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ABSTRACT

Our goal is gene network inference in genetical genomics or systems genetics experiments. For species
where sequence information is available, we first perform expression quantitative trait locus (eQTL)
mapping by jointly utilizing cis-, cis–trans-, and trans-regulation. After using local structural models to
identify regulator–target pairs for each eQTL, we construct an encompassing directed network (EDN) by
assembling all retained regulator–target relationships. The EDN has nodes corresponding to expressed
genes and eQTL and directed edges from eQTL to cis-regulated target genes, from cis-regulated genes to
cis–trans-regulated target genes, from trans-regulator genes to target genes, and from trans-eQTL to target
genes. For network inference within the strongly constrained search space defined by the EDN, we
propose structural equation modeling (SEM), because it can model cyclic networks and the EDN indeed
contains feedback relationships. On the basis of a factorization of the likelihood and the constrained
search space, our SEM algorithm infers networks involving several hundred genes and eQTL. Structure
inference is based on a penalized likelihood ratio and an adaptation of Occam’s window model selection.
The SEM algorithm was evaluated using data simulated with nonlinear ordinary differential equations and
known cyclic network topologies and was applied to a real yeast data set.

SYSTEM biologists are interested in understanding
how DNA, RNA, proteins, and metabolites work

together as a complex functional network. Projecting
this network onto the gene space (Brazhnik et al. 2002)
yields a gene network, where only the relationships be-
tween genes are modeled, although the physical in-
teractions between genes are mediated through other
components. While networks including genes, RNA,
proteins, and metabolites would be more informative,
gene networks are system-level descriptions of cellular
physiology and provide an understanding of the ge-
netic architecture of complex traits and diseases.

Bayesian networks are currently a popular tool for
gene network inference (Friedman et al. 2000; Pe’er

et al. 2001; Hartemink et al. 2002; Imoto et al. 2002; Yoo

et al. 2002). Bayesian networks use partially directed
graphical models to represent conditional indepen-
dence relationships among variables of interest and
are suitable for learning from noisy data (e.g., micro-
array data) (Friedman et al. 2000). Bayesian networks
are directed acyclic graphical (DAG) models, which

cannot represent structures with cyclic relationships.
However, gene networks reconstructed on the basis of
genetical genomics (or other perturbation) experi-
ments are expected and have been found to be cyclic.
Gene networks are phenomenological networks whose
edges represent causal influences. These can be physical
binding of a transcriptional regulator to the target
promoter or more complicated biochemical mecha-
nisms (involving signal transduction and metabolism),
as there is much genetic regulation beyond transcrip-
tion factors (Brazhnik et al. 2002). Recent articles point
to the need for methods that can infer cyclic networks,
note the limitation of the Bayesian network approach
(Lum et al. 2006), and show better performance of a
linear regression method over a Bayesian network al-
gorithm most likely due to the presence of cycles (Faith

et al. 2007). An alternative approach to the reconstruc-
tion of directed cyclic networks (directed cyclic graphs,
DCGs) is based on the assumption that a cyclic graph
represents a dynamic system at equilibrium (Fisher

1970) and includes a time dimension to produce a
causal graph without cycles (DAG), which then can be
studied using Bayesian networks, an approach called
dynamic Bayesian networks (Murphy and Mian 1999;
Hartemink et al. 2002). However, this approach re-
quires the collection of time series data, which is dif-
ficult to accomplish, as it requires synchronization of
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cells and close time intervals not allowing for feedback
(Spirtes et al. 2000).

Xiong et al. (2004) were the first to apply structural
equation modeling (SEM) to gene network reconstruc-
tion using gene expression data. However, their ap-
plication was limited to gene networks without cyclic
relationships by using a recursive SEM, which has an
acyclic structure and uncorrelated errors and is equiv-
alent to a Gaussian Bayesian network. These authors re-
constructed only small networks with ,20 genes. Here,
we apply SEM in the context of genetical genomics
experiments.

In genetical genomics ( Jansen and Nap 2001, 2004;
Jansen 2003), a segregating population of hundreds of
individuals is expression profiled and genotyped. With
expression quantitative trait locus (eQTL) mapping and
selection of regulator–target pairs, an encompassing
directed network (EDN) of causal regulatory relation-
ships among gene expression levels (expression traits,
‘‘e-traits’’) and eQTL can be constructed. The network is
called ‘‘encompassing’’ because it contains regulators
with both direct and indirect effects on the same targets,
which are actually only indirect regulations, and multi-
ple candidate regulator genes for a given eQTL and
target.

We present an SEM implementation to search for a set
of sparser structures within the EDN that are well sup-
ported by the data. The method is evaluated on simu-
lated data with known underlying network structures
and on a real yeast data set. Typically, SEM analyses have
included at most tens of variables, but our implementa-
tion is capable of reconstructing networks of several
hundred genes and eQTL on the basis of a factorization
of the likelihood and a strongly constrained network
topology search space.

The genetic variation in a segregating population has
been utilized to construct interaction networks among
component traits or subphenotypes of complex dis-
eases. Nadeau et al. (2002) reconstructed a network of
component traits of the cardiovascular system using
phenotypic data on a segregating population and Bayes-
ian network analysis, while Li et al. (2006) analyzed both
phenotypic and DNA marker data on a segregating
population to construct networks including subpheno-
types and QTL related to obesity and bone geometry,
using SEM. While in this article we focus on using SEM
to infer a gene regulatory network using e-traits only, it
would not be too difficult to extend the method to the
combined network inference including all of the above:
genes, eQTL, disease (sub)phenotypes, and other phe-
notypes such as metabolomic data.

METHODS

The methodology we discuss here can be applied to
any organism where a segregating population is exten-

sively marker genotyped and expression profiled and
where DNA sequence information is available. We
perform gene (regulatory) network inference by a
three-step approach: (1) eQTL mapping, (2) regulator–
target pair identification to obtain the EDN, and (3) a
search for a set of sparser optimal networks within the
search space defined by the EDN. For the evaluation of
this three-step approach, we analyzed the yeast genetical
genomics data set (Brem and Kruglyak 2005). After
removing the 20% of genes with the lowest e-trait var-
iability from the original data, our data set contained
e-traits for 4589 genes and genotypes for 2956 genetic
markers on 112 haploid offspring from a cross between
a laboratory and a wild strain (see supplemental mate-
rial at http://www.genetics.org/supplemental/ for data
preprocessing). We performed a small simulation study
to evaluate the regulator–target pair selection. For eval-
uation of the SEM in step 3, we developed a method to
simulate genetical genomics data with known underly-
ing network topologies, and we assessed the SEM on the
basis of its ability to infer these networks.

Expression QTL analysis: We used three different
eQTL mapping strategies, and we applied false discov-
ery rate (FDR) control using the Benjamini–Hochberg
procedure (Benjamini and Hochberg 1995). To iden-
tify chromosomal regions affecting multiple e-traits, the
eQTL regions of two different e-traits were combined
into a single region if the two eQTL were located at the
same marker or their confidence intervals (C.I.’s) over-
lapped by .80%. The first strategy was cis-eQTL map-
ping, where only the marker(s) closest to the location of
an e-trait’s gene are tested (e.g., Doss et al. 2005), and
subsequently the secondary targets of the cis-eQTL, the
so-called cis–trans-regulated e-traits, are found by testing
the effects of the identified cis-eQTL regions on other
e-traits.

Multiple-trait analysis can provide more power to
detect pleiotropic QTL. It is therefore desirable to
utilize, in some way, the information from multiple
correlated expression profiles in the search for eQTL.
Therefore, we used two approaches that utilize infor-
mation from correlated e-traits: QTL mapping of prin-
cipal components (PC) and trans-eQTL mapping. It has
been shown that using a small number of PC traits for
QTL mapping, when a (large) number of original traits
are (highly) correlated (in groups of traits), is very
effective for QTL identification; i.e., essentially the same
QTL are identified by analyzing PC and original traits
(Mähler et al. 2002; see also Jiang and Zeng 1995 and
Mangin et al. 1998). We used k-means with absolute
correlation as the distance measure to cluster genes into
100 subsets with on average 46 genes per cluster. We
then performed PC analysis separately for each cluster,
followed by eQTL mapping of each retained PC. We
chose 100 clusters because we found considerably more
eQTL with 100 than with fewer clusters and because
with .100 clusters many small clusters had only one or
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two genes. An eigenvalue cutoff of 1.5 was used to retain
PCs within each cluster, so that the PCs from different
clusters contained a similar amount of information. An
eQTL affecting a PC was assumed to be a common
regulator of all e-traits with high loadings, but there was
no clear cutoff for ‘‘high.’’ Therefore, all e-traits were
individually tested only for the identified PC–eQTL
regions. For cis and PC mapping, we performed single-
marker analysis using the Kruskal–Wallis test (Lehmann

1975).
Trans-regulated e-traits are affected by an eQTL

genotype and the e-trait of the corresponding candidate
regulator gene simultaneously. Therefore, Kulp and
Jagalur (2006) proposed to include candidate regula-
tory e-traits in the QTL model. While these authors
performed interval mapping, we used a regression
model and the intersection-union test (IUT) (Casella

and Berger 1990) to test whether the eQTL genotype
and the e-trait of the candidate regulator gene r both
significantly affect the e-trait of target gene t

ytn ¼ b1yrn 1 b2xrn 1 b3yrnxrn 1 etn ; n ¼ 1; . . . ;N ; ð1Þ

where ytn and yrn are deviations of e-trait values in
observation n from their means, xrn is the deviation of
the genotype value (0 or 1) from its mean for the marker
closest to the physical location of candidate regulator
gene r, and etn is a residual. Coefficients b1 and b2 (b3)
represent main effects (interaction) of gene and eQTL
regulators, and both must be significantly different
from zero for gene r to be declared as a trans-regulator
of gene t as determined by the IUT. There are two
reasons why the trans-analysis might give false positives:
the presence of a cis-eQTL affecting the target and
multicollinearity between yr and xr. We therefore did not
consider any candidate regulator whose closest marker
had a recombination rate of #0.25 with the marker
closest to the target e-trait. We performed multicollinear-
ity tests (see supplemental material), which indicated
that our trans-mapping results should essentially be
unaffected by multicollinearity.

