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ABSTRACT

Recombination is a powerful evolutionary force that merges historically distinct genotypes. But the
extent of recombination within many organisms is unknown, and even determining its presence within a
set of homologous sequences is a difficult question. Here we develop a new statistic, Fw, that can be used
to test for recombination. We show through simulation that our test can discriminate effectively between
the presence and absence of recombination, even in diverse situations such as exponential growth (star-like
topologies) and patterns of substitution rate correlation. A number of other tests, Max x2, NSS, a coalescent-
based likelihood permutation test (from LDHat), and correlation of linkage disequilibrium (both r2 and
jD9j) with distance, all tend to underestimate the presence of recombination under strong population
growth. Moreover, both Max x2 and NSS falsely infer the presence of recombination under a simple model
of mutation rate correlation. Results on empirical data show that our test can be used to detect recom-
bination between closely as well as distantly related samples, regardless of the suspected rate of recombi-
nation. The results suggest that Fw is one of the best approaches to distinguish recurrent mutation from
recombination in a wide variety of circumstances.

RECOMBINATION is a fundamental biological
process that can, for example, increase viral or

bacterial pathogenicity by diffusing genetic material
throughout populations (Awadalla 2003). The bi-
ological mechanisms of recombination differ across
organisms, but in broad terms recombination results in
the creation of mosaic sequences where the evolution-
ary history at each site may be different. Violating this
tree-like assumption of evolution can lead to serious
consequences when performing phylogenetic analyses
for a set of sequences. Indeed, as the evolution of the
sequences cannot be described by a single tree, this can
lead to overestimation or underestimation of branch
lengths among other problems (Schierup and Hein

2000a,b; Posada 2001; Posada and Crandall 2002).
Thus, an important question for a given set of aligned
sequences is to determine whether or not recombina-
tion is likely to have occurred.

The ability of a large number of general methods
to detect recombination has recently been evaluated
empirically and through simulation (Crandall and
Templeton 1999; Brown et al. 2001; Posada and
Crandall 2001; Wiuf et al. 2001; Posada 2002). These
studies have established that methods such as Geneconv

(Sawyer 1989), Max x2 (Maynard Smith 1992), RDP
(Martin and Rybicki 2000), Phypro (Weiller 1998),
RecPars (Hein 1990, 1993), and neighbor similarity
score (NSS) ( Jakobsen and Easteal 1996) efficiently
detect recombination in a wide range of circumstances
(Brown et al. 2001; Posada and Crandall 2001; Wiuf

et al. 2001; Posada 2002). These tests infer the presence
of recombination either directly through sequence
comparisons or indirectly through phylogenetic means.
As no underlying assumptions are made concerning the
origin of the sequences, these tests can be applied to
detect recombination within any set of aligned homol-
ogous sequences. Indeed, these techniques can be used
to detect recombination within either closely or dis-
tantly related genotypes (Posada 2002). Moreover,
these methods can be termed general since no specific
assumptions concerning sample history (beyond se-
quence homology) are made.

In contrast to general methods for inferring recom-
bination, there are also population-specific methods
for detecting recombination, where the samples consist
of genotypes from closely related individuals. Within a
single population, recombination can be tested for us-
ing nonparametric approaches such as permutation
tests based on summary statistics like the correlation
of linkage disequilibrium with distance (Miyashita and
Langley 1988; Schaeffer and Miller 1993; Awadalla

et al. 1999). Linkage disequilibrium is typically measured
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using the statistics r2 and jD9j (Lewontin 1964; Hill

and Robertson 1968).
Recently, coalescent (Kingman 1982) methods have

been developed that can specifically detect (Brown

et al. 2001; McVean et al. 2002) or characterize the rate
of recombination (Griffiths and Marjoram 1996;
Hey and Wakeley 1997; Kuhner et al. 2000; Nielsen

2000; Wall 2000; Fearnhead and Donnelly 2001;
Hudson 2001; McVean et al. 2002) for a set of samples
within a single population. Recombination can be mod-
eled under either a basic crossing-over model (Hudson

1983) or a more complex model of gene conversion
(Wiuf and Hein 2000). Only a few methods (Kuhner
et al. 2000; Fearnhead and Donnelly 2001; McVean
et al. 2002) relax the infinite-sites model (Kimura 1969)
under which a site can undergo at most a single muta-
tion. Relaxing the infinite-sites model is important for
many bacterial and viral data sets, since under the infinite-
sites model, high levels of recurrent mutation can cause
patterns consistent with recombination (McVean et al.
2002).

The basic coalescent operates under several assump-
tions that include constant population size, no selec-
tion, random mating, and no population structure
(Hein et al. 2005). Whereas these assumptions can be
relaxed using additional parameters such as a term for
population growth (Slatkin and Hudson 1991), these
additional parameters are presently not accounted for
in current methods that characterize and detect re-
combination (Kuhner et al. 2000; Fearnhead and
Donnelly 2001; McVean et al. 2002). Importantly, the
influence of population structure and demographic
history may adversely affect the ability of coalescent
methods to correctly infer the rate of recombination
(McVean et al. 2002; Haydon et al. 2004).

The myriad of methods available to detect, charac-
terize, and find recombinant sequences is somewhat
bewildering. Traditionally, general approaches have
been used for recombination analysis between distantly
related genotypes, whereas population genetic-based
approaches have been used for recombination analysis
between closely related genotypes. However, in many
cases the line between the approaches is blurred, and
both approaches have been used to infer the presence
of recombination in bacteria, viral, and animal mito-
chondrial data sets (McVean et al. 2002; Posada 2002;
Piganeau et al. 2004).

Often, one of the primary questions for any data anal-
ysis is to determine whether recombination is likely to be
present within a set of sequences at all (Awadalla et al.
1999; Maynard Smith and Smith 2002; McVean
et al. 2002; Posada 2002; Piganeau et al. 2004; Tsaousis
et al. 2005). Indeed, there are still open questions with
regard to the extent of recombination in animal mito-
chondrial DNA (Maynard Smith and Smith 2002;
Piganeau et al. 2004; Tsaousis et al. 2005). Moreover, if
the sequences are obtained from closely related, yet

distinct, organisms or from many different populations,
it is inappropriate to analyze the sequences in a frame-
work that assumes a single population, such as linkage
disequilibrium or coalescent approaches (Tsaousis
et al. 2005). But determining whether recombination
has occurred in such circumstances is an important
question that cannot be easily answered in a parametric
framework. A robust nonparametric test for recombi-
nation can help distinguish between the presence and
absence of recombination in such cases.

Testing for recombination can statistically validate
visual evidence of recombination obtained using, for
instance, phylogenetic network approaches (e.g., Huson

and Bryant 2006) or independently verify the presence
of recombination if a positive estimate of the rate of
recombination is inferred (e.g., McVean et al. 2002).
Moreover, it is often difficult to distinguish between rate
heterogeneity and recombination in many circumstances
(Grassly and Holmes 1997; McGuire and Wright

2000) and thus regions that exhibit phylogenetic in-
consistencies can be individually tested for recombina-
tion. Additionally, testing for recombination can be used
as a prior probability for the presence of recombination
when inferring the points at which infrequent recom-
bination may have occurred (Minin et al. 2005). In this
sense, testing for recombination can be used in con-
junction with other methods.

Ideally, a single test could correctly determine whether
recombination is present within any given set of aligned
sequences, regardless of population history, demo-
graphic history, recombination rate, or mutation rate.
Preferably, such a test would also minimize the pro-
duction of false positives. Here we develop a new test
that is powerful under many of these different situations
and produces few false positives. Through simulation
and empirical data analysis we characterize the perfor-
mance of our test under various rates of recombination,
rates of mutation, demographic histories, and sample
sizes. We also show through simulation that a simple
model of substitution rate autocorrelation (consistent
with mutational ‘‘hot spots’’) gives rise to a signal similar
to recombination for two different general tests, Max x2

and NSS, but not for our method.

