middle, and distal
regions, we are presenting the mid-chromosome QTL
alone to demonstrate both the limitations and the
successes of using this integrated strategy for a QTL
supported by only a single known cross.

Because the following methods depend on the
assumption that colocalized QTL share causal genes,
we advocate examining the chromosomal LOD score
plots for the possibility of multiple peaks. In the case of a
QTL with multiple causal genes, the researcher should
be aware that the portions removed from consideration
by the following methods may contain QTL genes and
that the focus of this method will therefore be on genes
shared by all crosses in the analysis. For example, an
examination of the chromosome scans of RIII 3 129
and B6 3 129 for chromosome 12 (Figure 2) shows that
the RIII 3 129 QTL may have multiple peaks and may
therefore be caused by multiple genes. Distinct peaks
are not discernible in the RF 3 NZB chromosome scan
for chromosome 12 (not shown), but its broad peak sug-
gests the possibility that it also contains multiple causal
genes (Wergedal et al. 2007). Therefore, we acknowledge
that the analysis of chromosome 12 presented here will
uncover only the causal genes common to all three crosses.
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Combined cross analysis: It is possible to combine the
genotype and phenotype data from crosses that yield
colocalized QTL (Li et al. 2005), the assumption being
that the QTL from each cross are caused by the same
underlying gene. By recoding the genotypes of the
different crosses as ‘‘high,’’ ‘‘low,’’ and ‘‘heterozygous,’’
crosses genotyped with different markers can be com-
bined using software such as Pseudomarker (http://
research.jax.org/faculty/churchill), MATLAB, or R/
QTL (http://www.rqtl.org; Sen and Churchill 2001),
and the QTL linkage analysis can be rerun using the
combined data set. The polymorphisms used for geno-
typing the crosses do not need to be the same because
Pseudomarker, MATLAB, and R/QTL can infer the
missing genotypes from adjacent markers and the re-
combination frequencies. In addition, because the
original cross-segregation data are needed to employ
this powerful narrowing method, we encourage re-
searchers to publicly archive their QTL data sets. (For
mouse data, archive at http://research.jax.org/faculty/
churchill.)

This process of combining crosses increases statistical
power. Therefore, when the assumption that the QTL
are caused by the same gene is valid, the 95% confi-
dence interval of the underlying unique QTL is typically
narrowed. An excellent example was illustrated by
DiPetrillo et al. (2005), where combining four crosses
for an HDL QTL on chromosome 4 narrowed the QTL
from 30 to 10 cM. However, sometimes the assumption
is violated. In such cases, where the QTL are caused by

multiple genes, the increased statistical power of com-
bining crosses may help discern that fact. For example,
when multiple causal genes are shared by the QTL from
different crosses, combining those crosses may reveal
distinct multiple peaks, as illustrated by Ishimori et al.
(2008), where two crosses yielding a broad QTL for
bone mineral density on chromosome 9 were com-
bined, revealing two distinct peaks at cM 34 and cM 50.
On the other hand, when the different cross QTL are
caused by completely different genes, combining those
crosses may fail to narrow or may even widen the 95%
confidence interval. In any case, the exercise of com-
bining the crosses of colocated QTL can be informative,
as it may provide an indicator that one’s assumptions
about those QTL are overly simplistic. If there is some
indication that the QTL are caused by completely
different genes, then one would hesitate to continue
work based on those assumptions.

In our example, we combined the two crosses on
chromosome 12 with publicly available data sets using
MATLAB software (Figure 1A). The 330 samples from
RIII 3 129 (LOD 5.1) plus the 294 samples from B6 3

129 (LOD 6.2) combined to yield a narrowed interval
with a LOD score of 11.7. This reduced the QTL to a
26.3-Mb interval containing 135 genes.

Comparative genomics: Conservation of genes and
proteins across a wide evolutionary spectrum validates
the use of model organisms as indispensable tools for a
broad array of queries in biology. For queries in the
biomedical sciences, comparisons between rodents and

Figure 1.—Chromo-
some HDL QTL maps with
bioinformatics tools. (A)
Mouse chromosome 12
map. (B) Mouse chromo-
some 15 map. Shaded re-
gions are the inclusive
intervalswithin eachanalysis
and correspond to the val-
ues on the right for size (in
megabases) and number of
genes. The parental strain
from each cross shown in
red type is the strain with
‘‘high’’ HDL. Solid bars
within the QTL and com-
bined crosses represent re-
ported QTL peaks. Open
boxes represent areas within
the QTL confidence inter-
vals that are consistent with
the corresponding analysis
but that are eliminated be-
cause they do not overlap
with all the analyses.
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humans are especially useful, owing both to the rela-
tively recent evolutionary split between the two lineages
and to the extensive data already available on rodents.
However, comparisons among a variety of organisms are
increasingly tenable thanks to the recent explosion
and continued growth of shared genome resources.
Comparative genomics is therefore becoming a more
useful and powerful tool for locating the genes un-
derlying traits of interest across a range of biological
disciplines.