Regulator–target pair identification and encompass-
ing directed network: In contrast with previous work
(e.g., Doss et al. 2005; Kulp and Jagalur 2006), in this
article we consider cis-, cis–trans-, and trans-regulations
jointly with the goal of reconstructing an EDN that de-
fines the network search space for network inference by
SEM. While the SEM represents a global structural
model evaluating regulator–target relationships in the
context of an entire network, for regulator–target pair
identification we use single equations (similar to trans-
mapping) expressing the e-trait of a target gene as a
linear combination of the expression levels of some of its
regulator genes and eQTL. We therefore refer to these
single equations as local structural models or equations.

Regulator–target pair identification for cis and PC map-
ping: For the eQTL identified by cis- and PC mapping,

the regulator–target pair selection was performed in
three steps separately for each eQTL: (1) identification
of those of the detected cis-linked e-traits that were most
likely truly cis-linked and those that were probably cis–
trans-effects, (2) identification of those of the detected
trans-affected e-traits that were probably cis–trans-affected
rather than likely trans-affected, and (3) a search for the
candidate regulator among all genes physically located in
the eQTL C.I. for each of the likely trans-affected e-traits.

1. Distinguishing cis from cis–trans: We tested whether a
cis-affected gene t was likely truly cis-affected using
model (1) but omitting the interaction term, with r
denoting any other gene found to be cis-affected by
the same eQTL and with xrn denotingthe genotype of
the marker at which the peak test statistic of the eQTL
occurred. If yt is actually cis–trans-affected through yr,
then b2 should not be significantly different from
zero with yr included in the regression equation. If for
an e-trait t, b2 remained significant (at the P , 0.05
level) for all e-traits r, then it was identified as a ‘‘true’’
cis-affected e-trait.

2. Distinguishing trans from cis–trans: Using model (1)
again, yt is now a trans-affected e-trait, and yr is a cis-
affected e-trait identified in step 1. Cis–trans regula-
tion is indicated by b2 not being significantly different
from zero. If b2 remains significant for all cis-affected
e-traits r, then gene t is identified as a likely trans-
affected e-trait.

3. Selecting regulator–target pairs in the same eQTL
region: To find the candidate regulator(s) for a likely
trans-affected e-trait t among all genes physically
located in the eQTL region, for target e-trait t we
fitted model (1) with any candidate regulator e-trait r
located in the eQTL region and the eQTL marker
(without the interaction term) and any additional
candidate regulator e-trait r 9. The additional candi-
date e-trait was included to examine whether the
regulator–target correlation was due to some indirect
mechanism. We retained the maximum P-value of
the b1 coefficients for yr across all r 9 and if it was sig-
nificant, then we retained the regulator–target pair
(r, t) ½we used a P-value cutoff of (0.05/number of
candidate regulators) for all tests performed for each
eQTL–target pair�.

Identification of regulator–target pairs for trans-mapping:
For each target e-trait t with at least two identified
regulators, for each identified regulator r of e-trait t, we
included another identified regulator e-trait (r 9) of t
and its nearest marker in model (1) to obtain

ytn ¼ ðb1r yrn 1 b2r xrn 1 b3r yrnxrnÞ
1 ðb1r 9yr 9n 1 b2r 9xr 9n 1 b3r 9yr 9nxr 9nÞ1 etn: ð2Þ

The marker for regulator r 9 was not included in the
model when its recombination rate with the marker
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for regulator r was ,0.25. We retained the maximum
P-value of the IUT test for b1r and b2r across all r 9 and if
it was significant (at the P , 0.05 level), only then we re-
tained the regulator–target pair (r, t). Otherwise we dis-
carded gene r as a regulator of t and assumed that its
effect was due to an indirect mechanism.

Simulation study on regulator–target pair identification:
We evaluated our regulator–target pair selection in a
small simulation study. For a population of 112 individ-
uals (as in the yeast data), we simulated an eQTL region
containing three eQTL causal polymorphisms and
several candidate regulator and target genes. This local
network is depicted in Figure 1, with G (Q) representing
a gene (eQTL). The target list for the eQTL region is
T ¼ ½G2, G3, G4, G5, G6, G7, G8�. Gene G1 is the only
candidate trans-regulator, while genes G3, G4, G6, and
G7 are candidate cis-regulators. There are four types of
regulations: one true trans-regulation (from G1 and Q1
to G2), two true cis-regulations (Q2 to G3 and Q3 to G6),
two true cis–trans-regulations of targets located in the
eQTL region (Q2 to G3 to G4 and Q3 to G6 to G7),
and two true cis–trans-regulations of targets not located
in the eQTL region (Q2 to G3 to G5 and Q3 to G6
to G8).

Data were simulated with linear regression models
with regression coefficients fixed at the value of 1 and
residual standard deviations (SD) set to 0.125, 0.25, or
0.5 (one value for all genes, or for genes with odd
numbers SD ¼ 0.5 or 0.25, and for genes with even
numbers SD ¼ 0.25 or 0.125). For a gene directly reg-
ulated by an eQTL, the model was y ¼ bx 1 e ¼ x 1 e,
where x is QTL genotype (0/1), variance due to the
eQTL was 0.25, and heritability was 0.25/(0.25 1 SD2)¼
0.941, 0.80, or 0.50 for the three SD values, respectively.
For a gene indirectly regulated by an eQTL (Q2 / G3
/ G4), the model was y2¼ b(bx 1 e1) 1 e2¼ x 1 e1 1 e2,
and heritability was 0.25/(0.25 1 2 SD2) ¼ 0.889, 0.667,
and 0.333. The three causal polymorphisms in the
eQTL region had order Q1–Q2–Q3 (see Figure 1) with
recombination rate r¼ 0.0 or r¼ 0.09 between adjacent
polymorphisms. A total of 1000 data replicates were
simulated and analyzed for each of several combina-
tions of SD and r values.

EDN construction: The eQTL mapping and regulator–
target pair selection steps resulted in three lists of causal
regulatory relationships: (1) a list containing all identi-
fied cis-regulations (eQTL A affects gene A located in its
confidence region), (2) a list containing all cis–trans-
regulations (cis-regulated gene A regulating gene B),
and (3) a list containing all trans-regulations ½gene A
regulating gene B and eQTL A affecting gene B (but not
gene A)�. To construct an EDN, we assembled all the
identified and retained regulator–target relationships,
which consisted of directed edges (representing causal
influences) from eQTL to cis-regulated target genes,
from cis-regulated genes to cis–trans-regulated target
genes, from trans-regulator genes to target genes, and

from trans-eQTL to target genes. The EDN consisted of
two types of nodes: continuous nodes for the genes (e-
traits) and discrete nodes for the eQTL (genotypes).

Structural equation modeling: A structural equation
model: SEM has been widely used in econometrics, so-
ciology, and psychology, usually as a confirmatory pro-
cedure instead of an exploratory analysis for causal
inference (e.g., Johnston 1972; Judge et al. 1985; Bollen

1989). Shipley (2002) discusses the use of SEM in biology
with an emphasis on causal inference. SEM has been used
for association and linkage mapping of QTL (e.g., Neale

2000; Stein et al. 2003). In contrast, we treat the eQTL
as known in the SEM, as the high-dimensional nature of
the e-traits forces us to perform a three-step analysis
(eQTL mapping, EDN construction, and SEM network
sparsification).

