VOLUME CONTENTS

to Volume 179, May–August, 2008

Abney, Mark, Identity-by-descent estimation and mapping of qualitative traits in large, complex pedigrees .. 1577—1590

Achaz, Guillaume, Testing for neutrality in samples with sequencing errors 1409—1424

Ahuja, Abha, and Rama S. Singh, Variation and evolution of male sex combs in drosophila: Nature of selection response and theories of genetic variation for sexual traits 503—509

Allen, Desiree E., and Michael Lynch, Both costs and benefits of sex correlate with relative frequency of asexual reproduction in cyclically parthenogenetic Daphnia pulicaria populations 1497—1502

Amaral, Andreia J., Hendrik-Jan Megens, Richard P. M. A. Crooijmans, Henri C. M. Heuven and Martien A. M. Groenen, Linkage disequilibrium decay and haplotype block structure in the pig ... 569—579

Ames, Darren, Nick Murphy, Tim He lentjaris, Nina Sun and Vicki Chandler, Comparative analyses of human single- and multilocus tandem repeats .. 1693—1704

Andersen, Erik C., Adam M. Saffer and H. Robert Horvitz, Multiple levels of redundant processes inhibit Caenorhabditis elegans vulval cell fates .. 2001—2012

Andersen, Marguerite P., Zara W. Nelson, Elizabeth D. Hetrick and Daniel E. Gottschling, A genetic screen for increased loss of heterozygosity in Saccharomyces cerevisiae .. 1179—1195

Au, Wei-Chun, Matthew J. Crisp, Steven Z. DeLuca, Oliver J. Rand and Munira A. Basrai, Altered dosage and mislocalization of histone H3 and Cse4p lead to chromosome loss in Saccharomyces cerevisiae .. 263—275

Bachtrog, Doris, The temporal dynamics of processes underlying Y chromosome degeneration ... 1513—1525

Backström, Niclas, Nikoletta Karaiskou, Erica H. Leder, Lars Gustafsson, Craig R. Primmer, Anna Qvarnström and Hans Ellegren, A gene-based genetic linkage map of the collared flycatcher (Ficedula albicollis) reveals extensive synteny and gene-order conservation during 100 million years of avian evolution ... 1479—1495

Banerjee, Samprit, Brian S. Yandell and Nengjun Yi, Bayesian quantitative trait loci mapping for multiple traits .. 2275—2289

Barazesh, Solmaz, and Paula McSteen, Barren Inflorescence1 functions in organogenesis during vegetative and inflorescence development in maize .. 389—401

Barton, Arnold B., Michael R. Pekosz, Rohini S. Kurvathi and David B. Kaback, Meiotic recombination at the ends of chromosomes in Saccharomyces cerevisiae ... 1221—1235

Bedford, Trevor, Ilan Wapinski and Daniel L. Hartl, Overdispersion of the molecular clock varies between yeast, Drosophila and mammals .. 977—984

Bellone, Rebecca R., Samantha A. Brooks, Lynne Sandmeyer, Barbara A. Murphy, George Forsyth, Sheila Archer, Ernest Bailey and Bruce Grahn, Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equus caballus) ... 1861—1870

Bhutkar, Arjun, Stephen W. Schaeffer, Susan M. Russo, Mu Xu, Temple F. Smith and William M. Gelbart, Chromosomal rearrangement inferred from comparisons of 12 Drosophila genomes .. 1657—1680

Bollback, Jonathan P., Thomas L. York and Rasmus Nielsen, Estimation of 2Ne from temporal allele frequency data .. 497—502
Breakey, Kate M., Daniel Levin, Ian Miller and Kathryn E. Hentges, The use of scenario-based-learning interactive software to create custom virtual laboratory scenarios for teaching genetics .. 1151—1155

Bruinsma, Janelle J., Daniel L. Schneider, Diana E. Davis and Kerry Kornfeld, Identification of mutations in Caenorhabditis elegans that cause resistance to high levels of dietary zinc and analysis using a genomewide map of single nucleotide polymorphisms scored by pyrosequencing ... 811—828

Brunet, Éric, Igor M. Rouzine and Claus O. Wilke, The stochastic edge in adaptive evolution .. 603—620

Burton, Olivia J., and Justin M. J. Travis, The frequency of fitness peak shifts is increased at expanding range margins due to mutation surfing .. 941—950

Caballero, Armando, Humberto Quesada and Emilio Rolán-Alvarez, Impact of amplified fragment length polymorphism size homoplasys on the estimation of population genetic diversity and the detection of selective loci .. 539—554

Cai, Jing, Ruoping Zhao, Huifeng Jiang and Wen Wang, De Novo origination of a new protein-coding gene in Saccharomyces cerevisiae .. 487—496

Calboli, Federico C. F., Jeff Sampson, Neale Fretwell and David J. Balding, Population structure and inbreeding from pedigree analysis of purebred dogs .. 593—601

Casas-Mollano, J., Armando, Jennifer Rohr, Eun-Jeong Kim, Eniko Balassa, Karin van Dijk and Heriberto Cerutti, Diversification of the core RNA interference machinery in Chlamydomonas reinhardtii and the role of DCL1 in transposon silencing ... 69—81

Casellas, Joaquim, and Juan F. Medrano, Within-generation mutation variance for litter size in inbred mice .. 2147—2155

Cejka, Petr, and Josef Jurcny, Interplay of DNA repair pathways controls methylation damage toxicity in Saccharomyces cerevisiae .. 1835—1844