In addition to our ever-increasing wealth of genome
sequence data and published QTL studies, curated web-
based resources for helping researchers directly com-
pare syntenic regions across species are available and
improving. In addition to the Rat Genome Database
(http://rgd.mcw.edu) where comparisons among rat,
mouse, and human QTL can be made, there are
excellent resources within the field of agricultural
genetics that also allow for the side-by-side comparison
of QTL data across species. For example, the Animal
QTLdb (http://www.animalgenome.org/QTLdb) is a
comprehensive database that allows for the direct
comparison of concordant QTL across genomes; it is
currently limited to livestock (chickens, cows, pigs, and
sheep), but is expected to expand to include rat, mouse,
and human data as well (Zhi-Liang and James 2007).
Gramene (http://www.gramene.org), another valuable
resource, is a repository and tool for investigations of
cereal genomes including rice, wheat, maize, sorghum,
barley, rye, sugarcane, and other agriculturally impor-
tant crop grasses ( Jaiswal et al. 2006).

QTL have a high degree of concordance between
mice and humans for plasma lipids (Wang and Paigen

2005), hypertension (Stoll et al. 2000; Sugiyama et al.
2001), and other traits. We exploit that relationship and
employ the power of comparative genomics in our QTL-
narrowing strategy by making the assumption that
concordant QTL in mice and humans have the same
causal gene. By doing so, we narrow our focus within
mouse HDL QTL to only the regions homologous to
concordant human HDL QTL. As described in Rollins

et al. (2006), we constructed a complete mouse-by-
human gene list with genomic position information
included for both species. With the list sorted by the
human genomic position information, we added all
known human HDL QTL; then, with the list sorted by
the mouse genomic position information, we added all
known mouse HDL QTL. This mouse–human compar-
ative gene map with HDL QTL delineated is freely
available (http://pga.jax.org/qtl/index); gene lists
used for creating this map were downloaded from
Ensembl (NCBI Bld36, http://www.ensembl.org/Mus_
musculus).

We incorporated this human QTL information with
the data from previous steps by adding these homolo-
gous human HDL QTL to our integrated chromosome
maps (Figure 1). By considering only those QTL regions

within both the combined crosses and the comparative
genomic intervals, we further narrowed both of our
QTL. The chromosome 12 QTL was reduced from 26.3
to 12.0 Mb, and the chromosome 15 QTL from 23.9 to
18.4 Mb, with a corresponding reduction from 135 to 49
and 147 to 119 genes, respectively.

Haplotype block analysis: Linkage disequilibrium is
evident in the mosaic block-like arrangement of genetic
variation along chromosomes, in which discrete pat-
terns of contiguous shared polymorphic alleles are
observed within species. These shared regions of poly-
morphic alleles, or ‘‘haplotype blocks,’’ stem from
ancestral meiotic crossovers and are the basis for both
haplotype block analyses and HAM (described below).
Within a species or population, the maximum number
of discernible haplotypes within any haplotype block
depends on the number of lineages represented in that
group. Recently derived evolutionary lineages and re-
cently bottlenecked populations will have fewer haplo-
type groups and larger blocks, making them especially
amenable to this type of analysis. This is particularly true
of the laboratory mouse, a lineage established �100
years ago from a limited set of founders; these founders
were primarily Mus domesticus, but there were genetic
contributions from M. musculus and M. castaneus as well
(Yang et al. 2007). As such, the inbred laboratory strains
have large blocks of DNA regions that appear to be
identical by descent.

Performing haplotype block analyses requires dense
marker maps at the chromosomal region of interest for
the strains or populations in which the QTL was
identified. To exploit this by-product of genomic
evolution for the purpose of narrowing QTL, we make
the assumption that shared haplotypes within haplotype
blocks correspond to shared variation in complex traits.
In other words, we assume that differences in the
causative gene are present in the ancestral variation
and are not due to mutations that have occurred since
the most recent common ancestor in outbred popula-
tions or among the founders of inbred lines of labora-
tory organisms. ‘‘Non-ancestral’’ variation in laboratory
mice, or recent variation among strains within clades, is
especially unlikely when multiple crosses support a
QTL.

