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ABSTRACT

Previous quantitative trait locus (QTL) analysis of an intercross involving the inbred mouse strains NZB/
BlNJ and SM/J revealed QTL for a variety of complex traits. Many QTL have large intervals containing
hundreds of genes, and methods are needed to rapidly sort through these genes for probable candidates. We
chose nine QTL: the three most significant for high-density lipoprotein (HDL) cholesterol, gallstone
formation, and obesity. We searched for candidate genes using three different approaches: mRNA
microarray gene expression technology to assess .45,000 transcripts, publicly available SNPs to locate genes
that are not identical by descent and that contain nonsynonymous coding differences, and a mass-
spectrometry-based proteomics technology to interrogate nearly 1000 proteins for differential expression in
the liver of the two parental inbred strains. This systematic approach reduced the number of candidate genes
within each QTL from hundreds to a manageable list. Each of the three approaches selected candidates that
the other two approaches missed. For example, candidate genes such as Apoa2 and Acads had differential
protein levels although the mRNA levels were similar. We conclude that all three approaches are important
and that focusing on a single approach such as mRNA expression may fail to identify a QTL gene.

THE use of animal models and quantitative trait locus
(QTL) mapping has greatly aided the identifi-

cation of genes that affect complex traits (Korstanje

and Paigen 2002). However, identifying the causal gene
within a QTL remains a nontrivial matter. Whole-tran-
scriptome profiling has advanced the gene discovery
process by identifying causal genes on the basis of dif-
ferential mRNA levels (Aitman et al. 1999; Johannesson

et al. 2005). Nonetheless, a QTL may be caused by dif-
ferences that are not identifiable at the mRNA level,
such as protein concentration (Doolittle et al. 1990) or
protein function caused by changes in the amino acid
sequence (Theuns et al. 2000).

In this study we combine mRNA expression with
proteomics and SNP analysis to show that using a global
mRNA approach alone is insufficient for identifying
QTL candidate genes. Proteomic technologies are still
in their infancy relative to mRNA gene expression
technologies; nonetheless the ability to interrogate the
proteome is improving (Pilch and Mann 2006), and, as
we report here, valuable data can be gathered and

applied to the complex disease gene discovery process.
In addition, mouse strains have been extensively geno-
typed; indeed, many of the SNPs between strains are
known and are publicly available. SNP data can be used
to focus on genes in genomic regions that are not iden-
tical by descent (IBD) (Peters et al. 2007) and to iden-
tify amino acid changes in the protein-coding region.
This allows the selection of candidates that may affect
the QTL through functional changes rather than
quantitative differences in mRNA and protein levels.

Typically, large-scale protein interrogation studies
involve either two-dimensional (2D) gel electrophoresis
followed by mass spectrometry (MS) or large-scale im-
munoblotting (BD Biosciences, San Jose, CA). However,
these technologies have limitations. The proteins that
can be interrogated on 2D gels are limited in size and
nature and require considerable effort to identify. Im-
munoblotting is limited by the availability and cost of
antibodies. For the identification of larger-scale com-
plex proteomes, a technology for proteome analysis
by MS has emerged (Aebersold and Mann 2003). This
method can be extended by coupling liquid chroma-
tography with matrix-assisted laser-induced ionization–
tandem time of flight (MALDI–TOF/TOF) MS. Relative
and absolute quantitation of proteins by MS is possible
with either labeled (Ross et al. 2004; Zhen et al. 2004) or
label-free (Ono et al. 2006) technologies.
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The maturation of both microarray and proteomic
technologies has led to a small number of whole-
transcriptome–proteome comparisons (Gygi et al. 1999;
Valenzuela et al. 2003; McRedmond et al. 2004;
Ribeiro et al. 2004; Ruse et al. 2004; Mijalski et al.
2005; Pastorelli et al. 2006). However, limited quan-
titative analysis of protein and transcript abundance
could be performed as the starting point of these pro-
teomics studies was 2D electrophoresis followed by sin-
gle protein-by-protein identification using MS. In this
study, to complement the microarray data, we employed
a quantitative proteomics approach using isobaric tags
for relative and absolute quantitation (iTRAQ reagents)
in combination with liquid chromatography–MALDI–
TOF/TOF technology for extensive protein analysis
and quantitation of two inbred mouse strains. We were
able to directly identify and simultaneously quantify a
total of 943 liver proteins in a gel-free MS analysis. To
our knowledge this is the first attempt to correlate dif-
ferentially regulated proteins with QTL to identify candi-
date genes for complex quantitative phenotypes.

A systematic search for candidate genes must also
include a search for nonsynonymous coding changes.
This is possible for 16 inbred mouse strains with the
combination of the public sequencing of C57BL/6, the
sequencing of A, DBA/2 and 129 by Celera (Mural et al.
2002), and the resequencing of 15 strains by Perlegen
(http://mouse.perlegen.com/mouse/). Combining these
databases will identify a large proportion of the coding
differences. The mouse strains ‘‘Small’’ (SM)/J (SM)
and ‘‘New Zealand Black’’ (NZB)/B1NJ (NZB) are cur-
rently not on the list of such strains; however, the SNP
data can be used to examine the haplotypes, and coding
differences between SM and NZB can be inferred since
mouse inbred strains share common ancestry (Wade et al.
2002). The SNP data identified many candidate genes
that had neither mRNA nor protein abundance differ-
ences, yet differed at SNPs in the coding region and
hence might affect protein function.