Celig, Ivana, Alain Verreault and Jef D. Boeke, Histone H3 K56 hyperacetylation perturbs replisomes and causes DNA damage .. 1769—1784

Chaubut Neto, Elias, Christine T. Ferrara, Alan D. Attie and Brian S. Yandell, Inferring causal phenotype networks from segregating populations ... 1089—1100

Chamberlain, Kara L., Steven H. Miller and Laura R. Keller, Gene expression profiling of flagellar disassembly in Chlamydomonas reinhardtii .. 7—19

Chen, Yong, Fengfeng Zhou, Guojun Li and Ying Xu, A recently active miniature inverted-repeat transposable element, Chunjie, inserted into an operon without disturbing the operon structure in Geobacter uranireducens Rf4 .. 2291—2297

Cognat, Valérie, Jean-Marc Deragon, Elizaveta Vinogradova, Thalia Salinas, Claire Remacle and Laurence Maréchal-Drouard, On the evolution and expression of Chlamydomonas reinhardtii nucleus-encoded transfer RNA genes .. 113—123

Coïc, Eric, Taya Feldman, Allison S. Landman and James E. Haber, Mechanisms of rad52-independent spontaneous and UV-induced mitotic recombination in Saccharomyces cerevisiae .. 199—211

Collins, N. C., N. J. Shirley, M. Saeed, M. Pallotta and J. P. Gustafson, An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.) .. 669—682

Conant, Gavin C., and Kenneth H. Wolfe, Probabilistic cross-species inference of orthologous genomic regions created by whole-genome duplication in yeast .. 1681—1692
Gao, Li-zhi, and Hideki Innan, Nonindependent domestication of the two rice subspecies, *Oryza sativa* ssp. *indica* and ssp. *japonica*, demonstrated by multilocus microsatellites 965—976

Godman, James, and Janneke Balk, Genome analysis of *Chlamydomonas reinhardtii* reveals the existence of multiple, compartmentalized iron–sulfur protein assembly machineries of different evolutionary origins ... 59—68

Gómez, Eliana B., Rebecca L. Nugent, Sebastián Laría and Susan L. Forsburg, *Schizosaccharomyces pombe* histone acetyltransferase Mst1 (KAT5) is an essential protein required for damage response and chromosome segregation .. 757—771

González, Inma, Ricardo Aparicio and Ana Busturia, Functional characterization of the dRYBP gene in *Drosophila* ... 1373—1388

Good, Jeffrey M., Matthew D. Dean and Michael W. Nachman, A complex genetic basis to X-linked hybrid male sterility between two species of house mite ... 2213—2228

Gordo, Isabel, and Paulo R. A. Campos, Sex and deleterious mutations .. 621—626

Gu, Xing-You, E. Brent Turnipseed and Michael E. Foley, The *qSD12* locus controls offspring tissue-imposed seed dormancy in rice ... 2263—2273

Hoecker, Nadine, Barbara Keller, Nils Muthreiech, Didier Chollet, Patrick Descombes, Hans-Peter Piepho and Frank Hochholdinger, Comparison of maize (*Zea mays* L.) *F*₁-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends .. 1275—1283

Hoskins, Jason, and J. Scott Butler, RNA-based 5-fluorouracil toxicity requires the pseudouridylation activity of Cbf5p .. 323—330

Hougaard, Birgit Kristine, Lene Heegaard Madsen, Niels Sandal, Marcio de Carvalho Moretzsohn, Jakob Fredslund, Leif Schauser, Anna Marie Nielsen, Trine Rohde, Shusei Sato, Satoshi Tabata, David John Bertoli and Jens Stougard, Legume anchor markers link syntenic regions between *Phaseolus vulgaris*, *Lotus japonicus*, *Medicago truncatula* and *Arachis* 2299—2312

Hovav, Ran, Bhupendra Chaudhary, Joshua A. Udall, Lex Flagel and Jonathan F. Wendel, Parallel domestication, convergent evolution and duplicated gene recruitment in allopolyploid cotton .. 1725—1733

Hu, Fangfang, Yan Gan and Oscar M. Aparicio, Identification of Clb2 residues required for Swe1 regulation of Clb2-Cdc28 in *Saccharomyces cerevisiae* .. 863—874

Huang, Chun-Lin, Shih-Ying Hwang, Yu-Chung Chang and Tsan-Piao Lin, Molecular evolution of the Pi-ta gene resistant to rice blast in wild rice (*Oryza rufipogon*) .. 1527—1538

Innann, Hideki, and Yuseob Kim, Detecting local adaptation using the joint sampling of polymorphism data in the parental and derived populations .. 1713—1720

Jain, Kavita, Loss of least-loaded class in asexual populations due to drift and epistasis 2125—2134

Jensen, Philip A., Jeremy R. Stuart, Michael P. Goodfaster, Joseph W. Goodman and Michael J. Simmons, Cytotype regulation of *P* transposable elements in *Drosophila melanogaster*: Repressor polypeptides or piRNAs? .. 1785—1793

Kalanon, Ming, and Geoffrey I. McFadden, The chloroplast protein translocation complexes of *Chlamydomonas reinhardtii*: A bioinformatic comparison of Toc and Tic components in plants, green algae, and red algae .. 95—112

Kawabe, Akira, Alan Forrest, Stephen I. Wright and Deborah Charlesworth, High DNA sequence diversity in pericentromeric genes of the plant *Arabidopsis thaliana* ... 985—995