In general, an SEM consists of a structural model
describing (causal) relationships among latent variables
and a measurement model describing the relationships
between the observed measurements and the underly-
ing latent variables. Any SEM can be represented both
algebraically through a system of equations and graph-
ically. A special case is the SEM with observed variables
only, where all variables in the structural model are
observed, and therefore there is no measurement
model. Our model is a SEM with observed variables,
which can be represented as

yi ¼ Byi 1 Fxi 1 ei ; ei �ð0;EÞ i ¼ 1; . . . ;N : ð3Þ

In this model, for sample i (i ¼ 1, . . . , N ), yi ¼ (yi1, . . . ,
yip)T is the vector of expression values of all (p) genes in
the network, and xi¼ (xi1, . . . , xiq)T denotes the vector of
marker or eQTL genotype codes. The yi and the xi are
deviations from means, ei is a vector of error terms, and
E is its covariance matrix.

Matrix B contains coefficients for the direct causal
effects of the genes on each other: Element bkm rep-
resents the effect of e-trait m on e-trait k. Matrix F
contains coefficients for the direct causal effects of the
eQTL on the genes: Element fkm represents the effect of
eQTL m on e-trait k. The structure of matrices B and F
corresponds to the path diagram or directed graph
representing the structural model, in which vertices or
nodes represent genes and eQTL and edges correspond
to the nonzero elements in B and F. Matrices B and F are
sparse when the model represents a sparse network.
When the elements in ei are uncorrelated and matrix B
can be rearranged as a lower triangular matrix, the
model is recursive, there are no cyclic relationships, and
the graph is a DAG. If the error terms are correlated (E is
nondiagonal), or matrix B cannot be rearranged into a
triangular matrix (indicating the presence of cycles),
the model is nonrecursive. The graph corresponding to
a nontriangular matrix B is a DCG.

The xi may be fixed or random. In genetical genomics
experiments, the eQTL xi are random because individuals
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are sampled from a segregating population. However,
the joint likelihood of the yi and xi can be factored
into the conditional likelihood of the yi given the xi

times the likelihood of the xi, and the latter does
not depend on any of the network parameters in B,
F, and E and can therefore be ignored. Thus, we need
only to assume multivariate normality for the residual
vectors.

An important issue in nonrecursive SEM or DCG is
equivalence. Models are equivalent when they cannot
be distinguished in terms of overall fit. For DAGs, al-
gorithms for checking the equivalence of two models or
for finding the equivalence class of a given model in
polynomial time are available (Verma and Pearl 1991;
Andersson et al. 1997). Therefore, model search is per-
formed among equivalence classes rather than among
individual DAGs (Chickering 2002a). An equivalence
class discovery algorithm for DCGs, which is polynomial
time on sparse graphs (Richardson 1996; Richardson

and Spirtes 1999), is available but there is no algorithm
for model search among equivalence classes. Two DAG
models are equivalent if they have the same undirected
edges but differ in the direction of some edges (edge
reversal) (Pearl 2000). Two DCG models can be equiv-
alent even if they differ in their undirected edges
(Richardson 1996; Richardson and Spirtes 1999). In
our case, two models cannot be equivalent under edge
reversal, because the directions of the edges are de-
termined by the eQTL. By using an information crite-
rion for model selection with a penalty for the number
of parameters, we prefer the sparser model of two
equivalent models that differ in the number of edges.
Therefore, equivalence is of less concern in our case.
Instead of selection among equivalence classes, we use a
model search algorithm that selects multiple models
(described below).

A main concern about using SEM for gene net-
work inference is the severe constraint on the network
size when using existing SEM software ½e.g., LISREL
( Jöreskog and Sörbom 1989) and Mx (Neale et al.
2003)�. Typical applications of SEM include models with
at most tens of variables. No existing software program
can analyze models with a size relevant to genomics
(hundreds or even thousands of variables). Even the SEM
implementation of Xiong et al. (2004), which employed a
genetic algorithm, was applied only to small networks of
,20 genes. Here, we implement SEM analysis in the con-
text of genetical genomics experiments, where the EDN
provides a strongly constrained topology search space,
allowing us to reconstruct networks with up to several
hundred genes and eQTL.

Algorithms for likelihood maximization: The most com-
monly used estimation method for SEM is the maxi-
mum-likelihood (ML) method. Assuming a multivariate
normal distribution of the residual vectors, or ei � N(0,
E), the logarithm of the conditional likelihood of the yi’s
given the xi’s and given a particular structure is

Lðy1; . . . ; yN jB; F; E; x1; . . . ; xN Þ

¼ constant 1 N lnðj I� B jÞ1 N

2
lnðjE j �1Þ

� 1

2

XN
i¼1

ððI� BÞyi � FxiÞ9E�1ððI� BÞyi � FxiÞ: ð4Þ

This log likelihood is maximized with respect to the
parameters in B, F, and E.

A nonrecursive SEM model can be underidentified,
while a recursive SEM is always identified. A model is
‘‘identified’’ if all parameters are independent functions
of the data covariance matrix. Under regularity assump-
tions, an underidentified model can be equivalent to an
identified model nested within it (Bekker et al. 1994).
Since we prefer the sparser model, our model selection
based on an information criterion should arrive at
identified models (an SEM can be checked numerically
for underidentification by computing the rank of the
information matrix or by repeated model fitting).

The likelihood function is nonlinear in the parame-
ters, and therefore an iterative optimization procedure
is required for its maximization. The likelihood can be
factored into a product of local likelihoods that all
depend on different sets of parameters and that are
maximized individually in analogy with Bayesian net-
work analysis. For directed acyclic graphs, the global
directed Markov property permits the joint probability
distribution of the variables to be factored according to
the DAG (Pearl 2000). Let V be the random variable
associated with a particular node (vertex). The factor-
ization can be represented as p(V1, V2, . . . , Vn) ¼

Pn
j¼1

p (Vj j V(parents of j), uj), where V(parents of j) is a
vector of V’s of the parent vertices of vertex j, and uj is the
parameter vector of the local likelihood p(Vj j .). A
network with cyclic components (systems of connected
cycles, in which any gene can find a path back to itself
through any other genes) becomes acyclic when a set of
genes pertaining to the same cyclic component is
collapsed into a single node; i.e., Vj represents either
an individual gene or the set of genes involved in the
same cyclic component. If the error terms are also
uncorrelated (diagonal E), then p(V1, V2, . . . , Vn) can be
factored as above, thereby turning the optimization
problem from one of thousands of dimensions into
many of much smaller dimensions. For genes that are
not involved in a cyclic component, the univariate con-
ditional likelihood of a gene is maximized efficiently
using linear regression. For the genes involved in a
cyclic component, their joint multivariate conditional
likelihood is maximized. We note that in our case the
factorization is applied to the likelihood in Equation 2,
so that the V variables correspond to the genes with
observed e-traits (y), which are the endogenous vari-
ables (they are determined by the system), while the
eQTL genotypes (x) are exogenous variables. Conse-
quently, cyclic components are composed of gene
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nodes, not eQTL nodes, with the latter appearing as
parents of genes only in a cyclic component.

For a cyclic component c, p(Vc j V(parents of c), uc)
involves the equations for all genes in cyclic component
c from (4),

yicc ¼ Bcyic 1 Fcxic 1 eic ; eic � ð0; EcÞ i ¼ 1; . . . ;N ;

ð5Þ

where yic is a vector of expression values in sample i for
all genes in cyclic component c and their parent genes,
which can be partitioned into subvectors yicc and yicp

pertaining to the genes in cyclic component c and to
their parent genes not in cyclic component c, respec-
tively; Bc (Fc) is a submatrix obtained from the original
B (F) matrix by extracting all rows corresponding to the
genes in c and all columns pertaining to these genes and
their parents; xic contains the genotype codes of all
eQTL parents of genes in c; and eic is the residual vector
for all genes in c. Matrix Bc can be further partitioned
into Bcc and Bcp , corresponding to columns pertaining
to genes in c and parent genes not in c, respectively.
Then

ðI� BccÞyicc ¼ Bcpyicp 1 Fcxic 1 eic ;

eic �ð0; EcÞ i ¼ 1; . . . ;N ; ð6Þ

where yicp is a vector of exogenous variables (variables
that do not receive any inputs) just like xic. The likeli-
hood function for this model is then

Lðyicc j yicp ;Bcc ; Bcp ; Fc ; Ec ; xicÞ

¼ constant 1 N lnðj I� Bcc jÞ1
N

2
lnð jEc j �1Þ

� 1

2

XN
i¼1

ððI� BccÞyicc � Bcpyicp � FcxicÞ9E�1
c

3 ððI� BccÞyicc � Bcpyicp � FcxicÞ: ð7Þ

The likelihood function (7) of the genes in a cyclic
component is maximized using a genetic algorithm
(GA)-based global optimization procedure. During the
model search, the local likelihood of cycle c needs to be
remaximized with respect to uc only if the set of parents
of genes involved in the cyclic component has changed.