METHODS

Tests for recombination based on the principle of
compatibility have proved to be among the most power-
ful (Brown et al. 2001; Posada and Crandall 2001;
Wiuf et al. 2001; Posada 2002). The traditional binary
notion of compatibility (Le Quesne 1969) is well suited
for sites with at most two alleles, but can be directly
extended into a broader notion (Penny and Hendy

1986) that we term here as refined incompatibility. We
then develop a new statistic to test for recombination,
the Fw- (or pairwise homoplasy index, PHI) statistic that
uses this notion of refined incompatibility.
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Compatibility and incompatibility: It is not obvious
how to determine the genealogical history of a single
site. As such, the pattern of mutation present at multiple
sites must be used to infer the genealogy of the sample
as a whole. One possibility is to use the observed pat-
terns at pairs of sites, in particular the notion of com-
patibility (Le Quesne 1969) or the ‘‘four-gametes’’ test
(Hudson and Kaplan 1985). Two sites i and j are
compatible if and only if there is a genealogical history
that can be inferred parsimoniously that does not
involve any recurrent or convergent mutations (known
as homoplasies as in Figure 1b). If the two sites are not
compatible, they are termed incompatible. Under an
infinite-sites model (Kimura 1969) of sequence evolu-
tion, the possibility of a homoplasy does not exist, and so
incompatibility for a pair of sites implies that at least one
recombination event must have occurred, as in Figure
1a. This can be used to estimate the minimum number
of recombination events present in the sample as a whole
(Hudson and Kaplan 1985; Song and Hein 1999;
Myers and Griffiths 2003). Testing for compatibility
can be accomplished by checking if all four combi-
nations of f00, 01, 10, 11g are present among the se-
quences (Le Quesne 1969).

The traditional, binary notion of either compatibility
or incompatibility treats a single homoplasy the same as
many homoplasies. That is, although in some situations
more than one homoplasy can be parsimoniously in-
ferred for a pair of sites (Camin and Sokal 1965; Penny
and Hendy 1986), this information is disregarded.
Consider two sites i and j, with jxij and jxjj representing
the number of observed states (alleles) at each site. Let
l(xi, xj) denote the minimum number of mutations
required by any tree used to represent the genealogical
history of both sites. Thus l(xi, xj) represents the max-
imum parsimony score for these two characters over all

trees. Note that l(xi, xj) $ (jxij � 1) 1 (jxjj � 1) as each
state (except the ancestral state) must arise at least once
in the tree. Define the refined incompatibility score of
sites i and j as

iðxi ; xjÞ ¼ lðxi ; xjÞ � ðjxi j � 1Þ � ðjxj j � 1Þ:

The refined incompatibility score relates to the tradi-
tional notion of compatibility in the following way:
two sites are compatible if and only if i(xi, xj) ¼ 0; if i(xi,
xj). 0 the two sites are incompatible. There are also two
interpretations of this refined incompatibility score: in
the absence of recombination, this score represents the
minimum number of homoplasies that have occurred in
the history of the samples for these two sites (Penny and
Hendy 1986); in the absence of recurrent or convergent
mutations, this score represents the minimum number
of recombinations that have occurred between the
two sites (T. Bruen and D. Bryant, unpublished data).
This latter result depends on viewing recombinations
as unrooted subtree-prune and regraft operations (see
Hein et al. 2005). Importantly, this score can be cal-
culated quickly [linear time in the number of sequences
(Bruen and Bryant 2006)], which allows alignments
with large numbers of sequences to be evaluated rapidly.

A parsimony informative site has at least two different
alleles that are represented by at least two different
sequences each (there must be at least four sequences
at a site for the site to be parsimony informative)
(Felsenstein 2004). A compatibility matrix (Sneath
et al. 1975; Jakobsen and Easteal 1996) is traditionally
used to represent compatibility between all pairs of
parsimony informative sites. This matrix can also easily
be extended into a refined incompatibility matrix by
setting each entry (i, j) equal to the refined incompat-
ibility score between any two sites i and j.

Sites that have the same history will tend to be more
compatible than sites that have different histories (Sneath
et al. 1975; Jakobsen and Easteal 1996; Drouin et al.
1999). One way to measure the extent of ‘‘clustering’’ in the
matrix is to consider the proportion of neighboring cells in
the matrix that are either compatible or incompatible. The
resulting statistic is termed the NSS and has been used as a
powerful test for recombination ( Jakobsen and Easteal
1996; Brown et al. 2001; Posada and Crandall 2001;
Wiuf et al. 2001; Posada 2002). However, simulations sug-
gest that the NSS produces an excess of ‘‘false positives’’ in
certain situations (see results and discussion) and so we
have developed an alternative statistic.

Test statistic (Fw): The degree of genealogical cor-
relation between neighboring sites is negatively corre-
lated with the rate of recombination (Hudson and
Kaplan 1985). In the case of finite levels of recombina-
tion, the genealogical correlation of sites is partially
reflected by a tendency of closely linked sites to have
greater compatibility than distant sites (Hagenblad

and Nordborg 2002; Innan and Nordborg 2002).

Figure 1.—The dual nature of incompatibility. Two possi-
ble histories for a pair of incompatible sites are shown: (a) two
incompatible sites explained by a recombination event and
(b) two incompatible sites explained by a convergent muta-
tion. Mutations in the first site are indicated by open circles
and mutations in the second site are indicated by solid circles.
To explain the incompatibility between the pair of sites either
a recombination event must be invoked or a homoplasy must
have occurred in the history of one of the sites.
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To measure the similarity between closely linked sites,
we propose calculating a new statistic, the pairwise
homoplasy index (PHI). The idea is to calculate the mean
refined incompatibility score from nearby sites by using
the first k off-diagonal rows of a refined incompatibility
matrix (see Figure 2). Let w denote a fixed width (mea-
sured in bases) and choose k so that it is proportional to
w. Specifically, let q denote the proportion of parsimony
informative sites within the alignment and set k ¼ wq.
The statistic thus measures the mean refined incompat-
ibility score of sites up to (approximately) w bases apart.
We can now formally define the F or PHI statistic as

Fw ¼ 2

kð2n � k � 1Þ
Xk
j¼1

Xn�j

i¼1

iðxi ; xi1jÞ:

The term ‘‘pairwise homoplasy index’’ refers to the fact
that the refined incompatibility score can be inter-
preted as the minimum number of convergent or re-
current mutations (homoplasies) necessarily present on
any tree describing the history of any two sites i and j.
The term k(2n � k � 1)/2 is a normalizing factor.

Clearlyw should be somewhat less than the total number
of sites but large enough that a number of comparisons
are made. For all simulated and empirical analysesw was
set to 100 and k chosen according to the above formula.
Other choices of w were also considered (w ¼ 50 and
w ¼ 150), but simulations (across different sequence
lengths) suggested that w ¼ 100 was slightly better than
the other two choices (results not shown).