Kepper-Ross, Sabine, Christine Noffz and Neta Dean, A new purple fluorescent color marker for genetic studies in *Saccharomyces cerevisiae* and *Candida albicans* .. 705—710

Kern, Andrew D., and David J. Begun, Recurrent deletion and gene presence/absence polymorphism: Telomere dynamics dominate evolution at the tip of 3L in *Drosophila melanogaster* and *D. simulans* .. 1021—1027

Koo, Dal-Hoe, and Jiming Jiang, Extraordinary tertiary constrictions of *Tripsacum dactyloides* chromosomes: Implications for karyotype evolution of polyploids driven by segmental chromosome losses .. 1119—1123

Koo, Dal-Hoe, Sung-Hwan Jo, Jae-Wook Bang, Hye-Mi Park, Sanghyeob Lee and Doil Choi, Integration of cytogenetic and genetic linkage maps unveils the physical architecture of tomato chromosome 2 ... 1211—1220

Kpebe, Arlette, and Leonard Rabinow, Dissection of darkener of apricot kinase isoform functions in *Drosophila* .. 1973—1987

Kuhn-Parnell, Emily J., Cecilia Helou, David J. Marion, Brian L. Gilmore, Timothy J. Parnell, Marc S. Wold and Pamela K. Geyer, Investigation of the properties of non-*gypsy* suppressor of hairy-wing-binding sites .. 1263—1273

Lai, Zhao, Nolan C. Kane, Yi Zou and Loren H. Rieseberg, Natural variation in gene expression between wild and weedy populations of *Helianthus annuus* .. 1881—1890

Le Rouzic, Arnaud, José M. Álvarez-Castro and Ørjan Carlberg, Dissection of the genetic architecture of body weight in chicken reveals the impact of epistasis on domestication traits ... 1591—1599

Lee, William R., Dominant lethal mutations in the honeybee: A perspective 50 years later .. 1—2

Leon, Ronald P., Marianne Tecklenburg and Robert A. Sclafani, Functional conservation of β-hairpin DNA binding domains in the Mcm protein of *Methanobacterium thermoautotrophicum* and the Mcm5 protein of *Saccharomyces cerevisiae* ... 1757—1768

Levine, Mia T., and David J. Begun, Evidence of spatially varying selection acting on four chromatin-remodeling loci in *Drosophila melanogaster* .. 475—485

Liang, Chun, Yuansheng Liu, Lin Liu, Adam C. Davis, Yingjia Shen and Qingshun Quinn Li, Expressed sequence tags with cDNA termini: Previously overlooked resources for gene annotation and transcriptome exploration in *Chlamydomonas reinhardtii* .. 83—93

Lillehammer, Marie, Mike E. Goddard, Heidi Nilsen, Erling Sehested, Hanne Gro Olsen, Sigbjørn Lien and Theo H. E. Meuwissen, Quantitative trait locus-by-environment interaction for milk yield traits in *Bos taurus* autosome 6 ... 1539—1546

Llopart, Ana, and Josep M. Comeron, Recurrent events of positive selection in independent *Drosophila* lineages at the spermatogenesis gene roughex .. 1009—1210

Long, Joanne C., Frederik Sommer, Michael D. Allen, Shu-Fen Lu and Sabeeha S. Merchant, *FER1* and *FER2* encoding two ferritin complexes in *Chlamydomonas reinhardtii* chloroplasts are regulated by iron ... 137—147

Lyndaker, Amy M., Tamara Goldfarb and Eric Alani, Mutants defective in Rad1-Rad10-Slx4 exhibit a unique pattern of viability during mating-type switching in *Saccharomyces cerevisiae* .. 1807—1821
Ma, Chang-Xing, Qibin Yu, Arthur Berg, Derek Drost, Evandro Novaes, Guifang Fu, John Stephen Yap, Aixin Tan, Matthias Kirst, Yuehua Cui and Rongling Wu, A statistical model for testing the pleiotropic control of phenotypic plasticity for a count trait 627—636

Manukyan, Arkadi, Jian Zhang, Uma Thippeswamy, Jingye Yang, Noelle Zavala, Malkanthi P. Mudannayake, Mark Asmussen, Colette Schneider and Brandt L. Schneider, Ccr4 alters cell size in yeast by modulating the timing of CLN1 and CLN2 expression ... 345—357

Marri, Pradeep Reddy, Leigh K. Harris, Kathryn Houmial, Steven C. Slater and Howard Ochman, The effect of chromosome geometry on genetic diversity 511—516

Martin, Guillaume, and Thomas Lesnmand, The distribution of beneficial and fixed mutation fitness effects close to an optimum .. 907—916

Matsuzaki, Kenichiro, Akira Shinohara and Miki Shinohara, Forkhead-associated domain of yeast Xrs2, a homolog of human Nbs1, promotes nonhomologous end joining through interaction with a ligase IV partner protein, LIF1 .. 213—225

Maxwell, Patrick H., and M. Joan Curcio, Incorporation of Y′-Ty1 cDNA destabilizes telomeres in Saccharomyces cerevisiae telomerase-negative mutants 2313—2317

May, Patrick, Stefanie Wienkoop, Stefan Kempa, Björn Usadel, Nils Christian, Jens Rupprecht, Julia Weiss, Luis Recuenco-Munoz, Oliver Ebenhöh, WolfraM Weckwerth and Dirk Walther, Metabolomics- and proteomics-assisted genome annotation and analysis of the draft metabolic network of Chlamydomonas reinhardtii .. 157—166