The mouse strains SM (Chai 1956) and NZB
(Bielschowsky and Goodall 1970) differ in a number
of metabolic phenotypes (http://www.jax.org/phenome)
(Bogue et al. 2007). These were used in a large inter-
cross to yield QTL for a number of complex traits
including lipid levels (Korstanje et al. 2004), body
composition and size (Stylianou et al. 2006), and gall-
stone susceptibility (Lyons et al. 2005). In this study we
evaluate genes within nine QTL for these traits, using all
three approaches: mRNA levels, protein levels, and
amino acid-changing SNPs in the coding region. The
number of candidate genes in each QTL was reduced
from hundreds down to a list ranging from 10 to 88
genes depending on the QTL. Some genes were iden-
tified by more than one method, but each approach
yielded unique genes, showing that it is the combination
of methods that provides the best list of candidate genes
for further testing.

MATERIALS AND METHODS

Mice, crosses, and tissue collection: SM and NZB inbred
mice were obtained from The Jackson Laboratory, Bar Harbor,
Maine. Further details relating to the NZB 3 SM F2 cross and
husbandry conditions have been published (Stylianou et al.
2006). All the QTL identified between SM and NZB are pres-
ent in both sexes except for two QTL that are female specific
(supplemental Table S1); thus only females were interrogated
on the microarray and proteomic platforms.

Liver samples from the large lobe of the liver of three female
mice for each strain, NZB and SM, were dissected under
conditions suitable for RNA. Following a 4-hr morning fast,
samples were collected and flash frozen in liquid nitrogen. Two
liver samples from each mouse were taken and stored
separately to be used for gene and protein analysis. Microarray
experiments were performed using all three samples of each
strain, but proteomic analysis was performed on two samples of
each strain. Additional mice of each sex from both strains were
dissected under the same conditions for Western blot analysis.
All experiments were performed on 8-week-old mice main-
tained on a standard chow diet and procedures were approved
by The Jackson Laboratory’s Animal Care and Use Committee.

SNP and haplotype analysis: The 138,000 SNPs (�1 SNP/
24 kb) from the Broad Institute database were updated to
NCBI Build 36 and used to compare the NZB and SM strains
over the nine QTL regions as defined by the 95% confidence
interval (C.I.). Where the strains shared at least three common
adjacent SNPs, we inferred that the region might be in a
haplotype block and be identical by descent. The SNP feature
of the Mouse Phenome database was used to search these same
QTL regions for all genes carrying a coding-region difference
that resulted in an amino acid change. These genes were then
compared to the haplotype data, and those genes in regions
identical between NZB and SM were eliminated from the list.
Examination of the candidate genes for association to their
respective traits in published literature was performed as
previously described (Stylianou et al. 2006).

Microarrays: RNA was extracted from frozen samples using
TRIzol as previously described (Stylianou et al. 2005), and
the quality of the RNA was assessed using a 2100 Bioanalyzer
instrument and RNA 6000 Nano LabChip assay (Agilent Tech-
nologies, Palo Alto, CA). Following reverse transcription with
an oligo(dT)-T7 primer (Affymetrix, Santa Clara, CA), double-
stranded cDNA was synthesized with the Superscript double-
stranded cDNA synthesis custom kit (Invitrogen, San Diego).
In an in vitro transcription (IVT) reaction with T7 RNA poly-
merase, the cDNA was linearly amplified and labeled with
biotinylated nucleotides (Enzo Diagnostics, Farmingdale,
NY). Fifteen micrograms of biotin-labeled and fragmented
cRNA was then hybridized onto Mouse Genome 430 2.0 Gene-
Chip arrays (Affymetrix) for 16 hr at 45�. Posthybridization
staining and washing were performed according to manufac-
turer’s protocols using the Fluidics Station 450 instrument
(Affymetrix). Finally, the arrays were scanned with a GeneChip
Scanner 3000 laser confocal slide scanner. The data have been
deposited in the Gene Expression Omnibus database (series
reference GSE4765).

Array images were quantified using GeneChip Operating
Software (GCOS) v1.2. Probe level data were imported into the
R software environment and expression values were summa-
rized using the Robust MultiChip Average (RMA) function
(Irizarry et al. 2003a) in the R/affy package in Bioconductor
(version 1.3.25; R. A. Irizarry, L. Gautier, and B. M. Bolstad).
Using the R/maanova package (Wu et al. 2003), an analysis of
variance (ANOVA) model was applied to the data. The model

Yi ¼ m 1 STRAIN 1 ei ð1Þ
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was used to fit the log-transformed gene expression measures
Yi, where m is the mean for each array, STRAIN is the strain
effect, and ei captures random error. Strain differences were
tested using Fs, a modified F-statistic incorporating shrinkage
estimates of variance components (Cui et al. 2005). The
proportion of false positives generated was estimated using a
false discovery rate (FDR) adjustment described previously
(Storey and Tibshirani 2003). Differences between strains
were determined at the level FDR , 0.01, which corresponded
to permutation P-values ,2.6 3 10�3.