GA is a stochastic iterative optimization tool (Holland

1975, 1992; Goldberg 1989). Although GA is computa-
tionally more expensive than the gradient-based meth-
ods, it has been shown that GA is more successful for
problems with very complex parameter spaces (Mendes

2001; Moles et al. 2003). The GA C11 library GAlib
(http://lancet.mit.edu/ga/) was used in our implemen-
tation. GA evaluates the fit of a chromosome using the
objective function, which in our case is the log-likelihood
function for genes in a cyclic component. With a diag-

onal E matrix, the most computationally demanding part
for evaluating the objective functions is the computation
of the determinants of matrices (I � B)c. These matrices
are sparse, and determinants are calculated using sparse
LU decomposition as implemented in the C library
UMFPACK, which applies the unsymmetric multifrontal
method for sparse LU factorization (Davis and Duff

1997, 1999; Davis 2004a,b). Since the patterns of the
matrices remain the same for a given structure, symbolic
factorization is performed only once, and the result is
used by all numerical factorizations for objective func-
tions of that structure.

In our model search algorithm, for remaximization
of the local likelihood of a cyclic component, we use
four types of starting values simultaneously in the initial
GA population: random starting points, starting values
obtained from two-stage least squares (2SLS) (described
below), starting values equal to the current parameter
estimates, and starting values from the current param-
eter values for all genes except 2SLS estimates for the
genes directly affected by the deletion or addition of an
edge. We use current parameter values as starting values
because we search the model space by removing and
adding single or a few edges at a time, and therefore
most parameter estimates do not change or do not
change much. However, the parameter values associ-
ated with the gene directly affected by the deletion or
addition of an edge can change considerably and we
hence initiated them by 2SLS. Using these starting values
greatly increased the efficiency of the GA optimization.

2SLS (e.g, Judge et al. 1985; Goldberger 1991) is a
computationally efficient parameter estimation method
for SEM. The 2SLS estimates are computed on the basis
of one portion of the model at a time, while ML esti-
mation takes the entire model into account. Therefore,
ML is called a ‘‘full information’’ method, while 2SLS is a
‘‘partial information’’ method, and ML estimates are
generally better than 2SLS estimates. However, 2SLS is a
noniterative approach and computationally very effi-
cient. In 2SLS, the first step is to obtain predicted values
of y using all of the exogenous variables in the system on
the basis of the following reduced-form equations and
their ordinary least-squares (OLS) fits,

yg ¼ Xpg 1 vg ; g ¼ 1; . . . ;G

ŷg ¼ Xp̂g ¼ XðXT XÞ�1XT yg ; ð8Þ

where

yg ¼
yg1

. . .
ygN

2
4

3
5; XN 3Q ¼

xT
1

. . .
xT

N

2
4

3
5;

PQ 3G ¼ ½p1 . . . pG �; P ¼ FT ðI� BT Þ�1;

VN 3G ¼ ½v1 . . . vG �; V ¼ EðI� BT Þ�1;
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where N is sample size, G is the number of endogenous
variables, and Q is the number of exogenous variables in
X. The reduced-form equations are derived from (3)
(details are given in our supplemental material). Pre-
dictions ŷg are then used in the original model to obtain
OLS estimates of the nonzero elements in each row of B
(bg) and each row of F (fg), or

yg ¼ Ŷbg 1 Xfg 1 eg ¼ Ŷ
*
b*

g 1 X*f*
g 1 eg

b̂
*
g

f̂
*
g

2
4

3
5 ¼ X*T X* X*T Ŷ

*

Ŷ
*T

X* Ŷ
*T

Ŷ
*

" #�1 X*T yg

Ŷ
*T

yg

" #
; ð9Þ

where

Y ¼ ½y1 . . . yG �; X ¼ ½x1 . . . xG �; E ¼ ½e1 . . . eG �;

bg* and fg* are obtained from bg and fg by deleting all
elements fixed at zero (in a given network structure),
and Y* and X* have the corresponding columns deleted
from Y and X. 2SLS may not work well for some genes
with no suitable instrumental variables. An instrumental
variable for prediction of an endogenous variable exists
only under certain conditions in cyclic networks (e.g.,
Heise 1975). These conditions are likely not met for all
genes in a network. Only if each gene had a cis-linked
eQTL, would the conditions then always be met.

Network topology search: Alternative models or struc-
tures (topologies) were compared using information
criteria. Information criteria (IC) combine the maximized
likelihood with a penalty term to adjust for the number of
free parameters, and some also adjust for sample size.
The information criteria we used include the Bayesian
information criterion (BIC) (Schwartz 1978) and a modi-
fication, BIC(d) (Broman and Speed 2002).

The EDN contains 2d submodels, where d is the
number of edges. It is impossible to exhaustively search
this space even for EDNs of moderate size. Therefore,
we adapted a heuristic search strategy based on the prin-
ciple of Occam’s window model selection (Madigan

and Raftery 1994) that potentially selects multiple ac-
ceptable models. Let A denote a set of acceptable
models; C, the set of candidate models; and K, the set
of models with minimum IC (the model selection cri-
terion). The search algorithm includes a down and an
up component. The down algorithm consists of the fol-
lowing steps:

0. Initialize A and K as empty sets and C as a set
containing only the EDN.

1. Select a model M1 in C and move it to A. Set ICmin¼ 0.
2. Select a submodel M2 of M1 by removing an edge

from M1 and compute the model selection criterion
for these two models, IC12.

3.
a. If IC12 , T (i.e., model M2 is strongly better than

M1), then remove M1 from A if M1 2 A, add M2

to C if M2 ; C, set K to the empty set, and set
ICmin ¼ �‘.

b. Else if T , IC12 , ICmin (i.e., M2 is the best
among all submodels of M1 considered so far),
then set ICmin¼ IC12, replace the model in set K
with M2, and remove M1 from A if M1 2 A.

c. Else if ICmin , IC12 , 0 (i.e., model M2 im-
proves M1 but is not strongly better and is not
the best among all submodels of M1 consid-
ered so far), then (i) with probability w (e.g.,
w ¼ 0.20 or 0.10) this model is chosen as a
candidate model by removing M1 from A if
M1 2 A and adding M2 to C if M2 ; C, or (ii)
otherwise take no action.

d. Else take no action.
4.

a. If there are more submodels of M1, then go to
step 2.

b. Else move the model in K to C if it is not already
in C.

5. If C is not empty, go to step 1.

Starting from all models accepted in the down
algorithm, the up algorithm follows the same steps as
in the down algorithm, except each time an edge that
was removed from the EDN is added back into the
model. Once the up algorithm is completed, the set A
contains the set of potentially acceptable models.

For large networks with many removable edges, the
original Occam’s window model-selection (Madigan

and Raftery 1994) approach may search a very large
model space. In the worst case, it is equivalent to an
exhaustive search. Therefore, we imposed a threshold
T on the IC (step 3a). Only if the IC of the submodel
strongly improves over the model it is nested in (IC ,

T), is the sub-model then kept as a candidate model.
Otherwise, if no submodel passes T and the minimum
IC is less than zero, then the model with minimum IC is
kept as a candidate model. The size of the search space
depends on the value of T. If T¼�‘and probability w is
zero, the algorithm is similar to the greedy hill search
(Chickering 2002a,b). If �‘ , T , 0, then the
algorithm searches a larger network space and possibly
accepts multiple models. Because T requires the sub-
model to strongly improve over the model it is nested in,
it is likely that the search will accept only one final
model. Therefore, probability w in step 3ci can be set to
a positive value to introduce multiple search paths to be
followed.

The model or structure search space is constrained to
models nested within the EDN, and additionally, certain
edges cannot be removed from the EDN, because their
removal would contradict the results from the eQTL
analysis. If a gene’s expression profile is found to be
influenced by an eQTL, then there must remain a direct
or indirect path from the eQTL to that target gene in
the network. For example, an edge for cis-regulation of a
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gene by an eQTL cannot be removed unless the eQTL
has multiple cis-candidates, in which case one of the cis-
edges needs to remain.

Data simulation for evaluation of SEM and network
topology search: To evaluate the performance of the
linear SEM for gene network inference, we simulated
data with nonlinear kinetic functions and cyclic network
topology in the context of a genetical genomics exper-
iment with 300 recombinant inbred lines. We simulated
QTL genotypes using the QTL cartographer software
(Basten et al. 1996) and steady-state (equal synthesis
and degradation rates and constant gene expression
levels in time) gene expression profiles according to the
simulated genotypes with the Gepasi software (Mendes

1993, 1997; Mendes et al. 2003), using nonlinear ordi-
nary differential equations

dGi

dt
¼Vi 3

Y
j

Zj

KIj

Ij 1 KIj

 ! !

3
Y

k

Zk 1 1
Ak

Ak 1 KAk

� �� �
� kiGi 1 uiGi ;

ð10Þ

where Gi is the mRNA concentration of gene i, Vi is its
basal transcription rate, KIj

and KAk
are inhibition and

activation rate constants, respectively, Ij and Ak are in-
hibitor and activator concentrations, respectively (the
expression levels of genes in the network affecting the
expression of gene i), and ki is a degradation rate
constant. Each gene has two genotypes, and the poly-
morphism is located either in its promoter region
affecting its transcription rate (cis-linkage with V ¼ 1
for one genotype and V ¼ 0.75 for the other) or in the
coding region of a regulatory gene changing the basal
transcription rates of the target genes by multiplying V
by a factor Z (Z¼ 1 for one genotype and Z¼ 0.75 for the
other). Each gene has a 50% probability of having a
promoter (cis-) or coding region (trans-) polymorphism.
The error parameter ui represents ‘‘biological’’ variance
and was sampled from a normal distribution with a
mean 0 and a standard deviation of 0.1 each time before
the calculation of a steady state. All other parameters
were set to 1. Finally, we also added ‘‘experimental noise’’
to the generated data at 10% proportional to the
variance of each gene’s expression values.

