Multiple Origins and nrDNA Internal Transcribed Spacer Homeologue Evolution in the *Glycine tomentella* (Leguminosae) Allopolyploid Complex

Jason T. Rauscher,*† Jeff J. Doyle* and A. H. D. Brown†

*†L. H. Bailey Hortorium, Cornell University, Ithaca, New York 14853 and †Centre for Plant Biodiversity Research, Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, ACT 2601, Australia

Manuscript received March 26, 2003
Accepted for publication November 2, 2003

ABSTRACT

Despite the importance of polyploidy in the evolution of plants, patterns of molecular evolution and genomic interactions following polyploidy are not well understood. Nuclear ribosomal DNA is particularly complex with respect to these genomic interactions. The composition of nrDNA tandem arrays is influenced by intra- and interlocus concerted evolution and their expression is characterized by patterns such as nucleolar dominance. To understand these complex interactions it is important to study them in diverse natural polyploid systems. In this study we use direct sequencing to isolate and characterize nrDNA internal transcribed spacer (ITS) homeologues from multiple accessions of six different races in the *Glycine tomentella* allopolyploid complex. The results indicate that in most allopolyploid accessions both homeologous nrDNA repeats are present, but that there are significant biases in copy number toward one homeologue, possibly resulting from interlocus concerted evolution. The predominant homeologue often differs between races and between accessions within a race. A phylogenetic analysis of ITS sequences provides evidence for multiple origins in several of the polyploid races. This evidence for diverse patterns of nrDNA molecular evolution and multiple origins of polyploid races will provide a useful system for future studies of natural variation in patterns of nrDNA expression.

Polyplody is commonly recognized as having played a critical role in the evolution of plants, especially with respect to the origin of new plant species and higher taxa (Leitch and Bennett 1997; Bretagnolle et al. 1998; Soltis and Soltis 1999). The genomic consequences of polyploidy, especially allopolyploidy, however, are not well understood (Song et al. 1995; Osborn et al. 2003). While one of the presumed advantages of allopolyploidy is the genetic diversity and redundancy associated with fixed heterozygosity of homeologous loci, the fates of these loci following polyploidy can be complex and involve such phenomena as epigenetic regulation of gene expression (e.g., Lee and Chen 2001) or the complete loss of a homeologous locus (see reviews in Soltis and Soltis 1999; Wendel 2000; Pikaard 2001).

This complexity is compounded for nuclear ribosomal DNA (nrDNA), since hundreds or thousands of copies of the genes are organized in tandem repeats at a locus and are subject to molecular evolutionary forces such as concerted evolution (Hamby and Zimmer 1992; Baldwin et al. 1995). For this reason, the fate of nrDNA loci after polyploidy is not well understood, and empirical studies have revealed a range of patterns, from the maintenance of both homeologous loci (e.g., Sang et al. 1995) to the rapid loss of a locus or interlocus homogenization between homeologous loci (e.g., Wendel et al. 1995).

Variation in ribosomal repeat copy number and the potential for concerted evolution between homeologous loci in polyploids may have important implications for understanding the control of ribosomal DNA expression. Nucleolar dominance is the preferential expression of the nucleolar organizing region of one progenitor species in an interspecific hybrid and results in a pattern in which expression of only one of the two nrDNA homeologues is observed in an allopolyploid (Pikaard 2000). It has been described in a few model systems (e.g., Chen et al. 1998; Lewis and Pikaard 2001), but has yet to be studied thoroughly in a diverse natural polyploid complex. Describing the fate of homeologous nrDNA repeats in natural allopolyploids and identifying polyploid lineages with multiple origins is a necessary first step to provide a genetic and evolutionary context for understanding variation in patterns of nrDNA gene expression.

Nuclear ribosomal DNA contains regions such as the internal transcribed spacers (ITSs) that are highly variable and rich with phylogenetic information (Baldwin et al. 1995) and can therefore serve as a valuable tool, both in elucidating polyploid origins and in understanding the genomic consequences of polyploidy. Few studies, however, have characterized nrDNA ITS variation...
and followed the fates of homeologous nrDNA loci in multiple accessions of a well-studied polyploid complex. One group that is particularly amenable to such a study is the *Glycine tomentella* polyploid complex. This complex is among the wild perennial relatives of the soybean, *G. max*, and has been collected extensively throughout its native range in Australia and the surrounding Pacific islands. Many accessions of this complex have also been characterized for reproductive isolation (Doyle et al. 1986), cytogenetics (Kollipara et al. 1994), isozymes (Doyle and Brown 1985; Singh et al. 1987; Kollipara et al. 1994), and most recently, DNA sequence variation at the histone H3D (Doyle et al. 2002) and nrDNA ITS loci (Kollipara et al. 1997; Hsing et al. 2001).