TaqMan assays: mRNA differences of a number of genes that
were identified bymicroarrays wereconfirmed byTaqMan quan-
titative real-time PCR assays. Briefly, total RNA (1 mg) was reverse
transcribed using the High-Capacity cDNA Archive kit (Applied
Biosystems, Foster City, CA) according to manufacturer’s pro-
tocol. A portion of the cDNA was then used in a PCR reaction
containing TaqMan Universal PCR Master Mix (Applied Bio-
systems), which includes AmpliTaq Gold DNA Polymerase,
AmpErase UNG, dNTPs with dUTP, Passive Reference 1, and
other buffer components. The gene-specific primers and probe
sets were obtained from the Applied Biosystems Assay on De-
mand service and used according to manufacturer’s protocols.
Real-time PCR was performed in an ABI PRISM 7900HT se-
quence detection system (Applied Biosystems) with the stan-
dard protocol of 95� for 10 min to activate the DNA polymerase
followed by 40 cycles of amplification. The threshold cycle (Ct)
was determined using the sequence detection system software
(SDS2.2) and relative fold change ratios were calculated.

Mass spectrometry: Two samples for each strain were
prepared in parallel. Liver lobes were diced with a sterile
scalpel and placed into extraction buffer containing 500 mm

triethyl ammonium bicarbonate, 6 m GuHCl, 0.1% Triton X-
100, pH 8.5. DNA and tissue were sheared by using a 3-cc
syringe fitted with a 20-gauge needle and then sonicated for 20
min. Protein was separated from the buffer by the addition of
63 vol of ice-cold acetone. Samples were then incubated at
�20� for 2 hr and then briefly spun before removing the
acetone. The protein was solubilized in iTRAQ reagent
dissolution buffer with SDS. Protein determination was done
using bicinchoninic acid (BCA) (Pierce, Rockford, IL). A total
of 100 mg of each sample were labeled with iTRAQ reagent.
Reduction and cysteine blocking were done according to
standard protocol. Trypsin digestion was done in two steps:
half of the recommended amount of trypsin was added to each
sample and incubated for 2 hr at 37� and then the second half
was added and left overnight at 37�.

Labeling: The iTRAQ reagents were added to each of the
samples as follows: SM no. 1 with 114 (S1), SM no. 2 with 115
(S2), NZB no. 1 with 116 (N1), and NZB no. 2 with 117 (N2). La-
beling was performed according to the standard protocol. After
labeling the samples were pooled and dried on a Speed-Vac.

HPLC: iTRAQ reagent-labeled samples were diluted in cation
exchange loading buffer to reduce the salt concentration. The
pH was adjusted to 3.0 with 1 N phosphoric acid. The sample was
loaded onto a poly LC polysulfoethyl A 4.5 3 100-mm, 5-mm,
200-Å column using the Agilent 1100. UV at Å214 was measured.
Samples were loaded at 0.5 ml/min and the gradient was run at
1.0 ml/min. The gradient conditions were 0% buffer B (10 mm

sodium phosphate, 25% acetonitrile, 500 mm KCl, pH 3.0) to
10% buffer B for 2 min, 20% buffer B to 45% for 2 min, and 45%
buffer B to 100% for 5 min. One-milliliter fractions were
collected and dried to completeness on Speed-Vac. Fractions
were then subjected to reverse phase chromatography, com-
bined with MALDI-matrix, and spotted on a MALDI target plate.
MS and MS/MS spectra were acquired using a 4800 Proteomics
Analyzer (ABI) MALDI–TOF/TOF mass spectrometer.

Protein mass spectroscopy experiments were performed in
duplicate and converted to ratios between samples (i.e.,

SM2:SM1, NZB1:SM1, NZB2:SM1). Protein measures (analo-
gous to the transcript measures above) were derived from
these ratios by first arbitrarily setting the SM1 value equal to
one, calculating the corresponding values from the ratio rela-
tionships, log transforming each value (SM1, SM2, NZB1, NZB2),
and recentering the data by subtracting the column means.
The statistical tests for differences in protein levels between
strains were performed in the same manner as for transcrip-
tional differences except that the significance level (determined
by permutation) was set at P , 0.1. No significant differences
would have been found using an FDR as for mRNA due to the
limitations of the method (only two biological replicates).

Western analysis for liver proteins: Western analysis was
performed to confirm differentially abundant candidate pro-
teins identified from the MS analysis. Frozen livers were
crushed on a stainless steel block while on dry ice and trans-
ferred to a glass homogenizer with a Teflon pestle containing
lysis buffer (50 mm Tris pH 8.0, 150 mm NaCl, 1 mm EDTA, 1%
igepal CA-630 detergent, 1 mm sodium fluoride, 1 mm sodium
vanadate, and 13 Sigma protease inhibitor cocktail P2714).
Following centrifugation at 16,000 3 g for 15 min, the protein
concentrations of the supernatants were evaluated using a BCA
assay (Pierce). Electrophoresis of 10 mg of each lysate was
performed using 4–12% Bis–Tris SDS–PAGE gels with MOPS
buffer (Invitrogen). Proteins were transferred to 0.45 mm
polyvinylidene fluoride membranes (Invitrogen), using Invi-
trogen’s transfer buffer containing 10% methanol for 1 hr at 30
V and 25�. Membranes were blocked for 1 hr in Tris-buffered
saline Tween-20 with 10% skim milk.

Acyl-coenzyme A dehydrogenase, short chain: Rabbit anti-acyl-
coenzyme A dehydrogenase, short chain (ACADS) serum
(kindly provided by G. Vockley’s lab from the Children’s
Hospital of Pittsburgh) was used at the dilution of 1:1000 with
5% skim milk for the primary immunostain. Goat anti-rabbit
IgG horseradish peroxidase (HRP) (0.4 mg/ml) was used at
1:50,000 for the secondary immunostain (Pierce).