Significance: Significance of the observed Fw-statistic
can be obtained by using a permutation test. Under the

null hypothesis of no recombination, the genealogical
correlation of adjacent sites is invariant to permutations
of the sites as all sites have the same history. But in the
case of finite levels of recombination, the order of the
sites is important, as distant sites will tend to have less
genealogical correlation than adjacent sites. Let ẑ de-
note the observed value of the Fw-statistic on the original
alignment and let Z0 denote the value of the Fw-statistic
for a random permutation of the sites. Hence Z0 is dis-
tributed according to the null hypothesis of no recom-
bination. To determine the significance of the observed
value ẑ, a Monte Carlo P-value can be directly estimated
by permuting the alignment many times and counting
the proportion of times the Fw-statistic on a permuted
alignment is less than or equal to ẑ. However, compu-
tation of P-values based on permutations of the align-
ment is time consuming. One way to circumvent this
problem is to determine the distribution of the test sta-
tistic under permutations of the alignment. The expec-
tation (E0(Fw) ¼ m9) and variance (Var0(Fw) ¼ s2) of Fw

can be calculated analytically (seeappendixa for details).
Moreover, initial simulations indicated that the distribu-
tion of Fw under permutations of the alignment is
approximately normal (results not shown). Using these
assumptions, the value of PrðZ0 # ẑÞ can be calculated as

PrðZ0 # ẑÞ ¼
ð ẑ
�‘

nðt jm9; s2Þdt;

where n(t j m9, s2) denotes a normal probability dis-
tribution function with mean m9 and variance s2. This
alternative to the permutation test has the advantage
that it can be obtained quickly and gives a more precise
P-value under an assumption of normality.

The normality of the distribution of the test statistic
can be explained by noting that for a large refined in-
compatibility matrix, calculating the Fw-statistic amounts
to taking the mean of a small sample of values from the
matrix. The simplest version of the central limit theo-
rem then suggests that taking the mean of a small
sample within a ‘‘large’’ matrix has a limiting normal
distribution, if the terms are independent and identi-
cally distributed (Casella and Berger 2001). However,
in this case the central limit theorem provides a guide
rather than a formal equivalence.

For every data set examined (both simulated and
empirical) the significance of the observed Fw-statistic
was calculated using the permutation test directly as
well as the normal alternative. The P-values obtained
by using the permutation test are written as PP(Fw)
whereas the P-values obtained by using the normal
alternative are written as PN(Fw).

Simulation study: We repeated many of the same sim-
ulations that had been performed in other studies (Posada
and Crandall 2001; Wiuf et al. 2001) but expanded the
parameter search space and considered the Fw-statistic
as well as additional tests. The protocol followed was

Figure 2.—The entries marked with a diamond in the
refined incompatibility matrix represent the cells used to cal-
culate the pairwise homoplasy index (or Fw). The cells with
light shading contain the refined incompatibility score of in-
formative site i with informative site i 1 1. The cells with dark
shading contain the refined incompatibility score of informa-
tive site i with informative site i1 2. In this example sites up to
2 informative bases apart are used to calculate Fw.
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based on simulations from the neutral coalescent model
(Kingman 1982) with recombination (Hudson 1983).

The coalescent model provides a natural foundation
for simulation (Crandall and Templeton 1999; Brown

et al. 2001; Posada and Crandall 2001; Wiuf et al.
2001). Simulations were almost all conducted using the
program Treevolve (Grassly et al. 1999). For very high
rates of recombination (r¼ 128), simulations were per-
formed using the program Hudson (Schierup and Hein

2000a,b) since the program Treevolve did not run at
such high rates of recombination. Mutations were added
according to a Jukes–Cantor model ( Jukes and Cantor
1969). Other methods of sequence evolution were also
examined, including the addition of extreme rate het-
erogeneity (a ¼ 0.1), which resulted in a moderate de-
crease in power for all methods (results not shown). For
each parameter setting, 1000 replicate data sets were
created, with each replicate consisting of an alignment
of length 1000 (see appendix b for further details).
Significance was set at the 0.05 level.

In addition to the Fw-statistic, four of the best non-
parametric tests were computed for each parameter
setting, namely the Max x2-statistic (Maynard Smith
1992), the NSS ( Jakobsen and Easteal 1996), and
two measures of correlation of linkage disequilibrium
(r2 and jD9j) with distance (Lewontin 1964; Hill

and Robertson 1968; Miyashita and Langley 1988;
Schaeffer and Miller 1993). Furthermore, results
obtained from a coalescent-based likelihood permuta-
tion test (LPT) from LDHat (McVean et al. 2002) are
reported as well. The Max x2-statistic has been found to
be the best general test for detecting recombination in
a recent empirical study (Posada 2002), and the NSS
statistic has been found to be very efficient as well
(Brown et al. 2001; Posada and Crandall 2001; Wiuf

et al. 2001; Posada 2002). Correlation of linkage dis-
equilibrium with distance using r2 has been found to be
the strongest nonparametric approach for detecting
recombination within populations (McVean et al. 2002).
Recently, the likelihood permutation test was intro-
duced as a powerful alternative to methods based on
linkage disequilibrium (McVean et al. 2002). For the
Max x2-statistic a fixed window size of the number of
polymorphic sites divided by 1.5 was used following a
previously described protocol (Posada and Crandall
2001; Posada 2002). For both measures of correlation
of r2 and D9 with distance, only sites with two alleles
segregating and minor allele frequencies of at least 0.1
were used, as this approach tends to maximize power
(Weir and Hill 1986; McVean et al. 2002). For the
likelihood permutation test, precomputed likelihood
files were used on the basis of 101 grid points with a
value of u per site of either 0.001 or 0.1. For each repli-
cate, if the expected mean sequence diversity was ,10%,
then a likelihood file with a u per site value of 0.001 was
used; otherwise a likelihood file with a u per site value
of 0.1 was used (under a constant-size population the

expected mean sequence diversity of 10% corresponds
to an expected value of u per site of �0.12). The sig-
nificance for each of the statistics was obtained using a
permutation test. For the power determination, 1000
permutations were performed, whereas for the false
positives, 200 permutations were performed.
Power: To determine power in the presence of recom-

bination, the recombination rate r (under population
growth r†) varied among 0, 1, 2, 4, 8, 16, and 128; the
expected nucleotide diversity p between any two sequen-
ces varied among 1, 5, 10, 15, and 25%; and the growth
rate of the population b varied between 0 (constant-size
populations) and 5000. The sample size m varied among
5, 10, 15, 25, and 50. For r ¼ 128 simulations with b ¼
5000 were not performed since this option was not avail-
able with the program Hudson. More details explaining
the protocol can be found in appendix b and elsewhere
(Wiuf et al. 2001).
False positives: Substitution rate heterogeneity across

sites on a genealogy was modeled here using a G-
distribution (Uzzell and Corbin 1971; Yang 1993).
In this case, the substitution rate at each site i, Zi, is drawn
from a G-distribution with shape parameter a and scale
parameter 1/a (Yang 1993).

Autocorrelation among substitution rates was mod-
eled assuming Markov dependence among rates (Yang
1995). To achieve this, two random variables Yi and Yi11

were drawn from a bivariate normal distribution with
correlation rN and transformed into two marginally dis-
tributed gamma random variables Zi and Zi11 with cor-
relation rG (Yang 1995). Using the bivariate normal
distribution of Yi and Yi11 (including correlation rN),
the probability distribution function of random variable
Yi11 was obtained conditional on the random variable
Yi, allowing Markov-dependent substitution rates to be
drawn. The substitution rates Zi and Zi11 then represent
draws from a bivariate G-distribution with correlation
rG. The value of rG is positively correlated with the value
rN but not identical (Yang 1995).

Data sets were simulated using a modified version of
Treevolve (Grassly et al. 1999) with a number of the
sampling functions taken from PAML (Yang 1997). The
correlation parameter rN varied among 0 (no correla-
tion), 0.3, 0.6, and 0.9; the expected nucleotide diversity p
between any two sequences varied among 1, 5, 10, 15, and
25%; the value of a for the G-distribution varied among
0.1, 1.0, and ‘; and the growth rate of the population b

varied between 0 (constant-size populations) and 5000.
The sample size m varied among 5, 10, 15, 25, and 50.

Empirical data: A number of population and species
level data sets were examined. The presence of recombi-
nation in each of these data sets was debated, unknown, or
suspected. The rate of recombination in these data sets
ranged from rare to very frequent. In general, data sets with
at least a few hundred sites were chosen.