McDaniel, Stuart F., John H. Willis and A. Jonathan Shaw, The genetic basis of developmental abnormalities in interpopulation hybrids of the moss Ceratodon purpureus 1425—1435

McGraw, Lisa A., Andrew G. Clark and Mariana F. Wolfner, Post-mating gene expression profiles of female Drosophila melanogaster in response to time and to four male accessory gland proteins ... 1395—1408

McNeill, Helen, Gavin M. Craig and Joseph M. Bateman, Regulation of neurogenesis and epidermal growth factor receptor signaling by the insulin receptor/target of rapamycin pathway in Drosophila ... 843—853

Mell, Joshua Chang, Bethany L. Wienholz, Asmaa Salem and Sean M. Burgess, Sites of recombination are local determinants of meiotic homolog pairing in Saccharomyces cerevisiae 773—784

Mell, Joshua Chang, Kelly Komachi, Owen Hughes and Sean Burgess, Cooperative interactions between pairs of homologous chromatids during meiosis in Saccharomyces cerevisiae ... 1125—1127

Mikhaylova, Lyudmila M., Kimberly Nguyen and Dmitry I. Nurminsky, Analysis of the Drosophila melanogaster testes transcriptome reveals coordinate regulation of paralogous genes 305—315

Miller, Andrew, Bo Yang, Tiaunn Foster and Ann L. Kirchmaier, Proliferating cell nuclear antigen and ASF1 modulate silent chromatin in Saccharomyces cerevisiae via lysine 56 on histone H3 ... 793—809

Mito, Erica, Janet V. Mohrnatkin, Molly C. Steele, Victoria L. Buettner, Steve S. Sommer, Glenn M. Manthey and Adam M. Bailis, Mutagenic and recombinagenic responses to defective DNA polymerase δ are facilitated by the Rev1 protein in pol3-1 mutants of Saccharomyces cerevisiae ... 1795—1806

Moorad, Jacob A., and Daniel E. L. Promislow, A theory of age-dependent mutation and senescence .. 2061—2073
Moore, Jacob A., and Timothy A. Linksvayer, Levels of selection on threshold characters 899–905

Morrison, Julie K., and Kathryn G. Miller, Genetic characterization of the Drosophila jagger mutant reveals that complete myosin VI loss of function is not lethal ... 711–716

Moyle, Leonie C., and Takuya Nakazato, Comparative genetics of hybrid incompatibility: Sterility in two solanum species crosses ... 1437–1453

Mrackova, Martina, Michael Nicolas, Roman Hobza, Ioan Negruțiu, Françoise Monéger, Alexander Widmer, Boris Vyskot and Bohuslav Janousek, Independent origin of sex chromosomes in two species of the genus silene .. 1129–1133

Nichols, Krista M., Alicia Felip Edo, Paul A. Wheeler and Gary H. Thorgaard, The genetic basis of smoltification-related traits in Oncorhynchus mykiss ... 1559–1575

Nicodemi, Mario, Barbara Panning and Antonella Prisco, A thermodynamic switch for chromosome colocalization .. 717–721

Niculita-Hirzel, H., M. Stöck and N. Perrin, A key transcription cofactor on the nascent sex chromosomes of european tree frogs (Hyla arborea) .. 1721–1723

Nikolova, Ganka, Janet S. Sinsheimer, Eva M. Eicher and Eric Vilain, The chromosome 11 region from strain 129 provides protection from sex reversal in XYPOS mice .. 419–427

Nilsson, Lars, Barbara Conrado, Anne-Francoise Ruaud, Carlos Chih-Hsiung Chen, Julia Hatzold, Jean-Louis Besserea, Barth D. Grant and Simon Tuck, Caenorhabditis elegans num-I negatively regulates endocytic recycling .. 375–387

Nisha, Parul, Jennifer L. Plank and Amy K. Csink, Analysis of chromatin structure of genes silenced by heterochromatin in Trans .. 359–373

Nishant, K. T., Aaron J. Plys and Eric Alani, A mutation in the putative MLH3 endonuclease domain confers a defect in both mismatch repair and meiosis in Saccharomyces cerevisiae 747–755

Offermann, Sascha, Björn Dreesen, Ina Horst, Tanja Danker, Michal Jaskiewicz and Christoph Peterhansel, Developmental and environmental signals induce distinct histone acetylation profiles on distal and proximal promoter elements of the Cg-Pepc gene in maize 1891–1901

Olsen, Kenneth M., Shih-Chung Hsu and Linda L. Small, Evidence on the molecular basis of the Ac/ac adaptive cyanogenesis polymorphism in white clover (Trifolium repens L.) 517–526

Otaka, HiroYuki, Yusuke Hayashi, Satoshi Hamaguchi and Mitsuru SakaiZumi, The Y chromosome that lost the male-determining function behaves as an X chromosome in the medaka fish, Oryzias latipes .. 2157–2162

Otto, Sarah P., Maria R. Servedio and Scott L. Nuismer, Frequency-dependent selection and the evolution of assortative mating .. 2091–2112

Oxley, Peter R., Graham J. Thompson and Benjamin P. Oldroyd, Four quantitative trait loci that influence worker sterility in the honeybee (Apis mellifera) ... 1337–1343