NADH dehydrogenase (ubiquinone) 1 a-subcomplex 9: Mouse
monoclonal against purified mitochondrial complex I of cow
(200 mg/ml) (Santa Cruz Biotechnology, Santa Cruz, CA) was
used at the dilution of 1:500 with 5% skim milk for the primary
immunostain. Goat anti-mouse IgG HRP (10 mg/ml) was used
at 1:1000 for the secondary stain (Pierce).

Fumarate hydratase: Goat polyclonal IgG (Santa Cruz Bio-
technology) was used at the dilution of 1:200 with 5% skim
milk for the primary immunostain. Donkey anti-goat IgG H 1

L HRP (1 mg/ml) was used at 1:5000 for the secondary stain
(Novus Biologicals, Littleton, CO).

Hydroxysteroid 11-b dehydrogenase 1: Rabbit polyclonal anti-
body (Abcam, Cambridge, MA) to human sequence was used
at 1:300 for the primary immunostain. Goat anti-rabbit IgG (H
1 L) HRP (0.4 mg/ml) was used at 1:50,000 dilution for the
secondary stain. For a loading control, we used rabbit anti-b-
tubulin conjugated with HRP at a 1:200 dilution of 200 mg/ml
(Santa Cruz Biotechnology).

For each blot, 3 samples each from a different mouse were
run for both strains (SM and NZB) and both sexes, resulting in
a total of 12 samples with an N ¼ 3 within-sex–strain com-
parison and an N¼ 6 within-strain comparison. The immuno-
blots were immersed in Pierce’s SuperSignal West Dura HRP
substrate and imaged using a FujiLas CCD camera. Quantita-
tion was performed using ImageJ (Abramoff et al. 2004).

RESULTS

QTL analysis: Previous analysis of the SM 3 NZB
intercross population identified 38 main-effect QTL for
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the phenotypes of high-density lipoprotein (HDL) cho-
lesterol (Korstanje et al. 2004), gallstone susceptibility
(Lyons et al. 2005), body weight, adiposity, and obesity
(Stylianou et al. 2006), including 2 HDL QTL affected
by sex (supplemental Table S1). In this report we fo-
cused on the three most significant QTL for each of
these traits: Hdlq20, -1, and -24 on chromosomes (Chrs)
1, 5, and 6, respectively for HDL; Lith17, -19, and -21 on
Chrs 5, 8, and 10, respectively, for gallstones; and Obwq3,
-4, and -5 on Chrs 6, 17, and 19, respectively, for obesity.
We reanalyzed the QTL data from the original publica-
tions with updated marker positions based on mouse
genome Build 36 (Table 1). To obtain the 95% confi-
dence intervals, we used posterior probability distribu-
tion as described previously (Sen and Churchill 2001).

Use of SNP data to reduce the QTL interval and
identify genes with coding changes: QTL regions were
reduced by eliminating regions within the 95% C.I. that
appeared to be IBD between the two parental strains;
these regions are unlikely to contain the causal poly-
morphisms unless the mutation arose in the last 100
years since the strains were inbred. It is estimated that
97% of mutations are ancestral (Wade et al. 2002). Thus,
3% of mutations, and by inference 3% of QTL, may be
due to a recent mutation unique to a single strain. If a
mutation is recent, then the QTL is unlikely to be found
except in a cross with that particular strain; thus, if the
same QTL is found in more than one intercross, the
mutation is more likely to be ancestral. For all QTL in
this report except one (Lith19 on Chr 8), the QTL have
been reported in other crosses, thus increasing greatly
the probability that the causal mutation is ancestral and
shared among strains. We inferred the IBD regions by
directly examining the common polymorphisms be-
tween the parental strains, using 130,000 SNPs for SM
and NZB from the Broad Institute (http://www.broad.
mit.edu/mouse/snp_xls.html). These data were used

to exclude large regions within each QTL and reduced
the QTL genomic space by between 40 and 72%.

To identify genes that differed within the coding
region of the gene, we utilized all the Perlegen SNP data
in combination with all SNPs for SM and NZB available
through the Mouse Phenome database (http://www.jax.
org/phenome) (Bogue et al. 2007). We inferred coding
differences between SM and NZB for the nine QTL
(Table 2). This resulted in a list of genes that may be
causal for each QTL due to coding and hence functional
differences (supplemental Tables S2–S10).

Transcriptome analysis: Liver mRNA profiles were
compared between three SM and three NZB female
mice, using the Affymetrix Mouse Genome 430 2.0
oligonucleotide GeneChip arrays. Statistical diagnostic
analysis indicates that the array data generated are
highly replicable and hence robust. Genes that are not
differentially expressed between the two strains have a
characteristically even distribution of nonsignificant P-
values (Figure 1A). Scatter plots of mRNA gene expres-
sion measures from the six arrays derived from robust
multichip analysis (RMA) (Irizarry et al. 2003b) show
that within-strain comparisons are tightly distributed
and between-strain distributions show differential ex-
pression (Figure 1B). To validate the microarray results,
we performed real-time PCR using TaqMan assays on 10
differentially expressed genes that had conservative
absolute fold changes of ,4.0 and FDRs ,1 3 10�4.
TaqMan assays were consistent with microarray data for
all 10 genes; that is, all genes were differentially ex-
pressed in the expected direction and the differences
were significant after correcting for multiple testing
(supplemental Table S11). Using the stringent FDR of
,1 3 10�4, we identified 831 differentially expressed
(DE) probe sets.