QTL are narrowed by including only those haplotype
blocks that segregate according to the expectation that
strains or populations that share the ‘‘high’’ allele will
share one haplotype, while strains or populations that
share the ‘‘low’’ allele will share a second haplotype.
However, researchers must be aware of the divergent
lineages in their experiments, as those may have
alternate ‘‘high’’ and ‘‘low’’ alleles. For example, for a
mouse QTL supported by the crosses C57BL/6J 3

CAST/EiJ (B6 3 CAST) and C57BL/6J 3 DBA/2J
(B6 3 DBA), it is not always reasonable to assume that
the wild-derived strain CAST, which is composed mainly
of M. m. castaneus genomic regions, will share the same
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allele with the ‘‘classic’’ inbred strain DBA, which is
derived mainly from M. m. domesticus with some
stretches of M. m. musculus and very little M. m. castaneus
(Yang et al. 2007). In this case, haplotype analyses
should therefore be performed both with and without
the CAST haplotypes.

In addition, if evidence suggests that a QTL might be
caused by multiple genes, then haplotype block analyses
should be conducted using each appropriate combina-
tion of strains or populations. For example, since the
complex LOD score plot of the RIII 3 129 QTL in our
chromosome 12 example revealed the possible pres-
ence of multiple peaks (Figure 2), there may be more
than one QTG responsible. Therefore, to investigate
each apparent peak, such as the apparent peak in the
region where only RIII 3 129 and NZB 3 RF overlap, we
would haplotype each strain combination in separate
analyses (not shown).

To conduct our haplotype block analyses, we used
marker maps consisting of 7557 (chromosome 12) and
7361 (chromosome 15) SNPs from a combination of
SNP resources including Wellcome Trust, Broad In-
stitute, and Perlegen, and we performed all analyses
using Excel. Alternatively, for mouse research, an
additional online tool that permits haplotype analysis
across the entire genome for 16 strains of inbred mice
is available through the Mouse Phenome Database
(http://www.jax.org/phenome) (Bogue et al. 2007).
Since the resolution of both haplotype analysis and
haplotype association mapping is finer than the 1.0-Mb
resolution of our maps in Figure 1, we suggest simulta-
neously mapping your results from these analyses onto a
complete gene list for the relevant chromosomal in-
terval. This can be accomplished either by downloading
gene lists (e.g., using Ensembl’s BioMart data-mining
tool or UCSC Genome Bioinformatics’ Table Browser)
and then aligning these data to your map information
or by uploading customized annotation tracks directly
to the Ensembl or UCSC genome browsers.

In our example, examining only the intervals left
within the narrowed region that are also located within
our haplotype blocks (Figure 1), our number of
candidates were further reduced from 49 to 11 (chro-
mosome 12) and from 119 to 43 (chromosome 15)
genes.

Haplotype association mapping: Haplotype associa-
tion mapping for complex traits, previously referred to
as in silico QTL mapping, requires both dense marker
maps and phenotype data for multiple inbred strains or
populations. First proposed by Grupe et al. (2001) and
subsequently improved by Pletcher et al. (2004), HAM
employs an algorithm that systematically scans a ge-
nome searching for genotype–phenotype correlations.
In essence, as a sliding window of analysis moves
through the marker map, shared haplotypes are
grouped, the mean phenotype values of the haplotype
groups are computed, analyses of variance are carried

out, and permutations are performed to establish
thresholds of significance. The statistical power of the
analysis is influenced by the composition of the strain
panel, the density and distribution of SNPs used, and
the sliding window size. HAM as a method has been
criticized primarily because of its perceived high rate of
false positives (Chesler et al. 2001), but there are also
concerns about the use of related strains for HAM, the
confidence interval of the HAM peaks, the method used
to determine statistical significance, and how best to
determine the appropriate strain number and SNP
density for different traits (Pletcher et al. 2004; Zhang

et al. 2005; McClurg et al. 2006; Cervino et al. 2007). We
recognize that these are legitimate concerns and that
the method needs improvements. Nevertheless, re-
searchers have shown its usefulness under certain
conditions (Pletcher et al. 2004; Cervino et al. 2007;
Payseur and Place 2007). And, we have found that,
when integrated with experimental crosses and the
bioinformatics techniques that we describe here, HAM
can be a powerful QTL-narrowing method, particularly
if a sufficient number of strains and SNPs are used to
increase the statistical power.