The parameters were chosen so that the estimated
heritabilities were close to those found in real data. For a
simulated data set, we calculated the heritability of an e-
trait by dividing the steady-state variances simulated
without biological and technical noise by the variance
simulated with biological and technical errors. The
simulated e-traits had an average heritability of 56%
with 60% of the e-traits having heritabilities .57%. The
simulated e-traits had somewhat lower heritabilities
than the actual e-traits in the yeast data set where 60%

of the genes had estimated heritabilities .69% (Brem

and Kruglyak 2005), which were calculated as (e-trait
variance in the segregants � pooled e-trait variance
among parental measurements)/e-trait variance in the
segregants.

Random network topologies were generated as de-
scribed by Mendes et al. (2003). For each generated
network we created an EDN by adding links from any
node i to node j, if node j was no more than two edges
separated from node i in the true network.

RESULTS

The regulator–target pair identification and the SEM
method were tested on simulated data, and the entire
three-step analysis was applied to the real data set from
a yeast segregating population (Brem and Kruglyak

2005).
Simulation results on regulator–target pair identifi-

cation: The results of our regulator–target pair identi-
fication from simulated data for the single eQTL
network in Figure 1 are summarized in Table 1 in terms
of power and FDR (see Table 1 for definition of power
and FDR) for four types of simulated regulatory effects
(see Figure 1 and methods), which demonstrate that
the procedure works well, with the exception of a case
where some genes have extremely high and other genes
low heritability (column 5 in Table 1). This problem was
actually due to one of the cis-linked genes (G3) having
very small residual variance and being assigned as a reg-
ulator for other genes incorrectly.

SEM analysis of simulated data: Ten data sets of 300
observations each, with different random network to-
pologies, were analyzed. These networks had 100 genes,
100 eQTL, and on average 148 gene / gene and 123

Figure 1.—The network model used in the simulation
study for regulator–target pair identification. Solid squares
with letter Q, causal polymorphisms in the same eQTL region;
solid squares with letter G, genes located in the eQTL region;
open squares with letter G, genes not located in the eQTL re-
gion but affected by it; solid arrows, true trans-regulations;
dashed arrows, true cis-regulations; dotted arrows, true cis–
trans-regulations of target genes located in the eQTL region;
dashed-dotted arrows, true cis–trans-regulations of target
genes not located in the eQTL region. Solid lines among
the Q polymorphisms represent direct genetic linkage (re-
combination rate ¼ 0 or 0.09).
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eQTL / gene edges. Their EDN contained on average
360 gene / gene and 301 eQTL / gene edges. On
average 42 genes were involved in one to three cyclic
components in each data set, with the biggest cyclic
component involving on average 37 genes. The algo-
rithm was run on a multiprocessor SGI Origin2000 and
took between 2 and 8 hr (total time) per data set with an
average of 4 hr. We report the results in terms of FDR
and power. The FDR is expressed as the number of
wrongly identified edges divided by the total number
of identified edges. Power is defined as the number of
edges correctly inferred as a fraction of the total number
of edges in the true network. In Table 2, we compared
results obtained using BIC and BIC(d). The results
showed that for the simulated data sets, BIC was not
sufficiently stringent for the eQTL / gene edges, with
an average power of 99% and an average FDR of 22%.
For the gene / gene edges, the average FDR was 8%,
with average power of 88%. For the eQTL / gene
edges, the average FDR with BIC(d) was 9%, while the

average power was 99%. For the gene / gene edges,
with BIC(d) the average FDR was only 1%, while the
power was reduced to on average 78%. Overall, the
algorithm performed well, and the results show that
the linear SEM appears to be robust under violation of
the linearity assumptions.

While the above results were based on retaining a
single, final SEM model, for some of the 10 data sets
we allowed the topology search algorithm to follow 20
different, random search paths. This was done to de-
termine whether there were different models (topolo-
gies) with the same likelihood (equivalent models) and
to identify multiple models with the same or nearly the
same BIC ½or BIC(d)�. These additional networks con-
tain important information that would be missed when
searching only for a single network, and they reflect the
uncertainty about the true network structure after
observing the data. On average 16 very similar final
models were obtained per data set. Of an average of
134 detected eQTL / gene edges, the average number

TABLE 1

Results from a simulation study on regulator–target pair identification in a single-eQTL region with three causal polymorphisms
and with multiple candidate regulator and target genes (true network structure is in Figure 1)

Methods SD ¼ 0.5 SD ¼ 0.25 SD ¼ 0.125 SD ¼ 0.5/0.125 SD ¼ 0.5/0.25 SD ¼ 0.25/0.125

Cis-link, power (%) 100, 100 100, 100 100, 100 55.3, 59.85 89.4, 98.65 97.8, 98.5
Cis-link, FDR (%) 0.6, 0.9 0.7, 0.67 0.67, 0.57 0.48, 0.53 0.6, 0.72 0.62, 0.57
Cis-reg cis, power (%) 99, 99 99, 99 99, 99 54.8, 59.4 88.6, 97.8 97.2, 97.8
Cis-reg cis, FDR (%) 0.35, 0.13 0, 0 0, 0 38.6, 0.25 3.27, 0.15 1.8, 0.1
Cis-reg, power (%) 99, 98.8 99, 98.9 98, 98.5 54.9, 59.2 88.2, 97.4 96.9, 97.5
Cis-reg, FDR (%) 0.93, 0.4 0, 0 0, 0 45, 25.82 4.82, 1.33 2.85, 1.3
Trans-reg, power (%) 99, 99.2 100, 100 100, 100 41.8, 45.1 92.9, 96.1 96.3, 96.5
Trans-reg, FDR (%) 0.85, 1.1 1.1, 1.15 1.57, 1.52 26.95, 62.52 10.92, 2.52 2.3, 2.77

Power, percentage of replicate data sets in which the regulation type was found; FDR, percentage of replicate data sets in which a
regulation of a certain type was found that did not exist in the underlying network; Cis-link, cis-regulation of target in eQTL region;
Cis-reg, cis–trans-regulation of target not in eQTL region; Cis-reg cis, cis–trans-regulation of target in eQTL region; Trans-reg, trans-
regulation. For the last three columns, even-numbered gene nodes (Figure 1) received the left amount of error variance and odd-
numbered nodes the right amount. The two numbers in each cell correspond to 0% recombination and 9% recombination
among the three causal polymorphisms in the single-eQTL region, respectively. A P-value cutoff of 0.01 was used.

TABLE 2

Results of the SEM analysis on the simulated data

Edge
type

Model

IC Measure 1 2 3 4 5 6 7 8 9 10

BIC F FDR 18.4 24.3 27.4 17.9 19.5 21.6 20.7 19.0 23.9 22.2
Power 100.0 100.0 100.0 100.0 100.0 99.2 99.2 100.0 97.5 100.0

B FDR 6.6 7.1 7.6 7.6 5.7 8.5 3.8 15.3 9.5 11.0
Power 87.6 89.7 89.9 89.3 89.3 88.4 85.9 85.8 88.7 87.2

BIC(d) F FDR 7.5 7.9 7.7 5.1 8.1 7.1 6.3 14.8 11.9 14.5
Power 100.0 100.0 99.2 99.2 100.0 96.7 100.0 98.4 100.0 100.0

B FDR 0.8 0.0 1.7 0.0 1.6 3.4 0.0 3.4 1.8 0.9
Power 80.7 82.2 79.9 78.5 81.2 76.2 77.9 77.7 72.7 71.8

False discovery rate and (percentage) power of edge detection are given for 10 artificial data sets using BIC and BIC(d) criteria
and separately for the eQTL / gene and gene / gene edges.
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of edges different from the best model was 4.4. Of an
average of 153 detected gene / gene edges, the average
number of edges different from the best model was 7.9.
The average BIC difference to the best model was 26.
The average likelihood difference was 12, while the
mean likelihood was 26,969. Two models had the exact
same likelihood (and hence were equivalent), while
having six different eQTL / gene edges and seven
different gene / gene edges. Another four pairs of
models had likelihood differences ,1, with on average
four different eQTL / gene edges and 7.3 different
gene / gene edges.

Yeast data analysis: eQTL mapping: When analyzing
PCs computed from separate PC analysis of the 100 gene
clusters, a total of 250 combined eQTL regions (median
size 37 kb) were identified. When testing these 250
eQTL on all individual e-traits, a total of 10,316 eQTL–
target pairs were detected. For cis-mapping, a total of
578 combined cis–eQTL regions (median size 36 kb)
were identified. We then searched for cis–trans-affected
e-traits and found a total of 7481 eQTL–target pairs.