Tests for recombination were performed using the
Fw-statistic as well as the Max x2-statistic (Maynard Smith
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1992) and the NSS statistic ( Jakobsen and Easteal
1996). As in the simulation studies, w was set to 100 for
all analyses. One thousand permutations were per-
formed to obtain significance. Additional results are
reported for the population level data sets, using permu-
tation tests based on r2 and jD9j (Lewontin 1964; Hill

and Robertson 1968; Miyashita and Langley 1988;
Schaeffer and Miller 1993) as well as a coalescent-
based LPT with LDHat (McVean et al. 2002). Further-
more, an estimate of the rate of recombination was also
obtained in LDHat using a model of crossing over rather
than gene conversion. The maximum value of r was set
to 100 and 100 grid points were used in LDHat. The
value of Tajima’s D-statistic is also reported, as it can be
an indicator of population growth or selective pressure
(Tajima 1989). Table 1 summarizes the data sets used.
The data sets include sequences from bacteria, viruses,
and fungi. Two of the data sets were from animal mito-
chondrial DNA (mtDNA).

For the Boletales data set additional analysis was per-
formed by first estimating a neighbor-joining tree (Saitou
and Nei 1987) using PAUP* (Swofford 1998). Branch
lengths for the tree, a transition/transversion ratio, co-
don frequencies, a value of a for the substitution rate
heterogeneity (Yang 1993), as well as the degree of
substitution rate autocorrelation (estimated using the
autodiscrete gamma model) (Yang 1995), were then
estimated using a codon model in PAML (Yang 1997). A
parametric bootstrap of 1000 replicates was then per-
formed under the estimated parameters using a modified
version of PAML that allowed autocorrelated substitu-
tion rates. For each replicate, a test for recombination
was performed using the Max x2-statistic, the NSS
statistic, and the Fw-statistic (with 1000 permutations).
Significance was set at 0.05.

RESULTS AND DISCUSSION

Simulation studies: Analytical calculation of P-values:
Table 2 shows the proportion of times that recombina-

tion was inferred using Fw, when the rate of recombi-
nation rwas set to 0 and there was no population growth
(b ¼ 0). Since the significance level was set to 0.05, the
Fw-test is too conservative when the mean sequence
diversity is �1% or when there are few samples (e.g., m¼
5). This is partly due to the fact that there are very few
informative sites or incompatibilities produced in these
situations (results not shown). Table 2 also indicates that
when the sequence diversity and sample size are small,
obtaining significance using the permutation test (PP(Fw))
is even more conservative than obtaining significance
using the normal distribution (PN(Fw)). On the other
hand, Figure 3 shows that both methods for obtaining
significance give very similar answers for higher amounts
of sequence diversity (at least 10%), with at least 15 sam-
ples. These results suggest that it is sufficient to obtain
significance for Fw using the normal distribution. For all
subsequent simulations, the results quickly obtained with
the Fw-statistic using the normal distribution are reported.

Time: The time to calculate Fw is much faster than
other population genetic methods especially for mod-
erate numbers of sites and sequences. For instance, sev-
eral simulated alignments of 25 samples with 5000 sites
with moderate sequence diversity (10%), corresponding

TABLE 1

Summary of empirical data sets

Data set Type
No. of

sequences
No. of
sites

Informative
sites

Observed
diversity (%)a

Tajima’s
Db Reference

Candida albicans Fungi 45 2553 58 0.7 0.936 Anderson et al. (2001)
Rana Animal mtDNA 8 1143 257 14.8 — Sumida et al. (2000)
Cowdria ruminantium Bacteria 14 870 186 10.5 0.384 Jiggins (2002)
H. pylori Bacteria 33 472 53 3.8 �0.531 Suerbaum et al. (1998)
Boletales Fungi 31 639 265 17.1 — Kretzer and Bruns (1999)
Norovirus Virus 25 1617 103 2.2 �1.482 Rohayem et al. (2005)
Apodemus Animal mtDNA 10 1140 275 14.7 — Martin et al. (2000)
Nematode Wolbachia Bacteria 10 444 98 13.0 0.899 Jiggins (2002)

a Mean proportion of sites that differ between any two sequences.
b Calculated on sites with only two alleles segregating.

TABLE 2

Proportion of times recombination inferred using Fw when
r ¼ 0 and b ¼ 0 (without mutation rate correlation or

substitution rate heterogeneity)

Diversity (%)

m 1 5 10 15 25

5 0.4 0.4 1.6 0.9 3.6 1.7 4.2 2.4 5.1 3.7
10 0.1 0.0 3.1 1.5 4.6 3.5 3.9 3.2 4.7 4.0
15 0.2 0.0 5.5 3.8 5.7 4.7 5.4 4.5 4.0 3.8
25 0.3 0.2 4.6 2.9 4.8 4.3 4.5 3.8 4.5 4.1
50 0.8 0.1 5.9 4.5 4.1 3.8 5.7 5.6 5.7 5.3

The columns for each parameter pair represent PN(Fw)
and PP(Fw), respectively.
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to viral genomic samples, were analyzed on a Mac G4
desktop computer. The time taken to analyze each
alignment was �20 sec using Fw without the permu-
tation test, 30 sec using Fw with the permutation test,
7 min with the linkage disequilibrium methods (using
LDHat), and 8 hr using the likelihood permutation test
of LDHat (using a precomputed likelihood file). For
longer alignments, however, the permutation test be-
comes impractical even for Fw and in these cases
analytical P-values are the only way to practically test
for recombination. It is worth noting that since the
power to detect recombination increases as a function
of sequence length (Wiuf et al. 2001), this constitutes an
important advantage for the Fw-test, since faint re-
combinant signals may be detectable using only very
long sequences.

Power: Figure 4 shows the power to detect recombi-
nation for Fw, Max x2, NSS, the LPT in LDHat, and two
measures of correlation of linkage disequilibrium with
distance (r2 and jD9j), when the rate of recombination r

is greater than zero, for two different sample sizes (m ¼
10 and m¼ 50). Two principal types of genealogies were
created: with and without population growth. If there is
population growth, the genealogies created will be more
star-like with long branches at the leaves (Griffiths and
Tavaré 1998; Wiuf et al. 2001). If there is no population
growth, there are short branches at the tip but long
branches at the root. When genealogies are more star-
like, recurrent mutations will tend to mask the initial
recombination, and the recombination events are best
considered to be ‘‘ancestral.’’

The top rows of Figure 4, a and b, show that without
population growth (b ¼ 0), all six methods performed
similarly, although overallFw is the most powerful method
with a large number of samples. Without population

growth, the power to detect recombination of all six
methods generally increases as a function of both se-
quence diversity and the rate of recombination, similar
to earlier observations (Posada and Crandall 2001;
Wiuf et al. 2001). A notable exception is the LPT for
which there is a slight decline in power when the mean
sequence diversity reaches 10%. At this point, a likeli-
hood file with a value of u per site of 0.1 was used rather
than a likelihood file with a value of u per site of 0.001.
However, when the sequence diversity reaches 10%, the
expected value of u per site is �0.12, suggesting that a
value of u per site of 0.1 is a better choice. Nonetheless,
more power may be obtained by using a gross un-
derestimate of u, although previous work has demon-
strated a relative insensitivity of the LPT to a specific
estimate of u (McVean et al. 2002).

The top rows of Figure 4, a and b, suggest that the
Fw method performs similarly to the linkage disequi-
librium approaches when there is very little sequence
diversity (e.g., p¼ 1%), despite the fact that the test is too
conservative in these circumstances (Table 2). For very
little sequence diversity (i.e., p ¼ 1%), the coalescent-
based method LPT is the most powerful method in
constant-size populations, but has about the same power
as Fw for growing populations. However, the results
suggest that all methods may underestimate the pres-
ence of recombination if few sequences are present with
very little divergence, especially in an expanding pop-
ulation (or ‘‘star-like’’ genealogy).