Candidates based on differences in mRNA abun-
dance: A number of differentially expressed genes were

TABLE 1

Selected QTL from the SM 3 NZB F2 cross for three complex traits

Trait QTL Chr LOD
Nearest
marker

High
allele

Mode of
inheritance

Mb peak
(C.I. start–end)

HDL Hdlq20 1 10.6 D1Mit291 NZB Dom 174 (168–184)
Hdlq1 5 10.6 D5Mit161 NZB Add 122 (116–132)
Hdlq24 6 6.4 D6Mit259 NZB Add 128 (115–144)

Gallstone presence Lith17 5 7.1 D5Mit24 SM Add 102 (88–122)
Lith19 8 5.6 D8Mit155 SM Rec 6 (0–16)
Lith21 10 5.7 D10Mit214 NZB Rec 48 (18–58)

QTL for obesity and
body weight

Obwq4 17 6.8 D17Mit20 NZB Add 54 (34–62)
Obwq5 19 9.3 D19Mit71 NZB Rec 56 (48–60)
Obwq3 6 5.8 D6Mit105 SM Rec 100 (88–122)

LOD scores are given with sex as an additive covariate except for the body weight and obesity phenotypes. Mb indicates
millions of base pairs from the centromere (Build 36). Dom, dominant; Add, additive; Rec, recessive; C.I., 95% confidence
interval.
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identified from the microarray analysis (Figure 2, sup-
plemental Tables S2–S10 and S12). Several of these
are of particular interest because there is evidence that
they are involved with the target traits (Table 3). The

cholesterol scavenger receptor class B member 1
(Scarb1) is a known receptor for HDL (Acton et al.
1996; Trigatti et al. 2003) and therefore an obvious
candidate for Hdlq1 on Chr 5; adiponectin receptor 2
(Adipor2) is a functional candidate for Hdlq24 and
Obwq3 on Chr 6. For gallstone QTL, the connective
tissue growth factor (Ctgf), shown to have a 40-fold
mRNA differential expression in the gallbladders of
human cholecystolithiasis patients compared to con-
trols (Koninger et al. 2005), is a candidate for Lith21 on
Chr 10; also Slc10a2 on Chr 8 is essential for efficient
intestinal absorption of bile acids and therefore may be
responsible for the Lith19 QTL (Dawson et al. 2003).
Finally, for the obesity QTL on Chr 19, attractin-like 1
(Atrnl1) has a 3.4-fold upregulation in NZB relative to
SM. Attractin is part of the agouti pathway that leads to
obesity due to aberrant ectopic protein expression (He

et al. 2001), and Atrnl1 may similarly be involved in this
pathway.

Mass-spectrometric proteomic analysis: We exam-
ined liver protein expression differences between the
strains using mass spectrometry with iTRAQ reagent
chemistry labeling technology (Ross et al. 2004). Sam-
ples were used from two of the three biological
replicates used for the microarray study. iTRAQ labels
are essentially chemical compounds with two parts. The
first part, retained by the peptide after scattering, is
available at four different masses of 114, 115, 116, or 117
Da. The second part of the label is not retained; this part
of the molecule is designed to balance the mass of the

TABLE 2

Inferring codon changing SNPs between SM and NZB by examining SNPs between highly sequenced strains

Highly sequenced strains, e.g., C57BL/6, DBA/2, etc.

Chr 6 gene SNP i ii iii iv v vi SM NZB SM and NZB are

Syn2 UTR A A A G G G G G IBD
Syn2 Cs T T T C C C
Syn2 Cs G G G A A A A G Non-IBD

C C C T T T
Pparg UTR A A A G G G
Pparg Cn T T T C C C c t Inferred Cn

between SM and NZB
Pparg Cs G G G A A A
Pparg Cs C C C T T T
Pparg Cs A A A G G G G A Non-IBD

T T T C C C
G G G A A A

Tsen2 UTR C C C T T T
Tsen2 Cs C C C G G G C G Non-IBD
Tsen2 Cs T T T C C C
Tsen2 Cs G G G A A A
Tsen2 Cs C C C T T T T T IBD

Italic nucleotides indicate an alternative haplotype present in common inbred strains that can be used to infer the origin of
polymorphisms from less well characterized strains. Although SM and NZB are not as well sequenced as other strains, missing SNPs
between SM and NZB can be inferred by examining the haplotypes of the other strains. For the Cn in Pparg (underlined), SM is
inferred to be ‘‘C’’ and NZB is inferred to be ‘‘T.’’ Cs, coding synonymous; Cn, coding nonsynonymous; IBD, identical by descent.

Figure 1.—Gene expression (mRNA) microarray diagnos-
tics. (A) P-value distribution histogram. F-tests were per-
formed in R/MAANOVA and the number of differentially
expressed probes with a false discovery rate (FDR) of q ,
0.01 ¼ 6761 and with an FDR q , 0.0001 ¼ 831. (B) Scatter
plots of RMA measures. The shaded areas indicate within-
strain comparisons while the open areas show between-strain
comparisons of the six female liver samples arrayed.
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four labels. Thus all four labels are isobaric, so that
observed differences are not due to the differential mass
of the labels. Up to four samples can be labeled so that
within a sample every peptide is equally tagged with an
additional mass of 114, the peptides of the second
sample can be tagged with a mass of 115, and so on. We
identified 943 proteins with 95% confidence:�7% were
ribosomal and 43% represented novel or uncharacter-
ized gene products.