Trans-mapping appeared to greatly increase the power
to detect eQTL. A total of 41,309 significant candidate
regulator–target pairs were identified. The interaction
between eQTL and candidate regulator (b3 in Equation
1) gene did not appear to be important. Of all tests
performed, only 0.08% had a significant eQTL-by-
regulator gene interaction with FDR control at the 5%
level for this term. Of the tests with a significant
IUT, 4.94% had P-values for b3 , 0.01, and 0.43% had
P-values smaller than the FDR cutoff from all tests. More
details on the eQTL analysis and results can be found in
our supplemental material.

Regulator–target pair identification and EDN construc-
tion: For the 10,316 eQTL-target pairs identified by PC
mapping, 9843 regulator-target pairs were retained,
involving 3581 genes, with 1103 regulators and 3262
targets. For the 7481 eQTL–target pairs identified by cis-
mapping, 6090 regulator–target pairs involving 3034
genes were found, with 1099 regulators and 2562 tar-
gets. After local sparsification of the trans-mapping re-
sults, the 41,309 candidate regulator–target pairs were
reduced to 15,835 pairs involving 3858 genes with 1433
regulators and 3682 targets. We combined these results
into an EDN, which included 28,609 regulator–target
pairs. This EDN can be found online in several file
formats at http://www.bioinformatica.crs4.org/Members/
alf/genetics/.

The network consisted of 4274 gene nodes. The re-
maining 315 genes did not receive any inputs nor were
they affecting any other genes. A total of 2118 genes
were regulators of at least one target, among which 158
did not receive any inputs. A total of 4116 genes were
targets having at least one regulator, among which 2156
did not affect any other genes in the network. A total of
1960 genes occurred both as regulators and as targets.
There were 135 instances of reciprocal regulation pre-

sent (gene A directly affects gene B and vice versa).
Gene PHM7 had the most targets, 468; gene YLR152C
had the most regulators, 32.

The confirmed regulators and the strong candidate
regulator genes for the 13 eQTL with widespread tran-
scriptional effects identified in Yvert et al. (2003) were
investigated in this EDN. Amn1, a confirmed regulator
gene with widespread influence, was found to be a top
cis–trans-regulator with 408 cis–trans-targets. The strong
candidate regulator MAK5 with five coding region
polymorphisms between the two parental strains had
110 trans-targets. Another confirmed regulator gene
GPA1 had 60 targets, about half of which are trans-
targets. The genes LEU2 and URA3 had 98 (most were
cis–trans) and 32 (most were cis–trans) targets, respec-
tively. The heme-dependent transcription factor HAP1
had 141 targets (100 cis–trans, the others trans).

SEM analysis: We performed SEM analysis on a sub-
network of the EDN, which was obtained by starting out
with 168 genes involved in a cycle and including all
genes connected to the cycle genes by up to 3 edges and
all the eQTL associated with these genes. The sub-EDN
had 265 genes, 241 QTL, 832 gene / gene edges, and
640 eQTL / gene edges. After sparsification using our
SEM implementation, the resulting network contained
475 gene / gene edges and 468 eQTL / gene edges.
The SEM analysis took �110 hr or 4.5 days (total time)
on the multiprocessor SGI Origin2000. The network
topology is available in our supplemental material, and
the yeast subnetwork can be found online in several file
formats at http://www.bioinformatica.crs4.org/Members/
alf/genetics/.

Table 3 shows the significant biological function groups
of the genes in this network. About 41.6% of these genes
are involved in catalytic activity, and another 18% are
involved in hydrolase activity. All biological functions in
Table 3 are significantly enriched in this network.

DISCUSSION

We are interested in gene network inference in
genetical genomics or systems genetics experiments or
more generally in inferring a causal network among
DNA markers, expressed genes, disease (sub)pheno-
types, and other phenotypes. Due to the very high-
dimensional nature of the data we propose a three-step
approach: First we perform eQTL analysis that produces
a list of cis-regulations, a list of cis–trans-regulations,
and a list of trans-regulations. These can be combined
into an EDN, or prior to forming the EDN one can per-
form regulator–target pair selection using local struc-
tural models as described here to reduce the number
of edges in the EDN and hence the search space
for subsequent network inference. Finally, we identify
a set of sparser networks within the EDN using SEM
analysis.
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Our EDN construction and network inference meth-
odology requires the availability of DNA sequence
information and it explicitly considers cis-, cis–trans-,
and trans-regulation. This approach is most powerful,
but it is possible to construct a causal gene network from
a genetical genomics data set even in the absence of
sequence data, although such an approach should have
(much) reduced power. It is of course possible to map
eQTL without specifically considering the different
forms of regulation, and the power of such an approach
can potentially be increased by including e-trait cova-
riates as suggested by Perez-Enciso et al. (2007). More-
over, eQTL mapping permits (some degree of) causal
inference even without knowing the candidate regula-
tor genes in an eQTL region (for any two genes G1
and G2 found to interact directly, if eQTL1 affects G1 and
G2 but eQTL1 affects G2 only indirectly through G1 and
eQTL2 affects only G2, then regulation of G2 by G1
would be indicated).

Our SEM implementation for gene network infer-
ence advances current methodology in at least two

respects: Current, general purpose SEM software and
SEM software for gene network inference (Xiong et al.
2004) can analyze only small numbers of e-traits (�
,20), and current network inference in genetical ge-
nomics has relied on Bayesian network analysis limited
to acyclic networks (e.g., Zhu et al. 2004; Li et al. 2005;
Lum et al. 2006). Because cycles or feedback loops are
expected to be common in genetic networks, it is im-
perative to investigate alternative methods such as the
SEM. Our current implementation of SEM permits in-
ference about cyclic networks with several hundred
gene and eQTL nodes.

One possible way to verify the results of our network
inference approach would be to check whether the
interactions we find also are present in ‘‘transcrip-
tional regulatory networks’’ (e.g., Lee et al. 2002).
However, there is (a lot of) genetic regulation beyond
transcription factors (Brazhnik et al. 2002) and
therefore such comparison may not be very insightful.
For example, a recent study (Faith et al. 2007) using
gene expression data recovered only 10% of the

TABLE 3

Significant biological function groups of genes in the yeast subnetwork

GO_term
Frequency

(%)

Genome
frequency

(%) Probability Genes

Catalytic
activity

41.6 26.8 1.50E-07 AAD14 AAD6 ACO1 AKL1 ALD6 AMD2 APN2 ARA1 ARD1 ARP5
AYR1 BDS1 CIT2 COQ5 COX5B DCP2 DIA4 DLD3 DUS3 ECM40
ERF2 EXG1 FET3 FET5 FRE2 GAB1 GCV3 GPA1 GRX5 HIS4
HIS5 HMG1 HMG2 HO HOS4 ICL2 ILV6 KCC4 KTR1 KTR6 LAT1
LEU2 LSC1 LYS2 LYS4 MAP1 MCM6 MET22 MKT1 MSH2 MSK1
MTQ2 MTR3 NFS1 NOP2 NUC1 NUG1 OST2 OST6 PDE1 PDR12
PHO8 PHO85 PLB2 PMA2 POL1 PPZ1 RAD16 RAD52 RAS1 RCK2
RFC4 RFC5 RHO2 RIB3 RPE1 RPM2 RPO41 SAP4 SCO1 SEN1 SHR5
SKM1 PAH1/SMP2 SPO11 SSA4 SUR1 THR4 TIP1 TOP2 TPS1
TRM7 TRP3 TYR1 TYS1 UBP14 UBP16 UGA2 URA3 WRS1 YAL061W
RXT2 YEL077C YER138C YER160C YNL045W NMA111 YOL155C
YPT53 YPT6

Hydrolase
activity

17.8 10.5 0.00026 AMD2 APN2 ARP5 BDS1 DCP2 EXG1 GAB1 GPA1 HIS4 HO HOS4
MAP1 MCM6 MET22 MKT1 MSH2 MTR3 NUC1 NUG1 PDE1
PDR12 PHO8 PLB2 PMA2 PPZ1 RAD16 RAS1 RFC4 RFC5 RHO2
RPM2 SAP4 SEN1 PAH1/SMP2 SPO11 SSA4 TIP1 UBP14 UBP16
RXT2 YER138C YER160C YNL045W NMA111 YOL155C YPT53 YPT6

Transporter
activity

9.0 5.6 0.01485 AAC1 AGP2 ALR1 AQR1 ATO2 ATR1 COX5B CRC1 DIC1 HXT2
ITR1 KAP114 LPE10 MCH4 MRS11 PDR12 PHO91 PMA2 POR1
SAL1 TAT1 UGA4 YFL054C YMC2

Oxidoreductase
activity

7.9 3.5 0.00066 AAD14 AAD6 ALD6 ARA1 AYR1 COX5B DLD3 FET3 FET5 FRE2
GCV3 GRX5 HIS4 HMG1 HMG2 LEU2 LYS2 SCO1 TYR1 UGA2
YAL061W