By comparing the bottom rows of Figure 4, a and b,
to the top rows of Figure 4, a and b, it is evident that
detecting the presence of recombination under pop-
ulation growth (b ¼ 5000) is a more difficult task than
detecting the presence of recombination without pop-
ulation growth (b ¼ 0). Of all six methods, the bottom
rows of Figure 4, a and b, suggest that Fw is much better
at detecting recombination under population growth
than Max x2, NSS, the coalescent-based LPT, or the
linkage disequilibrium approaches. For the coalescent-
based LPT, it is worth noting that population growth
could be incorporated in the method in the future,
possibly increasing power. The decline of linkage dis-
equilibrium in expanding populations using r2 is con-
sistent with previous observations (Slatkin 1994; McVean
2002), but the results suggest that the performance of the
jD9j statistic is similar. The results for the Fw-test suggest
that subsequent mutations do not ‘‘mask’’ the recombi-
nant signal for this method. Interestingly, this is similar
behavior to the RECPARS method (Hein 1993; Wiuf et al.
2001) and may be of particular importance when trying to
determine ancestral recombination between diverged
genotypes. The results also suggest that the Fw-statistic
can be used to distinguish between star-like genealogies
due to population growth and star-like genealogies due to
recombination (Schierup and Hein 2000b).

A comparison of the top row of Figure 4a to the top
row of Figure 4b reveals that an increase in sample size

Figure 3.—Comparison of P-values obtained using the per-
mutation test (horizontal axis) to analytical P-values (vertical
axis) when r ¼ 0 and b ¼ 0. Points with ,15 samples and
,10% sequence divergence are not shown (see Table 2).
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from m¼ 10 to m¼ 50 causes an increase in the ability of
all six methods to infer recombination when there is no
population growth (b¼ 0). For population growth (the
bottom rows of Figure 4, a and b), the power to detect
recombination for the NSS statistic for actually de-
creases sharply from m ¼ 10 to m ¼ 50. But for the other
five tests, the power to detect recombination generally
increases when moving from m ¼ 10 to m ¼ 50 even
under population growth. These results expand upon
some previous observations (Wiuf et al. 2001).

Under a neutral coalescent model with recombina-
tion, it is possible to use a likelihood-ratio test to deter-
mine whether the hypothesis of no recombination (r¼ 0)
should be rejected at a given significance level (Kuhner
et al. 2000; Brown et al. 2001). However, even when data
are simulated according to the neutral coalescent with

low levels of recombination, the hypothesis r ¼ 0 is
rejected only a limited proportion of the time (Brown

et al. 2001). However, such a simulation represents an
ideal situation, where the likelihood-ratio test is guaran-
teed to be the most powerful (Brown et al. 2001) and
the model used to infer r is identical to the model used
to generate samples. This suggests that it might be
difficult for any test to correctly infer the presence of
recombination for very low recombination rates. Addi-
tionally, a theoretical analysis shows that generating
small sets of samples using a low rate of recombination
produces only a limited number of incompatibilities
(Wiuf et al. 2001). It is thus possible that full-likelihood
approaches (Kuhner et al. 2000; Fearnhead and
Donnelly 2001) or a phylogenetic network (Huson

and Bryant 2006) approach could be particularly useful

Figure 4.—Power to detect recombination for (a) m ¼ 10 and (b) m ¼ 50 samples for six different methods with (a and b,
bottom rows) and without (a and b, top rows) population growth. The horizontal axis varies the rate of recombination whereas
the vertical axis varies the amount of sequence diversity. Each cell represents the outcome of 1000 replicates with cells with lighter
shading indicating increased power. The value r† refers to the value of r used to give the same expected number of recombinations
under population growth.
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to determine whether there is any possibility of recom-
bination when only a weak recombinant signal exists.

Table 3 demonstrates that Fw can detect recombina-
tion even under extremely high recombination rates
(r ¼ 128). Except for low sequence diversity (p ¼ 1%),
the presence of recombination is correctly inferred each
time. But even for low sequence diversity, the presence
of recombination can be inferred nearly every time by
increasing the sample size from m ¼ 10 to m ¼ 50.

It is worth noting that the Fw-statistic can also be
calculated without the refined incompatibility score,
but using only the traditional notion of compatibility.
For cases without population growth (b¼ 0), the results
are almost identical (results not shown). On the other
hand, with population growth (b ¼ 5000), there is an
increase in power using the refined incompatibility score
when the number of samples is large (e.g., m ¼ 50) and
there is some recurrent mutation. For a rate of recom-
bination of r ¼ 1, a sample size of 50, and exponential
growth, the gains in power using the refined incompat-
ibility score rather than the compatibility score were 2, 5,
and 12% for mean pairwise sequence divergences of 10,
15, and 25%, respectively. Similar results are obtained

for r ¼ 2 but not for higher rates of recombination
(results not shown). This suggests that the refined in-
compatibility score is a useful extension to the tradi-
tional notion of compatibility especially for large sample
sizes with sites that experience recurrent mutations.

For no population growth, theFw-test and the linkage
disequilibrium approaches perform similarly, although
Fw is more powerful for a large number of samples.
However, Fw is applicable even if the samples are from
different species or different populations, whereas the
linkage disequilibrium and coalescent approaches are
not (Tsaousis et al. 2005). Under population growth,
however (b ¼ 5000), only Fw continues to consistently
infer the presence of recombination as the power of the
other five methods suffers sharp declines. This suggests
that, of all six methods, Fw has the greatest flexibility in
detecting recombination in the different circumstances
studied.
False positives: Of particular concern for any test for

recombination is the effect of confounding processes
such as substitution rate heterogeneity and autocorre-
lated substitution rates. Autocorrelation of substitution
rates implies that the rate of substitution of one site
is not independent of the rate of substitution of a
neighboring site and can create ‘‘mutational hot spots’’
within a sequence. This can potentially create the same
patterns as recombination.

Figure 5 shows the proportion of false positives for
Max x2 and NSS when there is no recombination (r¼ 0)
but ‘‘mosaic’’ sequences are artificially induced by using
a range of autocorrelated substitution rates. Figure 5
shows that both Max x2 and NSS falsely infer the pres-
ence of recombination .50% of the time in certain
cases. The results for the linkage disequilibrium, like-
lihood permutation test, and Fw are omitted from
Figure 5 since these methods did not falsely infer

Figure 5.—Percentage of false positives for (a) m¼ 10 samples (with b¼ 5000), (b) m¼ 50 samples (with b¼ 0), and (c) m¼ 50
samples (with b ¼ 5000), for Max x2 and NSS, with extreme rate heterogeneity (top row) and moderate rate heterogeneity (bot-
tom row). The horizontal axis varies the substitution rate correlation whereas the vertical axis varies the amount of sequence
diversity. Each cell represents the outcome of 1000 replicates with cells with lighter shading indicating a higher percentage of
false positives. The results for Fw, r2, and jD9j are omitted since these approaches did not falsely infer recombination .7% of
the time for any of the conditions, but Table 4 shows a number of these results for Fw.

TABLE 3

Power to detect recombination using Fw with a high rate
of recombination r ¼ 128

No. of samples

Diversity (%) m ¼ 10 (%) m ¼ 50 (%)

1 68 99
5 100 100
10 100 100
15 100 100
25 100 100
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recombination .7% of the time, although Table 4
shows this information for Fw . Table 4 shows that the
Fw-statistic did not infer recombination .6% of the
time when recombination was falsely inferred .50% of
the time using both Max x2 and NSS. Although the
global model of substitution rate autocorrelation em-
ployed by this study is quite simple since it ignores
codon positions and substitution rate correlation within
local patterns of substitution (McVean 2001), it none-
theless provides a guide to the effect of autocorrelated
substitution rates.