These data are presented as exploratory; the statistical
power is not optimal since only a two-by-two comparison
is possible on this proteomics platform. Consequently
we are using a statistical threshold of P , 0.1, derived
from permutation analysis, which we are using to
indicate peptides that might be significantly differen-
tially expressed under more reproducible experimental
conditions such as Western analysis. Rather than reduce
the statistical threshold for this technology and elimi-

nate possible candidates, the higher threshold exposes
us to type I errors, which are more acceptable to us than
type II errors, that is, to eliminate candidate genes that
are responsible for the QTL. For example, apolipopro-
tein A-II precursor (APOA2), which has a P-value of
0.077 in our analysis, has been shown previously to be
differentially abundant with no mRNA difference
(Doolittle et al. 1990) and is responsible for the
HDL QTL linked to it (Wang et al. 2004).

We identified 45 proteins as differentially regulated
between the two strains (P , 0.1) (supplemental Table
S13); 33 of these 45 could be linked to corresponding
genes. The remaining 12 peptides included 8 peptides
that could not be mapped and 4 problem peptides that
did not map to a unique location because they were in
highly conserved protein families.

Candidates based on differences in protein abun-
dance: Only a few of the 33 differentially expressed

Figure 2.—Summary of the nine metabolic QTL with locations of differentially regulated genes and proteins. Ninety-five per-
cent confidence intervals and peaks of QTL are given by the vertical bars. All significantly differentially expressed proteins are
presented (P , 0.1); however, for clarity only differentially expressed genes within the QTL intervals are presented.
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proteins mapped to a QTL (Figure 2). For the HDL
QTL, APOA2 (P ¼ 0.077) and fumarate hydratase
(FH1) (P¼ 0.073) are encoded by genes that fall within
the Hdlq20 QTL interval on Chr 1. Additionally, hy-
droxysteroid 11-b dehydrogenase 1 (HSD11B1) maps
close to this QTL and knockout mice for this gene have
increased HDL cholesterol levels (Morton et al. 2001).

The gene that encodes ACADS (previously known as
SCAD) maps within Hdlq1 on Chr 5 (Table 1), and
NADH dehydrogenase (ubiquinone) 1 a-subcomplex 9
(NDUFA9) is encoded by a gene within the Hdlq24 QTL
on Chr 6. The gallstone QTL Lith17 on Chr 5 overlaps
with the HDL QTL Hdlq1, and thus ACADS is also a
candidate for this gallstone QTL.

To validate some of the candidates identified from the
iTRAQ ABI 4800 Proteomics Analyzer, antibodies suit-
able for Western analysis were obtained for several
proteins. These include FH1 and HSD11B1 on Chr 1,
ACADS on Chr 5, and NDUFA9 on Chr 6. Western
analysis confirmed the initial results from MS (Figure
3). Significant differences were observed for all four
proteins after normalizing to b-tubulin: P ¼ 0.0033

(NDUFA9), P ¼ 0.0002 (FH1), P ¼ 0.0091 (HSD11B1),
and P ¼ 0.016 (ACADS).

DISCUSSION

Often QTL are large, containing hundreds of genes,
so different tools and approaches are needed to reduce
the number of probable candidate genes that require
further testing. Combining three approaches, we gen-
erated smaller candidate gene lists for each QTL, and
the overall summary for candidate genes identified is
given in Table 4. This was achieved by searching for
differential amounts of either mRNA or protein abun-
dance and by mining publicly available SNPs to exclude
regions of the QTL that are inferred to be identical by
descent and to identify genes with protein-coding differ-
ences that may indicate functional differences. Each of
these three approaches has its limitations and strengths
as discussed below.

If these three approaches have not reduced the
possible candidate genes to a manageable list, which
we consider #10 genes, then other approaches are

TABLE 3

Candidate genes for each QTL based on our data and published evidence—the genes to test first

Evidence

Trait QTL Gene Chr Mb mRNAa Proteinb Sequencec Literatured

HDL Hdlq20 Apoa2 1 173.1 4.1 X Lilja et al. (2002)
Fh1 177.5 �2.8 X
Hsd11b1 194.9 �3.8 Morton et al. (2001)

Hdlq1 Acads 5 115.3 �2.6 X
Scarb1 125.6 �2.1 Acton et al. (1996)

Hdlq24 Pparg 6 115.4 X Chinetti et al. (2001)
Rassf4 116.6 �8.2
Adipor2 119.3 1.9 X Yamauchi et al. (2003)
Ndufa9 126.8 �2.6 X

Gallstone presence Lith17 Scarb2 5 93.6 X Acton et al. (1996)
Acads 115.3 �2.6 X

Lith19 Slc10a2 8 5.1 5.2 Shih et al. (2001)
Lith21 Ctgf 10 24.3 �2.6 X Koninger et al. (2005)

Obesity and body weight Obwq3 Pparg 6 115.4 X Cock et al. (2004)
Rassf4 116.6 �8.2
Adipor2 119.3 1.9 X Yamauchi et al. (2003)