For our analysis, we used a panel of 63,222 SNPs for 79
inbred strains of mice and mean log HDL levels per
strain. Our SNP panel was compiled from SNP resources
including Wellcome Trust, Broad Institute, and Perle-
gen, and missing SNPs were restored using hmmSNP
1.0.0 (Szatkiewicz et al. 2008). The 79 strains of mice
included the Mouse Phenome Project inbred strains

Figure 2.—Chromosomal LOD score plots for chromo-
some 12. The LOD score plot for the B6 3 129 intercross
is shown as a solid line and the LOD score plot for the
RIII 3 129 intercross is shown as a dashed line. Each plot re-
veals the likely presence of more than one QTL gene on the
chromosome. The y-axis is the LOD score; the x-axis is the
genome position in centimorgans. All mice were fed the ath-
erogenic diet. RIII 3 129: n ¼ 330 males and females; B6 3
129: n ¼ 294 females.
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(excluding the wild-derived strains), A/J 3 C57BL6/J
recombinant inbred lines, C57BL6/J 3 DBA/2J re-
combinant inbred lines, and C57BL6/J.A/J chromo-
some substitution strains. The exact list of strains,
HDL data, and SNPs used are available at http://cgd.
jax.org.

Although methods for improving or replacing the
sliding window in HAM analyses are being refined by
other researchers, here we used a sliding three-SNP-
wide window and a simple scan model of ‘‘phenotype ¼
haplotype’’ followed by permutation tests using 1000
permutations to determine significance. Peak locations
at thresholds corresponding to genomewide signifi-
cance of P , 0.05 (significant), P , 0.1 (highly sug-
gestive), and P , 0.63 (suggestive) (Churchill and
Doerge 1994) were determined and mapped (Figure
1). However, on chromosome 15, only suggestive peaks
were found; on chromosome 12, its many suggestive
peaks for HDL obscured its significant peaks, so only the
latter were mapped. For both chromosomes, we also
included 500 kb on either side of each HAM peak in our
analysis. We did this because it has become evident that,
while accurate, association mapping (both HAM and
genomewide association studies) lacks precision due to
incompletely understood linkage disequilibrium. By
adding 500 kb around our HAM peaks, we are attempt-
ing to mitigate this lack of precision and are hoping
that the extra megabase included captures all potential
underlying genes.

By considering only the QTL coordinates within the
combined crosses interval, the comparative genomics
regions, the haplotype blocks, and also the HAM peaks,

our two QTL were even further reduced from 2.9 to 0.7
Mb and from 4.3 to 0.7 Mb (Figure 1), corresponding to
a final reduction in the number of candidate genes from
11 on chromosome 12 and from 43 on chromosome 15
to 7 in each case (Table 1).

Identifying QTGs: Although rigorous experimental
testing of all narrowed QTL candidate genes would be
ideal, such a strategy is not always practical. Using our
narrowed list of seven candidate genes for the chromo-
some 12 HDL QTL, here we provide an example of how
to arrive at the most probable underlying QTG by
judiciously combining publicly available bioinformatics
resources with laboratory experiments.

Because trait variation is caused by changes in the
function of a protein or by differences in the amount
of protein available, we start by searching for SNPs
and expression differences between the parental strains
of the QTL crosses. For mice, the Mouse Phenome
Database (http://phenome.jax.org/phenome) is an
excellent resource for comparing SNPs among strains,
as it contains SNP locations and annotations from
multiple sources with relevant hyperlinks. The Ensembl
genome browser (http://www.ensembl.org) is another
useful resource for comparing SNPs within transcripts
among strains. SNPs found within exons, and in
particular annotated nonsynonymous SNPs, should be
further investigated to determine whether or not they
are situated in functional domains and whether or not
the substitutions cause changes in polarity or acidity.
This information can also be obtained from sources
such as Ensembl or from the Expasy Proteomics Server
(http://expasy.org).