Park, KiYun, Joohyun Kang, Krishna浦. Subedi, Ji-Hong Ha and Chanky Park, Canine polydactyl mutations with heterogeneous origin in the conserved intronic sequence of LMBRI 2163–2172

Patten, Manus M., and David Haig, Reciprocally imprinted genes and the response to selection on one sex .. 1389–1394

Peng, Weimin, Cynthia Togawa, Kangliang Zhang and Siyash K. Kurdistani, Regulators of cellular levels of histone acetylation in Saccharomyces cerevisiae .. 277–289
Pfaefelhuber, P., A. Lehnert and W. Stephan, Linkage disequilibrium under genetic hitchhiking in finite populations ... 527—537
Qian, Wenfeng, and Jianzhi Zhang, Gene dosage and gene duplicability 2319—2324
Radoev, Mladen, Heiko C. Becker and Wolfgang Ecke, Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping .. 1547—1558
Raisner, Ryan M., and Hiten D. Madhani, Genomewide screen for negative regulators of sirtuin activity in Saccharomyces cerevisiae reveals 40 loci and links to metabolism 1933—1944
Rajasingh, Hannah, Arne B. Gjuvsland, Dag Inge Våge and Stig W. Omholt, When parameters in dynamic models become phenotypes: A case study on flesh pigmentation in the chinook salmon (Oncorhynchus tshawytscha) .. 1113—1118
Ramírez-Soriano, Anna, Sebastià E. Ramos-Onsins, Julio Rozas, Francesc Calafell and Arcadi Navarro, Statistical power analysis of neutrality tests under demographic expansions, contractions and bottlenecks with recombination ... 555—567
Ran, Fulai, Mehtap Bali and Corinne A. Michels, Hsp90/hsps70 chaperone machine regulation of the saccharomyces MAL-activator as determined in Vivo using noninducible and constitutive mutant alleles .. 331—343
Raquin, Anne-Laure, Frantz Depaulis, Amaury Lambert, Nathalie Galic, Philippe Brabant and Isabelle Goldringer, Experimental estimation of mutation rates in a wheat population with a gene genealogy approach ... 2195—2211
Riaño-Pachón, Diego Mauricio, Luiz Gustavo Guedes Corrêa, Raúl Trejos-Espinosa and Bernd Mueller-Roeber, Green transcription factors: A chlamydomonas overview 31—39
Rockman, Matthew V., and Leonid Kruglyak, Breeding designs for recombinant inbred advanced intercross lines ... 1069—1078
Rosenberg, Noah A., and Mattias Jakobsson, The relationship between homozygosity and the frequency of the most frequent allele ... 2027—2036
Ross, Joseph A., and Catherine L. Peichel, Molecular cytogenetic evidence of rearrangements on the Y chromosome of the threespine stickleback fish ... 2173—2182
Rousseau-Gueutin, Mathieu, Estelle Lerceteau-Köhler, Laure Barrot, Daniel James Sargent, Amparo Monfort, David Simpson, Pere Arús, Guy Guérin and Beatrice Denoyes-Rothan, Comparative genetic mapping between octoploid and diploid Fragaria species reveals a high level of colinearity between their genomes and the essentially disomic behavior of the cultivated octoploid strawberry ... 2045—2060
Sakaguchi, Ayako, Dmitry Karachentsev, Mansha Seth-Pasricha, Marina Druzhinina and Ruth Steward, Functional characterization of the Drosophila Hmt4-20/Suv4-20 histone methyltransferase ... 317—322
Sambandan, Deepa, Mary Anna Carbone, Robert R. H. Anholt and Trudy F. C. Mackay, Phenotypic plasticity and genotype by environment interaction for olfactory behavior in Drosophila melanogaster ... 1079—1088
Sanders, Lisa R., Mukund Patel and James W. Mahaffey, The Drosophila gap gene giant has an anterior segment identity mediated through disconnected and teashirt 441—453
Sato, Kaoru, Tomoko Matsuoka Matsunaga, Ryo Futahashi, Tetsuya Kojima, Kazuei Mitani, Yutaka Banno and Haruhiko Fujiiwa, Positional cloning of a bombyx wingless locus flügellos (fl) reveals a crucial role for fringe that is specific for wing morphogenesis 875—885
Scarcelli, John J., Susan Viggiano, Christine A. Hodge, Catherine V. Heath, David C. Amberg and Charles N. Cole, Synthetic genetic array analysis in Saccharomyces cerevisiae
provides evidence for an interaction between RATS/DBP5 and genes encoding P-body components ... 1945—1955

Seigle, Jacquelyn L., Alicia M. Celotto and Michael J. Palladino, Degradation of functional triose phosphate isomerase protein underlies sugarkill pathology ... 855—862

Semighini, Camile P., and Steven D. Harris, Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen species ... 1919—1932

Sharma, Deepak, and Daniel C. Masison, Functionally redundant isoforms of a yeast Hsp70 chaperone subfamily have different antiprion effects ... 1301—1311

Shen, Yingjia, Yuansheng Liu, Lin Liu, Chun Liang and Qingshun Q. Li, Unique features of nuclear mRNA poly(A) signals and alternative polyadenylation in Chlamydomonas reinhardtii ... 167—176

Shi, Qiaojuan, Adam R. Parks, Benjamin D. Potter, Ilan J. Safir, Yun Luo, Brian M. Forster and Joseph E. Peters, DNA damage differentially activates regional chromosomal loci for Tn7 transposition in Escherichia coli ... 1237—1250