From these studies, it is known that the species *G. tomentella* is in fact a large polyphyletic complex of diploid (2n = 38, 40) and tetraploid (2n = 78, 80) cytotypes. The diploid “races” that have been identified within the complex are designated by crossing groups and include D1/D2, D3, D4, D5A, and D5B. Each is genetically distinct, represents a unique phylogenetic origin, and despite the lack of formal taxonomic recognition, should be considered different species (Kollipara et al. 1997; Brown et al. 2002). Allopolyploid lineages have arisen by crosses among these diploid races and with other species. Currently, six major tetraploid races are recognized and their diploid progenitors have been identified (Doyle et al. 2002). These include T1, formed originally by a cross between D1 and D3 (D1 × D3), T2 (D3 × D4), T3 (D3 × D5A), T4 (D3 × D5B), T5 (D1 × *G. clandestina*), and T6 (D1 × D5B). Evidence from a single-copy nuclear gene, histone H3-D, suggests that several of these polyploid taxa have originated more than once (Doyle et al. 2002), a phenomenon known to be common in the evolution of polyploids (e.g., Cook et al. 1998; Segraves et al. 1999; Soltis and Soltis 1999).

In this study, we use direct sequencing of the nrDNA ITS region, using universal and repeat-specific primers, to characterize multiple accessions of six races of polyploids in the *G. tomentella* allopolyploid complex and assess qualitative differences in nrDNA copy number between homeologous loci. Phylogenetic analysis is then used to access the relationships between sequences from polyploid homeologous loci and loci from extant diploids to look for evidence of multiple origins within each polyploid race. In this way we shed light both on patterns of nrDNA evolution and on the origins and evolution of this polyploid complex.

MATERIALS AND METHODS

Sampling and DNA isolation: For most of the *G. tomentella* polyploid races, multiple accessions were obtained from the Commonwealth Scientific and Industrial Research Organization (CSIRO) native Australian Perennial Glycine collection. Locality data and voucher information for each accession are available in prior publications (Doyle et al. 1986, 2002) and at the Australian Plant Genetic Resources Information System website (http://www.dpi.qld.gov.au/extra/asp/AusPRGRIS; the prefix “G” in accesses referred to in this article has been replaced by the prefix “AusIRC” in this database). In addition, several accessions of Glycine diploids were sampled to supplement ITS sequences from earlier data sets (Kollipara et al. 1997); specific accessions were chosen on the basis of a previous study (Doyle et al. 2002) that identified potential close relatives of polyploid sequences, as well as phylogenetically or geographically divergent taxa or populations. Chromosome counts for most accessions included in this study are available (see Doyle et al. 1986, 2002), and ploidy levels for all accessions have been confirmed by isozyme (Doyle and Brown 1985; Doyle et al. 1986) and histone H3D data (Doyle et al. 2002). Genomic DNA was isolated for previous studies of these accessions (Doyle and Brown 1989; Doyle et al. 2002).

Amplification and sequencing: The entire nrDNA ITS region was amplified for both polyploid and diploid accessions using primers ITS-5′ (Vazquez 2001; Rauscher et al. 2002) and ITS-4 (White et al. 1990); PCR conditions are described in detail elsewhere (Rauscher et al. 2002). The PCR buffer contained 20% DMSO to promote amplification of multiple ITS repeats (Buckler et al. 1997). Templates were purified and directly sequenced using the reverse (ITS-4) primer at the Cornell University Sequencing Facility on an ABI 3700 DNA sequencer. Several accessions of each polyploid race were also sequenced in the forward direction for confirmation. Resulting electropherograms were analyzed in Sequencher 4.1.2 and examined by eye for nucleotide additivity (double peaks) that would suggest the presence of more than one repeat type. Polymorphic sites were recorded as degenerate nucleotides using standard International Union of Biochemistry codes.

In polyploid accessions that produced clean (i.e., monomorphic) sequence variation at the histone H3D, suggests that several of these polyploid taxa have originated more than once (Doyle et al. 2002), a phenomenon known to be common in the evolution of polyploids (e.g., Cook et al. 1998; Segraves et al. 1999; Soltis and Soltis 1999).