The problem of false positives in NSS and Max x2 is
most severe for large sample sizes (e.g., m ¼ 50), both
under constant-size populations (Figure 5b) and under
population growth (Figure 5c). Although the problem
is in general greater for higher substitution heteroge-
neity (Figure 5, top rows) it is also a problem with lower
substitution rate heterogeneity (Figure 5, bottom rows).

The level of false positives of both NSS and Max x2

suggests caution in interpreting evidence for recombi-
nation, especially when autocorrelated rates are an
issue. For instance, inferring the presence of recombi-
nation in mitochondrial DNA should be done cau-
tiously as substitution rate correlation is known (Yang
1995; Nielsen 1997).

The results using Fw contrast strongly with the results
using the NSS (which is also compatibility based). This is
likely due to the difference in the statistics themselves.
The Fw-statistic uses compatibility between closely linked
sites directly whereas the NSS statistic measures cluster-
ing within a compatibility matrix. As the clustering can
be caused by substitution rate correlation, and not only
by recombination, this might explain the difference
between the two statistics. For Max x2 the problem is
possibly due to pairs of sequences that differ greatly
on one side of a site (due to high mutation) but share a
great degree of similarity on the other side of a site (due
to low mutation). Local ‘‘bursts’’ of mutation (McVean
2001) likely exacerbate the problem, especially for link-
age disequilibrium approaches that are based on allele
frequencies at different sites.

Empirical data: The general information concerning
the empirical data sets is summarized in Table 1. Tables
5 and 6 show the results of tests for recombination on
all the empirical data sets. In addition to the results
obtained using the Fw-statistic, results using Max x2

(Maynard Smith 1992), NSS ( Jakobsen and Easteal
1996), correlation of r2 and jD9j with distance (Lewontin

1964; Hill and Robertson 1968), and a LPT (McVean
et al. 2002) are shown. The estimates of r for the
population level data sets were obtained using LDHat
(McVean et al. 2002). Tests for recombination within
populations (i.e., r2, jD9j, and LPT) were not applied
to data sets that contained individuals from different
species.

Recombinant examples: Table 5 shows that the null hy-
pothesis of no recombination is rejected by all tests for
most of the suspected recombinant data sets, including
the Candida example that had very little sequence di-
versity (0.7%). Whereas a lack of sequence diversity in
the simulations made recombination harder to detect,
this may be partially overcome by using longer align-
ments, such as that for the Candida example, which had
2553 sites. Interestingly, the null hypothesis of no re-
combination was not universally rejected for two of the
bacterial data sets: Cowdria and Helicobacter pylori. For

TABLE 5

Analysis of suspected recombinant data sets

Data set ra Fw
b,c x2 NSS r2a,d jD9ja,d LPTa,d,e

Candida 16 2.4 3 10�15* (0.000*) 0.000* 0.000* 0.000* (0.000*) 0.122 (0.001) 0.000* (0.000*)
Rana — 5.5 3 10�31* (0.000*) 0.000* 0.000* — —
Cowdria 17 3.8 3 10�5* (0.000*) 0.041* 0.001* 0.167 (0.039*) 0.043* (0.029*) 0.000* (0.001*)
H. pylori $100 9.3 3 10�3* (0.004*) 0.158 0.330 0.125 (0.000*) 0.536 (0.003*) 0.000* (0.000*)

* P , 0.05.
a Calculated on sites with only two alleles segregating with LDHat.
b Each pair shows P-values calculated analytically and using a permutation test, respectively.
c w was set to 100 for all tests.
d Terms in parentheses show results on sites with minor allele frequencies .0.1.
e Denotes the value of a likelihood permutation test calculated in LDHat.

TABLE 4

Proportion of times recombination is falsely inferred using
Fw with substitution rate heterogeneity a ¼ 0.1, mutation

rate correlation, and sample size m ¼ 50

Mutation rate correlation

Diversity (%) 0 0.3 0.6 0.9

1 2.0 3.6 2.5 3.6 2.6 3.9 1.1 3.8
5 4.9 4.7 5.8 4.5 4.7 3.3 3.0 1.0
10 4.1 5.6 4.7 4.6 4.8 3.0 1.8 1.5
15 4.9 4.0 4.5 4.7 3.8 4.5 2.9 1.8
25 5.3 4.0 3.7 3.5 4.1 3.9 3.4 2.1

The columns for each parameter pair represent the out-
comes for b ¼ 0 and b ¼ 5000, respectively.
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these two bacterial examples, evidence for recombi-
nation was found using the Fw-statistic as well as the
coalescent-based likelihood permutation test. However,
recombination was detected in the Cowdria example
using the correlation of distance with r2 only after sites
with minor alleles were removed. Moreover, in the H.
pylori data set neither NSS nor Max x2 found significant
evidence for recombination. This could be due to the
high suspected rate of recombination in the H. pylori
example, which has conditions approaching linkage
equilibrium (Suerbaum et al. 1998). The linkage dis-
equilibrium methods seem to be highly sensitive to sites
with low allele frequencies and consistent results are
obtained only after the removal of these sites.

Possibly recombinant examples: The results obtained
from the data sets for which the status of recombina-
tion is debated are quite interesting (Table 6). For the
Norovirus example, evidence of recombination is found
using Fw, Max x2, and the LPT. There is some evidence
of recombination found with r2, but after sites with
minor allele frequencies ,0.1 are removed no further
evidence is found by the linkage disequilibrium meth-
ods. Since the samples came from a number of different
cities, it could be that evidence of recent recombination
is weakened by removing these sites. However, the LPT
finds evidence of recombination regardless of whether
or not these sites are removed.

For the bacterial symbiont nematode Wolbachia,
there is little prior reason to suspect recombination
( Jiggins 2002). Nonetheless, evidence for recombina-
tion is found using correlation of r2 with distance and
marginal evidence for recombination is found by using
the likelihood permutation test when sites with minor
alleles frequencies ,0.1 are removed. The results ob-
tained using the Fw-statistic also suggest that there is
marginal evidence for recombination with Wolbachia.
The possible presence of recombination in Wolbachia
should be tested further using more data.

Recombination in the animal mitochondrial DNA
of Apodemus was first proposed (Ladoukakis and
Zouros 2001) and then disputed (Maynard Smith

and Smith 2002). Tests for recombination using Fw

and Max x2 indicate that there is little evidence for
recombination, although the NSS statistic does find
evidence for recombination. The evidence for recom-
bination within Apodemus using the Max x2-test is even
weaker here than in previous studies (Maynard Smith
and Smith 2002), possibly due to the fact that this im-
plementation of the Max x2-test uses a ‘‘fixed window
size.’’ Given the high level of false positives of NSS, the
results suggest that evidence for recombination within
Apodemus is lacking.

For the fungal Boletales, results using the Fw-statistic
are quite distinct from the results obtained using both
the NSS and the Max x2-statistic. The Fw-based tests find
no evidence for recombination whereas both other tests
find strong evidence for recombination. Interestingly,
although most other methods for detecting recombina-
tion find evidence for recombination within this data
set, Geneconv (Sawyer 1989), another powerful sequence-
based test for recombination, does not (Posada 2002).

One possibility for the Boletales data set is that theFw-
statistic is too conservative and produced a type II error
(‘‘false negative’’). The Boletales data set is a saturated
data set with a strong A 1 T bias (Kretzer and Bruns
1999). The strong A 1 T bias results in an estimated
transition/transversion ratio of 0.4. Simulations show,
however, that even under such conditions, there is rea-
son to believe that recombination will still create distinct
patterns of compatibility and incompatibility that should
be detectable using the Fw-statistic (results not shown).
Moreover, simulations indicate that the Fw-statistic ap-
pears to be more powerful than the NSS statistic (which is
also compatibility based), suggesting that a type II error
for theFw-statistic, but not for the NSS statistic, is unlikely.