Shin, Eunkyong, Hayyoung Go, Ji-Hyun Yeom, Miae Won, Jeehyeon Bae, Seung Hyun Han, Kook Han, Younghoon Lee, Nam-Gul Ha, Christopher J. Moore, Björn Sohlberg, Stanley N. Cohen and Kangseok Lee, Identification of amino acid residues in the catalytic domain of RNase E essential for survival of Escherichia coli: Functional analysis of DNase I subdomain ... 1871—1879

Singhvi, Aakanksha, C. Andrew Frank and Gian Garriga, The T-box gene tbx-2, the homeobox gene egl-5 and the asymmetric cell division gene ham-1 specify neural fate in the HSN/PHB lineage ... 887—898

Slatkin, Montgomery, Exchangeable models of complex inherited diseases ... 2253—2261

Smith, Christopher P., and Peter E. Thorsness, The molecular basis for relative physiological functionality of the ADP/ATP carrier isoforms in Saccharomyces cerevisiae ... 1285—1299

Staelens, Jan, Debbie Rombaut, Ilse Vercauteren, Brad Argue, John Benzie and Marnik Vuyysteke, High-density linkage maps and sex-linked markers for the black tiger shrimp (Penaeus monodon) ... 917—925

Stahl, Franklin W., On the “NPD ratio” as a test for crossover interference ... 701—704

Stapley, J., T. R. Birkehead, T. Burke and J. Slate, A linkage map of the zebra finch Taeniopygia guttata provides new insights into avian genome evolution ... 651—667

Star, Bastiaan, Meredith V. Trotter and Hamish G. Spencer, Evolution of fitnesses in structured populations with correlated environments ... 1469—1478

Stift, Marc, Camillo Berenos, Peter Kuperus and Peter H. van Tienderen, Segregation models for disomic, tetrasomic and intermediate inheritance in tetraploids: A general procedure applied to Rorippa (yellow cress) microsatellite data ... 2113—2123
<table>
<thead>
<tr>
<th>Title</th>
<th>Page Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudi, Jyotsna, Sen Zhang, Gino Intrieri, Ximing Hao and Ping Zhang, Coincidence of P-insertion sites and breakpoints of deletions induced by activating P elements in Drosophila</td>
<td>227—235</td>
</tr>
<tr>
<td>Takahasi, K. Ryo, and Hideki Innan, The direction of linkage disequilibrium: A new measure based on the ancestral-derived status of segregating alleles</td>
<td>1705—1712</td>
</tr>
<tr>
<td>Tange, Yoshie, and Osami Niwa, Schizosaccharomyces pombe Bub3 is dispensable for mitotic arrest following perturbed spindle formation</td>
<td>785—792</td>
</tr>
<tr>
<td>Thomas, James W., Mario Cáceres, Joshua J. Lowman, Caroline B. Morehouse, Meghan E. Short, Erin L. Baldwin, Donna L. Maney and Christa L. Martin, The chromosomal polymorphism linked to variation in social behavior in the white-throated sparrow (Zonotrichia albicollis) is a complex rearrangement and suppressor of recombination</td>
<td>1455—1468</td>
</tr>
<tr>
<td>Torres, Eduardo M., Bret R. Williams and Angelika Amon, Aneuploidy: Cells losing their balance</td>
<td>737—746</td>
</tr>
<tr>
<td>Turner, Leslie M., Edward B. Chuong and Hopi E. Hoekstra, Comparative analysis of testis protein evolution in rodents</td>
<td>2075—2089</td>
</tr>
<tr>
<td>Turner, Thomas L., Mia T. Levine, Melissa L. Eckert and David J. Begun, Genomic analysis of adaptive differentiation in Drosophila melanogaster</td>
<td>455—473</td>
</tr>
<tr>
<td>Unguru, Alexander, Moritz K. Nowack, Matthieu Reymond, Reza Shirzadi, Manoj Kumar, Sandra Biewers, Paul E. Grini and Arp Schnittger, Natural variation in the degree of autonomous endosperm formation reveals independence and constraints of embryo growth during seed development in Arabidopsis thaliana</td>
<td>829—841</td>
</tr>
<tr>
<td>Vallon, Olivier, and Susan Dutcher, Treasure hunting in the chlamydomonas genome</td>
<td>3—6</td>
</tr>
<tr>
<td>Van Heerwaarden, Belinda, Yvonne Willi, Torsten N. Kristensen and Ary A. Hoffmann, Population bottlenecks increase additive genetic variance but do not break a selection limit in rain forest Drosophila</td>
<td>2135—2146</td>
</tr>
<tr>
<td>Vasco, Daniel A., A fast and reliable computational method for estimating population genetic parameters</td>
<td>951—963</td>
</tr>
<tr>
<td>Vernon, Michael, Kirill Lobachev and Thomas D. Petes, High rates of “unselected” aneuploidy and chromosome rearrangements in tel1 mecl haploid yeast strains</td>
<td>237—247</td>
</tr>
<tr>
<td>VibrianoM, Maria D., Leonardo B. Koerich and A. Bernardo Carvalho, Two new Y-linked genes in Drosophila melanogaster</td>
<td>2325—2327</td>
</tr>
<tr>
<td>Waldmann, Patrik, Jon Hallander, Fabian Hoti and Mikko J. Sillanpää, Efficient markov chain Monte Carlo implementation of bayesian analysis of additive and dominance genetic variances in noninbred pedigrees</td>
<td>1101—1112</td>
</tr>
<tr>
<td>Wallace, Douglas C., Mitochondria as chi</td>
<td>727—735</td>
</tr>
<tr>
<td>Wan, Xiangyuan, Jianfeng Weng, Huqu Zhai, Jiankang Wang, Cailin Lei, Xiaolu Liu, Tao Guo, Ling Jiang, Ning Su and Jianmin Wan, Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5</td>
<td>2239—2252</td>
</tr>
<tr>
<td>Wang, Weiping, Claire Cronmiller and David L. Brautigan, Maternal phosphatase inhibitor-2 is required for proper chromosome segregation and mitotic synchrony during Drosophila embryogenesis</td>
<td>1823—1833</td>
</tr>
<tr>
<td>Wang, Ying, Istvan Ladunga, Amy R. Miller, Kempton M. Horken, Thomas Plucinak, Donald P. Weeks and Cheryl P. Bailey, The small ubiquitin-like modifier (SUMO) and SUMO-conjugating system of Chlamydomonas reinhardtii</td>
<td>177—192</td>
</tr>
<tr>
<td>Weiss, Kenneth M., Tilting at quixotic trait loci (QTL): An evolutionary perspective on genetic causation</td>
<td>1741—1756</td>
</tr>
</tbody>
</table>
Welz-Voegele, Caroline, and Sue Jinks-Robertson, Sequence divergence impedes crossover more than noncrossover events during mitotic gap repair in yeast ... 1251—1262