Obwq4 Pgc 17 47.2 X Puigserver et al. (1998)
Obwq5 Atrnl1 19 57.7 3.4 Gunn et al. (1999)

Genes listed are in QTL regions that are not identical by descent between SM and NZB (Hsd11b1 maps close to Hldq20). Protein
and mRNA fold changes are given where a positive value indicates upregulation and a negative one indicates downregulation in
NZB relative to SM.

a Fold changes for mRNA are significant (Fs , 1 3 10�4).
b Proteins are significantly different as determined by Western analysis (Figure 3), except for APOA2, which is suggestive (P ,

0.1) on the basis of MS/MS data.
c Genes that contain known or extrapolated codon-changing SNPs leading to potential functional differences are indicated by ‘‘X.’’
d Gene names from supplemental Table S2 were systematically interrogated against the PubMed database using relevant key-

words (Stylianou et al. 2006).
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available, some of which have been discussed previously
(Dipetrillo et al. 2005; Flint et al. 2005). For example,
comparative genomics is a useful approach both for
narrowing the QTL if a homologous QTL has been
found in other species and for examining the genes
found in a human genomewide association study in the
mouse. Another approach is to examine the expression
databases to determine if the candidate gene is ex-
pressed in the relevant tissues. Following this bioinfor-
matics work or global expression studies, we test the
small list of candidates by sequencing and by expression
analysis. Our goal is to obtain at least three independent
lines of evidence for a candidate gene.

mRNA expression data: Today microarray technol-
ogy yields reliable, consistent, and reproducible data
from probe sets that are well annotated. As with the
platform used here (Affymetrix GeneChip Mouse Ge-
nome 430 2.0), most technologies report mRNA ex-
pression for many thousands of genes, approaching the
entire known transcriptome. It is likely, therefore, that
if a differentially expressed gene in the liver is causal
for any of the nine QTL, we should be able to detect
it. Indeed, when we examine the differentially ex-
pressed probes in the QTL intervals located in haplo-
type regions that are not identical by descent between
our two strains, we find several genes that are obvi-

ous candidates. These include Scarb1 for Hdlq1 on
Chr 5, Ctgf for Lith21 on Chr 10, Slc10a2 for Lith19 on
Chr 8, and Atrnl1 for Obwq5 on Chr 19 (Figure 3 and
Table 3).

Although searching for differential gene expression
using microarrays is probably the most advanced tech-
nology of the three methods, it has several limitations.
Suitable probes for a gene may not be on the microarray
and splice variants are difficult to detect. The differen-
tial expression could be caused by differential binding
of the mRNA due to SNPs in the probe. This can be
guarded against by searching the databases for SNPs in
the probes and by confirming any expression difference
with new probes and RT–PCR. Trans-regulatory ele-
ments outside of the QTL may cause differential
expression of a gene in the QTL region; similarly, gene
interaction or epistasis could cause the parental strains
to have similar gene expression even though differential
expression was causal for the QTL in an inbred cross.
Both errors can be guarded against by measuring gene
expression in tissues from selected F2 progeny (com-
paring mice homozygous for one parent over the QTL
region to mice homozygous for the other parent over
the same region).

Protein analysis: The primary aim of microarrays is
to identify differentially expressed genes that are

Figure 3.—Western blot analysis of ACADS,
FH1, NDUFA9, HSD11B1, and control b-tubulin.
F and M indicate female and male, and each sex
or strain is represented by three biological repli-
cates. As there was no significant difference be-
tween sexes for any of the proteins, significance
(P-value*) was determined by a t-test of the ratios
of the target proteins to b-tubulin between strains
(N ¼ 6). †, FC indicates fold change relative to
NZB. U, an additional NZB male-specific

HSD11B1 isoform is apparent at �55–60 kDa (supplemental Figure S1); however, females do not have this isoform and conse-
quently NZB females are still significantly decreased compared to SM. ‡, ACADS was probed to a second blot with an identical
setup and normalized to b-tubulin probed to the second blot.

TABLE 4

Summary of candidate genes identified by the various methods used

Method Significance level Condition
No. of genes/

proteins
Total no. of genes/

proteinsa

Microarray FDR ¼ 0.05 Over all chromosomes 11,223 24,530b

Microarray FDR ¼ 0.0001 Over all chromosomes 831 24,530b

Microarray FDR ¼ 0.0001 In QTL 87 3,763c

Proteomics P , 0.1 Over all chromosomes 45 943
Proteomics P , 0.1 In QTL region 5 Unknownd

SNP analysis NA In QTL and non-IBD region 336 2,752

a Gene here also refers to an Affymetrix probe for the microarrays and a peptide linked to a protein entry in the Swiss-Prot or
TrEMBL databases for the proteomics.

b There are 45,037 noncontrol probe sets on the arrays; however, 20,507 are not expressed in any of the six samples, indicating
that genes for those probes are not expressed in adult female mouse liver.

c The total number of probes within the total space of the nine QTL including IBD regions between SM and NZB.
d Many protein hits could not be mapped to genomic locations so the genes located only in QTL regions cannot be determined.
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representing differentially abundant proteins. Large-
scale proteomic techniques have only recently become
feasible; however, they are technically and financially
restrictive relative to mRNA arrays. Nonetheless, as
proteomic technologies improve they may replace
microarray gene expression since it will be possible to
directly interrogate the presence of differentially abun-
dant proteins. Despite the ability to directly identify 943
proteins, making direct comparisons between mRNA
regulation and protein regulation remains difficult,
principally because MS/MS proteomics and the accom-
panying bioinformatics are still at early stages of de-
velopment. Areas of improvement that will significantly
advance the field should include standardized protocols
on tissue processing. In this study, we chose a single
tissue-processing condition (pH 8.5) that would yield
the widest variety of protein peptides from liver; this
isolation may miss more basic and more acidic pro-
teins. A more thorough investigation of the liver
proteome would include a range of tissue-processing
conditions.