TABLE 1

Candidate gene lists from final narrowed QTL

Gene

Chr Build 36 Build 37 Ensembl gene ID Strand Start (bp)a End (bp)a

12 4921508M14Rik Same ENSMUSG00000052376 � 35,459,173 35,459,613
Prps1l1 Same ENSMUSG00000046292 1 35,569,960 35,571,508
Snx13 Same ENSMUSG00000020590 1 35,632,289 35,730,455
Predicted gene mmu-mir-680-3b ENSMUSG00000076253 � 35,779,883 35,779,969
Predicted gene U6c ENSMUSG00000065195 1 36,026,262 36,026,368
Ahr Same ENSMUSG00000019256 � 36,088,776 36,119,695
Immp2l Same ENSMUSG00000056899 1 41,578,735 42,825,386

15 Thrap6 Med30 ENSMUSG00000038622 1 52,542,528 52,560,514
Ext1 Same ENSMUSG00000061731 � 52,898,747 53,175,446
Enpp2 Same ENSMUSG00000022425 � 54,668,984 54,750,085
Taf2 Same ENSMUSG00000037343 � 54,852,286 54,902,012
2600005O03Rik Same ENSMUSG00000022422 � 54,906,185 54,920,574
Predicted gene Same ENSMUSG00000053749 � 54,940,359 54,943,762
Depdc6 Same ENSMUSG00000022419 1 54,942,407 55,084,285

Chr, chromosome.
a Genome coordinates are from NCBI Mouse Build 36.
b This gene encodes a microRNA.
c This gene encodes a spliceosomal RNA.
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For examining gene expression differences, data-
bases of expression profiles are increasingly available.
In mice, strain-specific mRNA expression profiles of
liver tissue for 12 strains are available at http://www.
ncbi.nlm.nih.gov/geo (GEO accession GSE10493), and
expression QTL data for liver, fat, adipose, and pancreas
tissues in up to 33 strains, as well as tissue expression
levels in .75 tissue types, are available through the
Genomics Institute of the Novartis Foundation (GNF)
BioGPS Website and Database (https://biogps.gnf.org).
For each candidate gene with available data, an exam-
ination of the expression differences among the parental
strains should be conducted. In addition, the tissue-
specific expression data should be examined if one
expects increased expression in a certain tissue type. For
example, for our HDL candidate QTGs, we looked for
evidence of expression at least two times greater than
the median in liver tissue, which plays a critical role in
cholesterol metabolism.

For our seven chromosome 12 candidate genes, we
searched these publicly available databases and have
compiled the results in Table 2. In Prps1l1 and Ahr, we
found evidence of nonsynonymous SNPs that differ
between B6 and 129 and that are the same for the
‘‘high’’ HDL strains NZB and 129. SNP information for
RIII and RF is either imputed or not available, so these
strains were not included. Prps1l1, a phosphoribosyl-
pyrophosphate-synthetase-1-like expressed sequence,
has one nonsynonymous SNP. This SNP causes a change

in polarity and is located within the phosphoribosyl
transferase domain and the ribose–phosphate pyro-
phosphokinase domain; however, it is not currently
known whether this substitution causes any change in
function. Ahr, the aryl hydrocarbon receptor, has three
nonsynonymous SNPs, including one located in a
functional domain, the PAC domain, a structurally
conserved region involved in the conformational
changes that occur in its associated PAS domain during
ligand binding and activation for signal transduction
(Vreede et al. 2003). Although this alanine-to-valine
substitution does not cause a polarity or acidity change,
it is known to result in a 4-fold reduction in specific
ligand binding (Poland et al. 1994). In addition, while
we found no significant expression differences .1.5-
fold between 129 and B6 in any of the genes, we did find
that both Ahr and Immp2l are highly expressed in liver
tissue. Prps1l1, on the other hand, is expressed mainly in
the testes.

Bioinformatics has thus reduced a large QTL on
chromosome 12 to three possible candidate genes:
Prps1l1, Immp2l, and Ahr. With its high expression in
liver and a nonsynonymous substitution known to cause
a functional change, Ahr is the most likely candidate for
the chromosome 12 QTL shared by the RIII 3 129, NZB
3 RF, and B6 3 129 crosses. Prps1l1 is less likely because,
although it has a coding region change that might affect
function, it is expressed mostly in testes. Immp2l, on the
other hand, has high expression in the liver, but

TABLE 2

Chromosome 12 candidate gene evidence summary

Gene IDa Cn SNP?b

Amino acidc

(B6/AA/129)

Amino acid
propertyd

(B6/129)
Functional
domain?e

Expression
difference?f

High
expression

in liver?g

4921508M14Rik No — — — No No
Prps1l1 Yes:

rs3384124
Ala/231/Thr Nonpolar/polar RibP_Ppkin and

PRtransferase
No No

Snx13 No — — — No No
microRNA: mmu-mir-680-3 Noh — — — No data No data
Spliceosomal RNA: U6 Noh — — — No data No data
Ahr Yes:

Yes
(.53 median)

rs3021620 Ser/533/Asn Polar/polar No No
rs3021964 Leu/471/Pro Nonpolar/nonpolar No
rs3021544 Ala/375/Val Nonpolar/nonpolar PAC