Wheeler, Glen L., Diego Miranda-SaaVEDRA and Geoffrey J. Barton, Genome analysis of the unicellular green alga Chlamydomonas reinhardtii indicates an ancient evolutionary origin for key pattern recognition and cell-signaling protein families ... 193—197

Wolff, Jonci N., Sandra Gandre, Aleksander Kalinin and Neil J. Gemmell, Delimiting the frequency of paternal leakage of mitochondrial DNA in chinook salmon 1029—1032

Yanowitz, Judith L., Genome integrity is regulated by the Caenorhabditis elegans Rad51D homolog rfs-1 .. 249—262

Yi, Nengjun, and Shizhong Xu, Bayesian LASSO for quantitative trait loci mapping 1045—1055

Yanowitz, Judith L., Genome integrity is regulated by the Caenorhabditis elegans Rad51D homolog rfs-1 .. 249—262

Zang, Peng, Wanlong Li, Bernd Friebe and Bikram S. Gill, The origin of a “zebra” chromosome in wheat suggests nonhomologous recombination as a novel mechanism for new chromosome evolution and step changes in chromosome number .. 1169—1177

Zimmer, Sara L., Zhangjun Fei and David B. Stern, Genome-based analysis of Chlamydo-
monas reinhardtii exoribonucleases and poly(A) polymerases predicts unexpected organellar and exosomal features ... 125—136

Zinovyeva, Anna Y., Yuko Yamamoto, Hitoshi Sawa and Wayne C. Forrester, Complex network of Wnt signaling regulates neuronal migrations during Caenorhabditis elegans development ... 1357—1371
Multiple levels of redundant processes inhibit Caenorhabditis elegans vulval cell fates, pp. 2001–2012

Erik C. Andersen, Adam M. Saffer and H. Robert Horvitz
Many mutations cause obvious abnormalities only when combined with other mutations, often because the genes are redundant. The synthetic multivulva (synMuv) genes of Caenorhabditis elegans fall into several classes that redundantly inhibit vulval cell fates. Animals with mutations in any two classes have a multivulva phenotype, whereas animals with one or more mutations of the same class develop normally. But with sensitive assays, these authors can show that mutations in most synMuv genes within a single synMuv class enhance each other. In the few cases where no enhancement was observed, the authors suggest that the protein products of those genes function together in vivo and in at least some cases interact physically. The approach of genetic enhancement can be applied more broadly to identify potential protein complexes as well as redundant processes or pathways.

Bayesian quantitative trait loci mapping for multiple traits, pp. 2275–2289

Samprit Banerjee, Brian S. Yandell and Nengjun Yi
There is a lack of comprehensive genomewide search strategies to detect multiple pleiotropic quantitative trait loci (QTL). The composite model approach is extended to jointly analyze multiple correlated traits. Multiple traits are modeled using seemingly unrelated regression models (QTL SUR models) that detect either the same or different QTL for each trait. The QTL SUR models include the traditional multivariate model and single trait-by-trait model as special cases. These authors develop and benchmark computationally efficient Markov chain Monte Carlo algorithms for performing joint analysis.

Histone H3 K56 hyperacetylation perturbs repressomes and causes DNA damage, pp. 1769–1784

Ivana Celic, Alain Verreault and Jef D. Boeke
Why is deacetylation of histone H3 K56, regulated by the sirtuins Hist3p and Hist4p, critical for maintenance of genome stability? These authors find that hyperacetylation of H3 K56 leads to hallmarks of spontaneous DNA damage, such as activation of the checkpoint kinase Rad53p and upregulation of DNA-damage inducible genes, and enhances the effects of mutations that cripple genes involved in DNA replication and DNA double-strand break repair. The effects of hyperacetylation are suppressed by overexpression of the PCNA clamp loader Rfc1p and by inactivation of alternative clamp loaders.