Another desirable improvement is peptide annota-
tion, specifically linked annotation between protein/
peptides and gene databases. Although we identified
943 proteins, a significant proportion of these (43%)
could not be assigned to a gene; thus direct comparisons
with Affymetrix probe identifications could not be made.
Furthermore, a significant proportion of the 943 pro-
teins, despite a protein identifier, had little or no an-
notation in public databases and indeed BLASTsearches
of the peptides to genome databases (Ensembl_mouse)
derived no hits at all, even after decoding the peptide into
DNA sequence. Finally, standardized analytical methods
of MS/MS data are currently lacking and an initiative
similar to that seen for mRNA gene analysis is required.

Despite the need for continued technological ad-
vancements in the proteomic field, the technology is
developed enough to identify changes in protein abun-
dance between samples. ACADS, a protein encoded by
a gene in both the HDL QTL Hdlq1 and the gallstone
QTL Lith17 on Chr 5, showed significantly increased
protein abundance in SM adult female liver relative to
the NZB strain (a 2.6- and a 1.6-fold change from MS
and Western analysis, respectively), but no difference in
mRNA expression (Table 2). The difference in protein
abundance was confirmed by Western blot analysis.
Similar results were obtained for FH1, HSD11B1, and
NDUFA9 (Table 3, Figures 2 and 3). Finally, our MS data
indicate a 4-fold protein increase of APOA2 in NZB
relative to SM protein abundance with no mRNA
expression difference. A difference in the quantity of
APOA2 protein but not in mRNA was reported pre-
viously between two different strains (Doolittle et al.
1990). We have previously shown that the gene Apoa2 is
responsible for the HDL QTL Hdlq5 (Wang et al. 2004)
in mice and associated with HDL levels in human
studies (Lilja et al. 2002).

The proteomics analysis reveals two important aspects
of this study. First, differentially abundant proteins can
be identified and may underlie QTL, and second, as
others have shown in yeast (Gygi et al. 1999), these
differentially expressed proteins are not necessarily
accompanied by differences at the mRNA level. Of the
33 named differentially expressed proteins identified
with corresponding Affymetrix probe sets, 12 had
differentially expressed mRNA in the same direction
with an FDR of q , 0.05 (39%) (supplemental Table
S13). We expect that differentially abundant proteins
whose mRNA levels are similar will have changes at the
gene (e.g., 59- and 39-UTRs) or the protein level (e.g.,
phosphorylation) that will affect protein synthesis and
degradation. APOA2 is known to have such an amino
acid change (Wang et al. 2004).

SNPs and haplotype data: We used public SNP
information to first eliminate those regions that were
in the 95% confidence interval of the QTL but were
identical by descent between NZB and SM. We then
examined the remaining genes by identifying codon-
changing SNPs. Once genes with nonsynonymous SNPs
were identified between well-characterized strains, they
were compared to the haplotypes of SM and NZB, which
allowed us to infer if the same nonsynonymous poly-
morphism might be present between SM and NZB as
illustrated in Table 2. This generated a list of genes that
may have nonsynonymous changes between the two
strains, which may affect the function of the proteins,
thus causing the QTL. However, the number of genes
identified using this method for some QTL was still
prohibitively large for testing (e.g., 88 genes in the
Obwq4 QTL). In addition, it has recently been shown
that SNPs causing synonymous codon changes, for
which the alternate codon is rare, can lead to a
difference in protein efficiency or function (Kimchi-
Sarfaty et al. 2007).

The method of using SNPs does have several draw-
backs that will become less important in the future as
SNP databases improve (Reuveni et al. 2007). Using the
SNP database to eliminate regions that are identical by
descent could lead to error by incorrectly eliminating
regions; this type of error will be reduced as the density
of the SNPs improves. The SNP database, even for those
strains sequenced by Celera and Perlegen, is incomplete
because both groups used rigorous criteria to guard
against false positives. On the basis of the Perlegen data,
�50% of the SNPs will be identified if the minor allele
is shared by three strains (58% if the minor allele
frequency is shared by seven strains) (Yang and
Churchill 2007) or a somewhat better percentage if
Celera data are included or only classic inbreds (not
wild-derived strains) are considered.

Summary: In spite of the limitations for each method,
we were reasonably effective in reducing the number of
candidate genes in each QTL region. Some genes had
multiple lines of evidence such as Acads for Hdlq1 on
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Chr 5 and Adipor2 for Obwq3 on Chr 6 (Table 3 and
supplemental Table S2) but multiple lines of evidence
do not prove that it is the causal gene. In one case we
were able to identify a known gene for a QTL (Apoa2);
and each method revealed likely candidates that the
other methods did not. We conclude that QTL candi-
date genes should be assessed for changes in coding and
both protein and message levels.
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