Immp2l No — — — No Yes
(.23 median)

a External gene identification symbol with Ensembl gene identifier number below.
b Nonsynonymous single nucleotide polymorphism.
c Amino acid for C57BL/6J and 129S1/SvImJ strains at the protein position number shown (AA no.).
d R-group property of amino acid in C57BL/6J and 129S1/SvImJ strains.
e RibP_Ppkin, ribose-phosphate pyrophosphokinase domain; PRtransferase, phosphoribosyltransferase; PAC, PAS-associated C-

terminal domain.
f mRNA expression difference between 129S1/IvmJ and C57BL/6J strains.
g mRNA expression in liver .23 median.
h RNA genes were examined for any SNPs between relevant strains, and none was found.
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unknown expression differences among the strains. The
final step in this QTL-to-QTG process is to test these
genes in experiments. The expression of Prps1l1 and
Immp2l should be carried out in the relevant strains, and
the Ahr polymorphisms should be confirmed. In addi-
tion, congenics or knockouts could be tested for
predicted differences in their plasma concentrations
of HDL. For example, four murine alleles of Ahr are
known to exist; one of these alleles, the Ahrd allele from
strain DBA/2J, which is shared by strain 129, has been
moved as a congenic into the B6 strain. On the basis of
high levels of HDL in strain 129 and low levels of HDL in
B6, we predict that the Ahrd congenic strain will show
increased levels of HDL compared to B6 controls.
Hence, these bioinformatics tools not only help narrow
QTL to testable lists of candidate genes, but also lead to
more focused and hypothesis-driven benchwork.

DISCUSSION

The genetic architecture of complex phenotypes
appears to vary considerably from one trait to another,
including differences in number of contributing loci,
relative magnitude of locus effects, and extent of gene–
gene and gene–environment interactions. These factors
impact our ability to fully ascertain all genes involved in
a quantitative trait (Flint et al. 2005), resulting in an
unequal likelihood of success across traits. In addition,
poorly understood genetic mechanisms, such as regu-
latory enhancers located within unrelated genes, can
lead us to the causative sequence variant for a QTL while
not leading us to the proper gene (Lettice 2002). And
inevitably, some QTGs will not satisfy the assumptions of
the methods described and will therefore be over-
looked. We advocate a conservative approach that in-
volves careful scrutiny of chromosomal LOD score plots
and allele-effects graphs, since invalid assumptions and
methodological imprecision may incorrectly narrow a
region, leading to misguided investigations of inappro-
priate gene intervals. We also recognize that this gene-
centric approach will not always uncover regulatory
elements such as undescribed microRNAs that may also
be contributing to the observed variation. Regardless,
while identifying all genes and regulators that underlie
complex traits remains challenging, integrating the
methods discussed here will help bridge the gap, in
many cases, between finding QTL and identifying
candidate QTGs.

Additional resources for reducing candidate QTG
lists include tissue expression data (GNF BioGPS Web-
site and Database; https://biogps.gnf.org), mRNA expres-
sion data from microarrays such as the 12-strain mouse
liver microarray survey that we carried out (http://
www.ncbi.nlm.nih.gov/geo, GEO accession GSE10493)
and data on gene-specific SNP differences among strains
(http://www.jax.org/phenome). Candidate genes can
then be tested using a variety of experimental methods,

including RNA interference technology, deficiency
complementation tests, knockouts, gene sequencing,
pathway analysis, quantitative RT–PCR, Northern blots,
Western blots, reporter gene assays, and various other
protein assays.

As we have demonstrated, our bioinformatics toolbox
can be used to narrow large QTL to a small list of
testable candidate genes. Even when only some of the
tools can be applied, QTL can still be substantially
narrowed. Here, we narrowed our multi-cross QTL on
chromosome 12 from 750 genes down to 7 candidates, a
reduction of 99.1%, and we narrowed our single-cross
QTL on chromosome 15 from 147 genes also down to
7 candidates, a reduction of 95.2%. Which of these
individual approaches provides the most narrowing
depends on many factors, including the crosses and
the chromosomal region involved. As we have shown, it
is the integration of these approaches that narrows QTL
more than any one method alone. Additionally, we have
further demonstrated the power of publicly available
data and bioinformatics resources in reducing a testable
list of candidate genes down to the most likely candidate
gene underlying the mouse chromosome 12 QTL, the
aryl hydrocarbon receptor (Ahr).
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