Defective break-induced replication leads to half-crossovers in Saccharomyces cerevisiae, pp. 1845–1860

Angela Deem, Krista Barker, Kelly VanHulle, Brandon Downing, Alexandra Vayil and Anna Malkova
Break-induced replication (BIR) has been implicated in the restart of collapsed replication forks as well as in various chromosomal instabilities. The authors investigate the genetic control of BIR using a yeast experimental system. They find that a deletion of POL32, which encodes a nonessential subunit of polymerase δ, significantly reduces the efficiency of BIR and leads to the formation of half-crossovers. The authors propose that these half-crossovers resulted from aberrant processing of BIR intermediates and that they are analogous to nonreciprocal translocations (NRTs) described in mammalian tumor cells.

A complex genetic basis to X-linked hybrid male sterility between two species of house mice, pp. 2213–2228

Jeffrey M. Good, Matthew D. Dean and Michael W. Nachman
The X chromosome often plays a central role in speciation, but few studies have examined the early stages of reproductive isolation. These authors use a reciprocal introgression experiment to evaluate X-linked hybrid male sterility between two species of mice. Introgression of the Mus musculus X chromosome into M. domesticus produced male sterility involving at least four X-linked factors. By contrast, introgression of the M. domesticus X chromosome did not cause sterility. These results reveal a complex and asymmetric genetic basis to hybrid male sterility during the early stages of speciation in mice.

Genomewide screen for negative regulators of sirtuin activity in Saccharomyces cerevisiae reveals 40 loci and links to metabolism, pp. 1933–1944

Ryan M. Raisner and Hiten D. Madhani
Sirtuins are conserved proteins implicated in myriad key processes including gene control, aging, cell survival, metabolism, and DNA repair. This article describes a genomewide screen for factors that negatively regulate sirtuin activity in yeast that identified 40 loci, including 20 that have not been previously described to regulate sirtuin. These include factors that control histone acetylation, mRNA metabolism, as well as proteins (such as the PAS kinase Pdk2) linked to general metabolism.

The relationship between homozgyosity and the frequency of the most frequent allele, pp. 2027–2036

Noah A. Rosenberg and Mattias Jakobsson
This article describes the mathematical connection between two of the most basic properties of a polymorphic locus—its homozgyosity and the frequency of its most frequent allele. The close relationship between these two quantities, illustrated with human data, may help guide intuition about population-genetic results involving these quantities. Notably, it provides a basis for understanding the performance of the Hudson haplotype test of neutrality, the haplotype diversity test, and the use of extended haplotype homozgyosity in identifying the signature of partial selective sweeps.

The Arp2/3 activators WAVE and WASP have distinct genetic interactions with Rac GTPases in Caenorhabditis elegans axon guidance, pp. 1957–1971

M. Afag Shakir, Ke Jiang, Eric C. Stuckhoff, Rafael S. Demarco, Falshrut B. Patel, Martha C. Soto and Erik A. Lundquist
This article defines the role of WASP, WAVE, and Rac in axon guidance. These proteins have been extensively studied in vitro; this article elucidates the roles these molecules play in developmental processes and reveals new and unpredicted interactions between WASP, WAVE, and Rac signaling in axon guidance.

Exchangeable models of complex inherited diseases, pp. 2253–2261

Montgomery Stratkin
The genetic architecture of fairly common diseases such as schizophrenia, with high twin concordance (30–50%) and recurrence risk (5–10%) but which lack strong SNP associations, continues to challenge geneticists. This article explores a class of models of the genetic basis of complex inherited disease and then uses these models to predict the disease prevalence and risk to relatives of affected individuals. For diseases with a prevalence of 1% and moderate twin concordance and recurrence risk, the models show that risk must increase rapidly with the number of disease-associated alleles to be consistent with the data.

Two new Y-linked genes in Drosophila melanogaster, pp. 2325–2327

Maria D. Vibranovski, Leonardo B. Koerich and A. Bernardo Carvalho
Heterochromatic regions of chromosomes are poorly annotated, mainly because their repetitive DNA makes the sequence difficult to assemble. So, the identification of genes in heterochromatin is cause to celebrate. This article describes two novel Y-linked genes in Drosophila melanogaster, raising the number of genes on this chromosome to 12. One of these genes may correspond to the long sought fertility factor kl-1.

Maternal phosphatase inhibitor-2 is required for proper chromosome segregation and mitotic synchroyn during Drosophila embryogenesis, pp. 1823–1833

Weiping Wang, Claire Crommiller and David L. Brautigan
The inhibitor-2 protein, a regulator of protein phosphatase-1, is highly conserved among all eukaryotic species. It has been well characterized biochemically, but little is known about its in vivo function. These authors find that embryos derived from mothers without inhibitor-2 function have faulty chromosome segregation and lose mitotic synchroyn in cleavage stage embryos. Thus, inhibitor-2 regulates chromosome segregation during early embryogenesis.

Molecular basis of spectral tuning in the red- and green-sensitive (M/LWS) pigments in vertebrates, pp. 2037–2043

Shozo Yokoyama, Hui Yang and William T. Stamer
How do visual pigments achieve sensitivity to various wavelengths? Since the late 1980s, the mechanism of the spectral tuning of visual pigments has been studied using contemporary pigments. But this traditional approach does not evaluate the actual effects of amino acid replacements that generated variable absorption maxima of contemporary pigments. To solve the problem, a novel evolutionary genetic approach is required. Using an engine of red ancestral pigment of red- and green-sensitive pigments, this article identifies the molecular mechanism that generated 15 currently known pigment types within this group.