Another possibility for the Boletales example is that
both Max x2 and the NSS statistic are producing type I
errors, which, according to the simulations, autocorre-
lated substitution rates might induce. To test this, a
parametric bootstrap with 1000 replicates simulating
codons (with no recombination) was performed using
a substitution rate heterogeneity of 1.31 and global

TABLE 6

Analysis of possibly recombinant data sets

Data set ra Fw
b,c x2 NSS r 2a,d jD9ja,d LPTa,d,e

Norovirus 23 (21) 0.002* (0.003*) 0.025* 0.237 0.029* (0.574) 0.868 (0.340) 0.022* (0.026*)
Apodemus — 0.135 (0.151) 0.274 0.006* — — —
Boletales — 0.934 (0.931) 0.003* 0.000* — — —
Wolbachia 0 (2) 0.086 (0.103) 0.566 0.108 0.049* (0.019*) 0.286 (0.204) 0.709 (0.090)

* P , 0.05.
a Calculated on sites with only two alleles segregating.
b Each pair shows P-values calculated analytically and using a permutation test, respectively.
c w was set to 100 for all tests.
d Terms in parentheses show results on sites with minor allele frequencies .0.1.
e Denotes the value of a likelihood permutation test calculated in LDHat.
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substitution rate correlation rG ¼ 0.35 as estimated from
the data set. Figure 6 shows the distribution of estimated
P-values obtained on the 1000 replicates using the Max
x2-statistic, NSS statistic, and the Fw-statistic. Recombi-
nation was inferred 5.7% of the time using the Fw-
statistic, 8.5% of the time with the Max x2-statistic, and
37.5% of the time using the NSS statistic. Since none of
the replicates contained recombination, the P-values
for each of the three methods should follow a uniform
distribution. Figure 6 shows that the parametric boot-
strap creates conditions similar to recombination for
both Max x2 and NSS [a one-sided Kolmogorov–
Smirnov test (Massey 1951) rejects the uniform distri-
bution at a significance level of 10�7 for both Max x2 and
NSS but fails to find any evidence to reject the uniform
distribution for Fw]. Whereas the results for Max x2 are
less striking than those for NSS, the parametric boot-
strap fails to account for local patterns of mutation (Hey

2000; McVean 2001; McVean et al. 2002), which are
likely to exacerbate the observed bias. These results
suggest that there is reason to doubt the validity of the
inferences of Max x2 and NSS concerning the presence
of recombination in the Boletales data set.

Conclusion: We have presented a simple, powerful
test for detecting recombination that can be used re-
gardless of sample history. The approach is very general
(e.g., does not assume a single population) and aims to
determine simply whether there is a recombinant signal
present within the sequences. In contrast to two other
general tests, Max x2 and NSS, our test does not falsely
infer the presence of recombination because of muta-
tion rate correlation (which is present in some mito-
chondrial DNA). Interestingly, our approach performs
very well even in the presence of population growth, in
contrast to methods based on linkage disequilibrium (r2

and jD9j), a coalescent-based likelihood permutation
test (from LDHat), Max x2, and NSS. Our method can
be used by itself, or to validate the visual presence of
recombination from a phylogenetic network approach,

or to independently verify the presence of recombina-
tion if a positive estimate of the rate of recombination is
obtained. The approach may be particularly useful in
distinguishing recurrent mutation from recombination
when assumptions such as a single, randomly mating,
and constant-size population are not met. The test can
be used easily when many sequences and sites are pres-
ent because of its computational efficiency and indeed
is more powerful in such circumstances. A program im-
plementing our test as well as both Max x2 and NSS is
available as a stand-alone program at the following ad-
dress: http://www.mcb.mcgill.ca/�trevor. The test is also
implemented in SplitsTree 4.2, available at http://www.
splitstree.org.
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APPENDIX A

The normal approximation to the permutation test requires calculation of the expectation and variance of the Fw-
statistic under permutations of the alignment. This section contains derivations for both the mean and the variance
and outlines how to compute both values efficiently. Again, assume that the proportion of informative sites is q and let
w be a fixed width (in bases). Throughout this section, let k ¼ wq.

Let M ¼ (Mi,j) be a given n 3 n refined incompatibility matrix. Note that M is symmetric. Let I ¼ f1, . . . , ng
be an index set. Let s be any permutation of the index set, and define a permutation of the matrix as s(M) ¼
(Ms(i),s(j)).

Define the sample space V by V¼ fs(M): s2 Sng. Assume that every permutation s is equally likely. Define an n3 n
random matrix X :V/Rn3n by X ¼ s(M). Note that X is symmetric, a fact that is used throughout without further
mention.

Define for all 1 # i # n: fi ¼
Pn

j¼1
j 6¼i

Mi;j and gi ¼
Pn

j¼1
j 6¼i

M 2
i;j .

Also define u¼
Pn

i¼1 fi ; v¼
Pn

i¼1 gi ; andw ¼
Pn

i¼1ð fiÞ
2.

Lemma 1. Let X be a random matrix. Then for any arbitrary but distinct fi, j, k, lg

E ½Xi;j � ¼
ðn � 2Þ!

n!
u

E ½X 2
i;j � ¼

ðn � 2Þ!
n!

v

E ½Xi;jXi;k � ¼
ðn � 3Þ!

n!
ðw � vÞ

E ½Xi;jXk;l � ¼
ðn � 4Þ!

n!
ðu2 1 2v � 4wÞ:

Proof. Note that a permutation s of I can be viewed as mapping to I/I . Denote the value of s(i) by si. The total
number of permutations is then n!. The number of permutations that havem distinct elements fixed in some mapping
is (n�m)! (e.g.,s(a1)¼ b1,s(a2)¼ b2, . . . ,s(am)¼ bm). Since every permutation is equally likely the probability of such
a permutation is

ðn � mÞ!
n!

:
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Note that every distinct pair (i, j), i 6¼ j can be mapped to any distinct pair (a, b), a 6¼ b, by somes. Note also that Pr[Xi,j¼
Ma,b] ¼ Pr[sa ¼ i ^ sb ¼ j]. Finally, for notational convenience the summation

Pn
a¼1 is written as

P
a . Hence,

E ½Xi;j � ¼
X
a

X
b 6¼a

Ma;bPr½sa ¼ i ^ sb ¼ j �

¼
X
a

X
b 6¼a

Ma;b
ðn � 2Þ!

n!

¼ ðn � 2Þ!
n!

u

E ½X 2
i;j � ¼

X
a

X
b 6¼a

M 2
a;bPr½sa ¼ i ^ sb ¼ j �

¼ ðn � 2Þ!
n!

v

E ½Xi;jXi;k � ¼
X
a

X
b 6¼a

X
c 6¼a;b

Ma;bMa;cPr½sa ¼ i ^ sb ¼ j ^ sc ¼ k�

¼ ðn � 3Þ!
n!

X
a

ððfaÞ2 � gaÞ

¼ ðn � 3Þ!
n!

ðw � vÞ

E ½Xi;jXk;l � ¼
X
a¼1

X
b 6¼a

X
c 6¼a;b

X
d 6¼a;b;c

Ma;bMc;dPr½sa ¼ i ^ sb ¼ j ^ sc ¼ k ^ sd ¼ l �

¼ ðn � 4Þ!
n!

X
a

fa

 !2

1
X
a

ð2ga � 4ð faÞ2Þ
 !

¼ ðn � 4Þ!
n!