Pyrophosphatase
activity

6.8 3.5 0.00615 ARP5 DCP2 GPA1 HIS4 MCM6 MSH2 NUG1 PDR12 PMA2 RAD16
RAS1 RFC4 RFC5 RHO2 SEN1 SSA4 YPT53 YPT6

Nucleoside-
triphosphatase
activity

6.0 3.2 0.01405 ARP5 GPA1 MCM6 MSH2 NUG1 PDR12 PMA2 RAD16 RAS1 RFC4
RFC5 RHO2 SEN1 SSA4 YPT53 YPT6

Data were obtained from the Saccharomyces genome database at http://www.yeastgenome.org/. Column headings from left to
right: GO terms, significant GO terms; Frequency (%), frequency of the terms in genes submitted; Genome frequency (%), fre-
quency of the terms in the whole genome; Probability, a score of significance of the terms in the genes submitted; Genes, genes
involved in the biological process.
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transcription factor (TF)-to-target relationships known
in Escherichia coli, while it found about three times as
many interactions that cannot be explained simply
through TF-to-regulatory motif sequence binding. The
yeast subnetwork studied in this article contains cases of
genetic regulation that are beyond transcription factors;
these are genes coding mostly for metabolic enzymes
(Table 2) and communicating with each other probably
through metabolic changes and metabolic effects on
gene expression. Interactions in gene networks thus
may correspond to causal effects mediated through
signal transduction and metabolism, which are hidden
variables when studying gene expression alone. Due to
the ‘‘phenomenological’’ nature (Brazhnik et al. 2002)
(rather than ‘‘mechanistic,’’ such as physical binding of
transcription factors to regulatory sequences) of gene
networks it is not trivial to compare our findings to
currently existing knowledge.

Maximum likelihood is the predominant full-infor-
mation method for parameter inference in SEM. It
is therefore natural to perform a model (structure)
search on the basis of an information criterion that is a
function of the maximized likelihoods of two compet-
ing models. While BIC and BIC(d) performed satisfac-
torily in this study, further research into appropriate
model selection criteria for large, very sparse networks
is required. There is also concern about the validity of
BIC for Bayesian network (and hence SEM) inference
(Rusakov and Geiger 2005). In our current method,
the BIC criterion could be modified to incorporate
structure priors that prefer sparse structures and allow
dependencies among edges to further reduce the
search space (e.g., for a trans-regulation, the regulator
gene / target gene edge and the eQTL / target gene
edge must both be present or both be absent). The
feasibility of a full Bayesian analysis via Markov chain
Monte Carlo algorithms must be explored and this
work is ongoing. A major advantage of the Bayesian
analysis is its ability to incorporate prior knowledge,
which we believe to be essential for reliable network
inference. For at least some of the edges (regulator–
target pairs) in the EDN, there may be prior biological
knowledge from various sources, for example, tran-
scription-factor-binding location data, information on
pathway relationships (Franke et al. 2006), SNP pres-
ence in candidate regulators (Li et al. 2005), and in-
formation on protein–protein interactions (Tu et al.
2006). A principled incorporation of such prior knowl-
edge into methods for gene network reconstruction
from microarray data has been considered by a few
authors (e.g., Imoto et al. 2003; Bernard and Hartemink

2005; Werhli and Husmeier 2007) via prior distribu-
tions in Bayesian analysis, which is quite straightforward
at least when prior evidence from a given external
biological source is available in the form of P-values.

Our SEM model can be generalized to include certain
types of interactions: those between an eQTL and a

regulator gene jointly trans-regulating a target gene and
epistatic interactions between eQTL found in the eQTL
analysis and hence included in the EDN. With this
model, we can still solve for yi and assume a normal dis-
tribution for the residuals as in Equation 4. Further-
more, we have considered networks with only causal,
directed interactions or regulations. However, two genes
may be correlated, but there may be no eQTL infor-
mation available to determine causation. Although
such associations could be incorporated via correla-
tions in the residual covariance matrix E in Equation 3,
this approach would pose a computational problem,
as a nondiagonal E would hinder the likelihood
factorization.

Trans-mapping, regulator–target pair identification,
encompassing directed network construction, and SEM
network sparsification were implemented in C11 pro-
grams that we intend to make available after additional
modifications and testing on a large real data set.

We thank Rachel Brem and Leonid Kruglyak for sharing the
genotype data with us and for providing the raw data of the spotted
microarray experiments at the National Center for Biotechnology
Information/Gene Expression Omnibus website, http://www.ncbi.
nlm.nih.gov/geo. We thank Pedro Mendes for useful discussions
about GAs. This work was supported by National Science Foundation
cooperative agreement DBI-0211863 and by the Virginia Bioinfor-
matics Institute.

LITERATURE CITED

Andersson, S. A., D. Madigan and M. D. Perlman, 1997 A charac-
terization of Markov equivalence classes for acyclic digraphs.
Ann. Stat. 25: 505–541.

Basten, C. J., B. S. Weir and Z. B. Zeng, 1996 QTL Cartographer: A
Reference Manual and Tutorial for QTL Mapping. North Carolina
State University, Raleigh, NC.

Bekker, P. A., A. Merckens and T. J. Wansbeek, 1994 Identification,
Equivalent Models, and Computer Algebra. Academic Press, San
Diego.

Benjamini, Y., and Y. Hochberg, 1995 Controlling the false discov-
ery rate—a practical and powerful approach to multiple testing.
J. R. Stat. Soc. B 57: 289–300.

Bernard, A., and A. J. Hartemink, 2005 Informative structure pri-
ors: joint learning of dynamic regulatory networks from multiple
types of data. Pac. Symp. Biocomput., 459–470.

Bollen, K., 1989 Structural Equations With Latent Variables. Wiley-
Interscience, New York.

Brazhnik, P., A. de la Fuente and P. Mendes, 2002 Gene networks:
how to put the function in genomics. Trends Biotechnol. 20:
467–472.

Brem, R. B., and L. Kruglyak, 2005 The landscape of genetic com-
plexity across 5,700 gene expression traits in yeast. Proc. Natl.
Acad. Sci. USA 102: 1572–1577.

Broman, K. W., and T. P. Speed, 2002 A model selection approach
for the identification of quantitative trait loci in experimental
crosses. J. R. Stat. Soc. B 64: 641–656.

Casella, G., and R. L. Berger, 1990 Statistical Inference. Wadsworth,
Pacific Grove, CA.

Chickering, D. M., 2002a Learning equivalence classes of Bayesian-
network structures. J. Mach. Learn. Res. 2: 445–498.

Chickering, D. M., 2002b Optimal structure identification with
greedy search. J. Mach. Learn. Res. 3: 507–554.

Davis, T. A., 2004a Algorithm 832: UMFPACK, an unsymmetric-
pattern multifrontal method. ACM Trans. Math. Soft. 30: 196–
199.

1774 B. Liu, A. de la Fuente and I. Hoeschele



Davis, T. A., 2004b A column pre-ordering strategy for the unsym-
metric-pattern multifrontal method. ACM Trans. Math. Soft. 30:
165–195.

Davis, T. A., and I. S. Duff, 1997 An unsymmetric-pattern multi-
frontal method for sparse LU factorization. SIAM J. Matrix Anal.
Appl. 18: 140–158.

Davis, T. A., and I. S. Duff, 1999 A combined unifrontal/multifron-
tal method for unsymmetric sparse matrices. ACM Trans. Math.
Soft. 25: 1–19.

Doss, S., E. E. Schadt, T. A. Drake and A. J. Lusis, 2005 Cis-acting
expression quantitative trait loci in mice. Genome Res. 15: 681–
691.

Faith, J. J., B. Hayete, J. T. Thaden, I. Mogno, J. Wierzbowski et al.,
2007 Large-scale mapping and validation of Escherichia coli
transcriptional regulation from a compendium of expression
profiles. PLoS Biol. 5: e8.

Fisher, F. M., 1970 A correspondence principle for simultaneous
equation models. Econometrica 38: 73–92.

Franke, L., H. Bakel, L. Fokkens, E. D. de Jong, M. Egmont-Petersen

et al., 2006 Reconstruction of a functional human gene network,
with an application for prioritizing positional candidate genes.
Am. J. Hum. Genet. 78: 1011–1025.

Friedman, N., M. Linial, I. Nachman and D. Pe’er, 2000 Using
Bayesian networks to analyze expression data. J. Comp. Biol. 7:
601–620.

Goldberg, D. E., 1989 Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, Reading, MA.

Goldberger, A. S., 1991 A Course in Econometrics. Harvard University
Press, Cambridge, MA.

Hartemink, A., D. Gifford, T. Jaakkola and R. Young, 2002 Com-
bining location and expression data for principled discovery of
genetic regulatory network models. Pac. Symp. Biocomput. pp.
437–449.

Heise, D. R., 1975 Causal Analysis. John Wiley & Sons, New York.
Holland, J. H., 1975 Adaptation in Natural and Artificial Systems. Uni-

versity of Michigan Press, Ann Arbor, MI.
Holland, J. H., 1992 Adaptation in Natural and Artificial Systems: An

Introductory Analysis With Applications to Biology, Control, and Artifi-
cial Intelligence. MIT Press, Cambridge, MA/London.

Imoto, S., K. Sunyong, T. Goto, S. Aburatani, K. Tashiro et al.,
2002 Bayesian network and nonparametric heteroscedastic re-
gression for nonlinear modeling of genetic network. Proc. IEEE
Comput. Soc. Bioinform. Conf., pp. 219–227.

Imoto, S., T. Higuchi, T. Goto, K. Tashiro, S. Kuhara et al.,
2003 Combining microarrays and biological knowledge for es-
timating gene networks via Bayesian networks. Proc. IEEE Com-
put. Soc. Bioinform. Conf. 2: 104–113.

Jansen, R. C., 2003 Studying complex biological systems using mul-
tifactorial perturbation. Nat. Rev. Genet. 4: 145–151.

Jansen, R. C., and J. P. Nap, 2001 Genetical genomics: the added
value from segregation. Trends Genet. 17: 388–391.

Jansen, R. C., and J. P. Nap, 2004 Regulating gene expression: sur-
prises still in store. Trends Genet. 20: 223–225.

Jiang, C., and Z. B. Zeng, 1995 Multiple trait analysis of genetic
mapping for quantitative trait loci. Genetics 140: 1111–1127.

Johnston, J., 1972 Econometric Methods. McGraw-Hill, St. Louis.
Jöreskog, K. G., and D. Sörbom, 1989 LISREL 7: A Guide to the Pro-

gram and Applications, Ed. 2. SPSS, Chicago.
Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lütkepohl and T. C.

Lee, 1985 The Theory and Practice of Econometrics. Wiley, New
York.

Kulp, D., and M. Jagalur, 2006 Causal inference of regulator-target
pairs by gene mapping of expression phenotypes. BMC Ge-
nomics 7: 125.

Lee, T. I., N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-Joseph et al.,
2002 Transcriptional regulatory networks in Saccharomyces
cerevisiae. Science 298: 799–804.

Lehmann, E., 1975 Nonparametrics: Statistical Methods Based on Ranks.
Holden-Day, San Francisco.

Li, H., L. Lu, K. F. Manly, E. J. Chesler, L. Bao et al., 2005 Inferring
gene transcriptional modulatory relations: a genetical genomics
approach. Hum. Mol. Genet. 14: 1119–1125.

Li, R., S. W. Tsaih, K. Shockley, I. M. Stylianou, J. Wergedahl

et al., 2006 Structural model analysis of multiple quantitative
traits. PLoS Genet. 2: e114.

Lum, P. Y., Y. Chen, J. Zhu, J. Lamb, S. Melmed et al., 2006 Elu-
cidating the murine brain transcriptional network in a segregat-
ing mouse population to identify core functional modules for
obesity and diabetes. J. Neurochem. 97(Suppl. 1): 50–62.

Madigan, D., and A. E. Raftery, 1994 Model selection and ac-
counting for model uncertainty in graphical models using Oc-
cam’s window. J. Am. Stat. Assoc. 89: 1535–1546.

Mähler, M., C. Most, S. Schmidtke, J. P. Sundberg, R. Li et al.,
2002 Genetics of colitis susceptibility in IL-10-deficient mice:
backcross versus F2 results contrasted by principal components
analysis. Genomics 80: 274–282.

Mangin, B., P. Thoquetand N. H. Grimsley, 1998 Pleiotropic QTL
analysis. Biometrics 54: 88–99.

Mendes, P., 1993 GEPASI: a software package for modelling the dy-
namics, steady states and control of biochemical and other sys-
tems. Comput. Appl. Biosci. 9: 563–571.

Mendes, P., 1997 Biochemistry by numbers: simulation of biochemical
pathways with Gepasi 3. Trends Biochem. Sci. 22: 361–363.

Mendes,P.,2001 Modelinglargescalebiologicalsystemsfromfunctional
genomic data: parameter estimation, pp. 163–186 in Foundations of
Systems Biology, edited by H. Kitano. MIT Press, Cambridge, MA.

Mendes, P., W. Sha and K. Ye, 2003 Artificial gene networks for ob-
jective comparison of analysis algorithms. Bioinformatics
19(Suppl. 2): II122–II129.

Moles, C. G., P. Mendes and J. R. Banga, 2003 Parameter estima-
tion in biochemical pathways: a comparison of global optimiza-
tion methods. Genome Res. 13: 2467–2474.

Murphy, K., and S. Mian, 1999 Modelling gene expression data
using dynamic Bayesian networks. Technical Report. Computer
Science Division, University of California, Berkeley, CA.

Nadeau, J. H., L. C. Burrage, J. Restivo, Y.-H. Pao, G. A. Churchill

et al., 2002 Pleiotropy, homeostasis and functional networks
based on assays of cardiovascular traits in genetically randomized
populations. Genome Res. 13: 2082–2091.

Neale, M. C., 2000 The use of Mx for association and linkage anal-
ysis. Genescreen 1: 107–111.

Neale, M. C., S. M. Boker, G. Xie and H. H. Maes, 2003 Mx: Sta-
tistical Modeling. Medical College of Virginia, Richmond, VA.

Pearl, J., 2000 Causality: Models, Reasoning, and Inference. Cambridge
University Press, Cambridge/London/New York.

Pe’er, D., A. Regev, G. Elidan and N. Friedman, 2001 Inferring
subnetworks from perturbed expression profiles. Bioinformatics
17: 215–224.

Perez-Enciso, M., J. R. Quevedo and A. Bahamonde, 2007 Ge-
netical genomics: use all data. BMC Genomics 8: 69.

Richardson, T., 1996 A polynomial-time algorithm for deciding
Markov equivalence of directed cyclic graphical models, pp.
462–469 in Proceedings of the 12th Conference on Uncertainty in Arti-
ficial Intelligence, edited by E. Horvitz and F. Jensen. Morgan
Kaufmann, San Francisco.

Richardson, T., and P. Spirtes, 1999 Automated discovery of linear
feedback models, pp. 253–304 in Computation, Causation, and Dis-
covery, edited by C. Glymour and G. F. Cooper. MIT Press, Cam-
bridge, MA.

Rusakov, D., and D. Geiger, 2005 Asymptotic model selection for
naive Bayesian networks. J. Mach. Learn. Res. 6: 1–35.

Schwartz, G., 1978 Estimating the dimension of a model. Ann.
Stat. 6: 461–464.

Shipley, B., 2002 Cause and Correlation in Biology: A User’s Guide to
Path Analysis, Structural Equations and Causal Inference. Cambridge
University Press, Cambrige/London/New York.

Spirtes, P., C. Glymour, R. Scheines, S. Kauffman, V. Aimale et al.,
2000 Constructing Bayesian network models of gene expres-
sion networks from microarray data. Proceedings of the Atlantic
Symposium on Comparative Biology, Genome Information Sys-
tems and Technology.

Stein, C. M., Y. Song, R. C. Elston, G. Yun, H. K. Tiwari et al.,
2003 Structural equation model-based genome scan for the
metabolic syndrome. BMC Genet. 4(Suppl. 1): S99.

Tu, Z., L. Wang, M. N. Arbeitman, T. Chen and F. Sun, 2006 An
integrative approach for causal gene identification and gene reg-
ulatory pathway inference. Bioinformatics 22: e489–e496.

Verma, T., and J. Pearl, 1991 Equivalence and synthesis of causal
models. Proceedings of the 6th Workshop on Uncertainty in Ar-
tificial Intelligence, Cambridge, MA.

Gene Network Inference via Structural Equation Modeling 1775



Werhli, A. V., and D. Husmeier, 2007 Reconstructing gene regula-
tory networks with Bayesian networks by combining expression
data with multiple sources of prior knowledge. Stat. Appl. Genet.
Mol. Biol. 6: Article 15.

Xiong, M., J. Li and X. Fang, 2004 Identification of genetic net-
works. Genetics 166: 1037–1052.

Yvert, G., R. Brem, J. Whittle, J. Akey, E. Foss et al.,
2003 Trans-acting regulatory variation in Saccharomyces cere-
visiae and the role of transcription factors. Nat. Genet. 35:
57–64.

Yoo, C., V. Thorsson and G. Cooper, 2002 Discovery of causal re-
lationships in a gene-regulation pathway from a mixture of exper-
imental and observational DNA microarray data. Pac. Symp.
Biocomput., 498–509.

Zhu, J., P. Y. Lum, J. Lamb, D. GuhaThakurta, S. W. Edwards et al.,
2004 An integrative genomics approach to the reconstruction
of gene networks in segregating populations. Cytogenet. Ge-
nome Res. 105: 363–374.

Communicating editor: K. W. Broman

1776 B. Liu, A. de la Fuente and I. Hoeschele