ðu2 1 2v � 4wÞ: n

Consider the statistic Fw defined on a random matrix X as

Fw ¼ 2

kð2n � k � 1Þ
Xk
j¼1

Xn�j

i¼1

Xi;i1j :

Define (for 1 # a, b # n)

Pk ¼ fða; bÞ: a, b# a1 kg:

Note that

jPk j ¼ ðn � 1Þ1 ðn � 2Þ; . . . ; ðn � kÞ ¼ kð2n � k � 1Þ
2

:

Then

Fw ¼ 1

jPk j
X

ða;bÞ2Pk
Xa;b :

Theorem 1. The expectation and variance of Fw can be written as

E ½Fw� ¼
ðn � 2Þ!

n!
ðuÞ

Var½Fw� ¼ c1u
2 1 c2v1 c3w
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( for n $ 2k), where

c1 ¼ 2

3

27kn � 18k2 1 28k2n � 21kn2 � 9k1 5n � 9k3 � 11n2 1 6n3 1 6k3n � 4k2n2

kðk1 1 � 2nÞ2ðn � 1Þ2ðn � 2Þðn � 3Þn2

c2 ¼ 2

3

39kn � 14k2 1 8k2n � 15kn2 � 21k1 19n1 3k3 � 21n2 1 6n3 � 4

kðk1 1 � 2nÞ2nðn � 1Þðn � 2Þðn � 3Þ

c3 ¼ �4

3

�18kn � 2k2n1 16k2 1 6n2 � 10n1 21 15k1 3k3

kðk1 1 � 2nÞ2nðn � 1Þðn � 2Þðn � 3Þ :

Moreover, both E[Fw] and Var[Fw] can be calculated in O(n2) time.

Proof. The expectation is straightforward:

E ½Fw � ¼
1

jPk j
X

ða;bÞ2Pk
E ½Xa;b � ¼

ðn � 2Þ!
n!

u:

The variance is a little more involved,

Var½Fw � ¼ Var
1

jPk j
X

ða;bÞ2Pk
Xa;b

2
4

3
5

¼ 1

jPk j 2

X
ða;bÞ2Pk

Var½Xa;b �1 2
X

ðða;bÞ;ðc;dÞÞ2Qk

Cov½Xa;bXc;d �

0
@

1
A;

where

Qk ¼ fðða; bÞ; ðc; dÞÞ 2 Pk 3Pk : ða; bÞa ðc; dÞg

and a denotes standard lexicographical ordering.
Note thatQk can be partitioned into two disjoint setsQk,0 andQk,1, whereQk,m¼f((a, b), (c, d))2Qk : jfa, bg \ fc, dgj ¼

mg [by definition Qk does not contain pairs of the type ((a, b), (a, b))]. One way to determine Qk,1 is to set up a
recurrence.

Note that

P1 ¼ fð1; 2Þ; ð2; 3Þ; . . . ; ðn � 1; nÞg

so that

Q1;1 ¼ fðða; a1 1Þ; ða1 1; a1 2ÞÞ : 1# a#n � 2g:

Hence jQ1,1j ¼ (n � 2).
Next let ((a1, a2), (a3, a4)) 2 Qk � Qk�1. Then at least one (a1, a2) ¼ (a, a1 k) or (a3, a4) ¼ (a, a1 k) must be true.

Consider the four subcases:
Case 1: ((a, b), (a, a1 k)), where 1 # a# n � k and a, b, a1 k. There are precisely (n � k)(k � 1) terms of this

type.
Case 2: ((a, a1 k), (b, a1 k)), where 1 # a# n� k and a, b, a1 k. Again, there are precisely (n� k)(k� 1) terms

of this type.
Case 3: ((a, a1 k), (a1 k, b)), where 1# a# n� k and a1 k, b#min(a1 2k, n). For n$ 2k there are (k)((n� k)�

k) 1 (k)(k � 1)/2 such terms.
Case 4: ((b, a), (a, a1 k)), where 1 # a# n� k and max(1, a� k) # b, a. For n$ 2k there are again (k)((n� k) �

k) 1 (k)(k � 1)/2 such terms.
Cases 3 and 4 can coincide for n $ 2k when ja � bj ¼ k. All other combinations of cases are disjoint. There are

precisely (n � k) � k such coincidences. This gives the following recurrence for Qk,1:

Qk;1 ¼ 2ðn � kÞðk � 1Þ1 ðk � 1ÞðkÞ1 ð2k � 1Þðn � 2kÞ1Qk�1;1

Q1;1 ¼ n � 2:
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The recurrence can be solved by standard techniques resulting in

Qk;1 ¼ 2k2n � 5

3
k3 � kn1

2

3
k � k2:

Note that jQk j ¼
jPk j
2

� �
. Since Qk is the disjoint union of Qk,0 and Qk,1, then

jQk;0j ¼ jQkj � jQk;1j :

The variance of Fw can then be written as

Var½Fw � ¼
1

jPkj 2

X
ða;bÞ2Pk

Var½Xa;b �1 2
X

ðða;bÞ;ðc;dÞÞ2Qk;0

Cov½Xa;bXc;d �1 2
X

ðða;bÞ;ðc;dÞÞ2Qk;1

Cov½Xa;bXc;d �

0
@

1
A

¼ 1

jPkj 2ð jPkjVar½Xa;b �1 2 jQk;0jCov½Xa;bXc;d �1 2 jQk;1jCov½Xa;bXa;c �Þ:

Noting that Cov[Xa,bXc,d] ¼ E[Xa,bXc,d] � E[Xa,b]E[Xc,d] and Var[Xa,b] ¼ E[Xa,b
2 ] � E[Xa,b]2, the constants c1, c2, and c3

can be solved for using the relations from the previous lemma. Since the quantities u, v, and w can be computed in
O(n2) time, so can the variance and expectation. n

APPENDIX B

The rate of recombination is here referred to as r ¼ 4Nrt, where r is the per base recombination rate and t is the
sequence length. Here N was set to 1000 (diploid population), t was set to 1000 as well, and r solved for accordingly.

For population growth r† was obtained so that the expected number of recombinations was equal under scenarios
(i.e., Eb¼5000[R(m)] ¼ Eb¼0[R(m)]), where R(m) is the number of recombinations for a sample of size m (Wiuf et al.
2001), and b ¼ Nb, where b is the population growth rate per generation (Wiuf et al. 2001). The expected number of
recombinations for b ¼ 0 can be found by the following formula (Hudson and Kaplan 1985):

Eb¼0½RðmÞ� ¼ r
Xm�1

j¼1

1

j
:

Table B1 shows the values used for r¼ 1 (when b¼ 0). For values of r. 1 (e.g., r¼ 2) one can simply double the values
in the table.

Similarly, the rate of mutation is here referred to as u ¼ 4Nmt, where m is the per base mutation rate and t is the
sequence length. Under a Jukes–Cantor model if b ¼ 0 then

u ¼ t
3p

3 � 4p

(Wiuf et al. 2001). This allows u to be found for a fixed amount of sequence diversity p. For b ¼ 5000 the appropriate
value of u was found by simulation. The values used are shown in Table B2.

TABLE B1

Conversion of the rate of recombination r between
b ¼ 0 and b ¼ 5000

r

Sample size E[R(m)] b ¼ 0 b ¼ 5000

m ¼ 5 2.08 1 550
m ¼ 10 2.83 1 400
m ¼ 15 3.25 1 325
m ¼ 25 3.78 1 250
m ¼ 50 4.48 1 175

TABLE B2

Conversion of the rate of mutation u between
b ¼ 0 and b ¼ 5000

u

Diversity (%) b ¼ 0 b ¼ 5000

p ¼ 1 10.1 6,600
p ¼ 5 53.6 33,000
p ¼ 10 115.4 68,000
p ¼ 15 187.5 106,000
p ¼ 25 375 193,600
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