In this study, we use direct sequencing of the nrDNA ITS region, using universal and repeat-specific primers, to characterize multiple accessions of six races of polyploids in the *G. tomentella* allopolyploid complex and assess qualitative differences in nrDNA copy number between homeologous loci. Phylogenetic analysis is then used to access the relationships between sequences from polyploid homeologous loci and loci from extant diploids to look for evidence of multiple origins within each polyploid race. In this way we shed light both on patterns of nrDNA evolution and on the origins and evolution of this polyploid complex.

Phylogenetic analysis: For sequences that showed evidence of more than one ITS repeat type within a single homeologue, as shown by double peaks on the electropherogram, the two contributing sequences were inferred by comparison to monomorphic ITS sequences from the same data. In most cases, there was only a single polymorphic nucleotide site, making the inference of divergent sequences unambiguous. In the few accessions with multiple polymorphic sites, the signal of one repeat sequence was significantly stronger than the other and tended to be identical or nearly identical to other sampled sequences, facilitating the resolution of the two repeats without cloning.

Identical sequences were identified using MacClade 3.0 (Maddison and Maddison 1992) and all but a single representative of each unique sequence were removed prior to phylogenetic analysis. All unique, monomorphic sequences from diploid and polyploid accessions were combined into a...
single data set and aligned manually using Se-Al v2.0 (Ram-
baut 1995). A maximum parsimony analysis was performed
with PAUP* 4.0 (Swofford 2000) using a heuristic search
with 20 random taxon addition sequences, TBR branch swapping,
and gaps coded as missing data. Maxtrees was set at
20,000 and a strict consensus tree was constructed. The same
analysis was performed for sequences from diploid accessions
alone. Branch support was estimated for both the entire data
set and the diploid data set using a bootstrap analysis consisting
of 500 replicate heuristic searches with a single repetition of
a random addition sequence and Maxtrees set to 100 for each
replicate.

On the basis of the parsimony analysis of the entire data
set, clades representing each of the major diploid races (D1/
D2, D3, D4/G. clandestina, D5A, and D5B) were identified and
separate data sets were constructed for each clade. Insertions
and deletions were coded as binary characters and included
in the analysis. Unrooted haplotype networks were used for
each major clade containing both diploid and polyploid re-
peats because they clearly illustrate the variation, allow ambi-
guities to be highlighted, and may be more accurate than parsimony reconstructions when few molecular characters are
available (Grannell 1994). These networks were constructed
manually and then verified with the program TCS 1.13 (Clem-
et al. 2000; using the network-building algorithm of Tem-
pleton et al. 1992) and either heuristic or branch and bound
searches in PAUP* 4.0 to make sure that all of the most parsimonious arrangements of the network had been consid-
ered. Due to the slightly downstream position of specific and
exclusion primers, there was often an ~30- to 100-bp region
of missing data on the 5’ end of sequences obtained from
these primers. These missing data caused problems with the
TCS analysis, so sequences that were identical to a diploid
or polyploid accession at all other nucleotide positions were
considered identical at the missing positions and removed
from the analysis. In cases where the remaining sequence was
not identical to any sampled diploid or polyploid sequences,
the missing positions were scored as identical to the accession
that was most similar at all other sites. Because these ambigu-
ous characters affected branch lengths but not topological
relationships, the decision was made to leave them in the
analysis and label them on the resulting networks. Finally,
possible rooting of each network were identified using the parsimony analysis described above.

RESULTS

Direct sequencing with universal ITS primers: When
universal primers were used to amplify and then directly
sequence the ITS region in G. tomentella polyploids,
clean sequence of just a single homeologous parental
ITS repeat type was found in all accessions of the T1,
T2, T3, and T6 polyploids (Table 1). In two of these
races, however, not all accessions resulted in the same
parental homeologue being amplified. Of the 10 T1
(D1 × D3) plants sampled, 9 revealed the D3 homeo-
logue, while 1 (G1392) gave the D1 homeologue. Simi-
larly, among 10 T3 (D3 × D5A) polyploids sampled, 9
sequences were D3 homeologues and 1 (G1397) was
the D5A homeologue. For all six accessions of T2 (D3 ×
D4), direct sequencing gave the D4 homeologue; the
single accession of T6 (D1 × D5B) resulted in the D5B
homeologue.

In the remaining polyploid races, T4 and T5, additive
signal from the two parental homeologous ITS copies
was visible in universal direct sequences from at least
some accessions (Table 1). As previously reported, all
three T5 (D1 × G. clandestina) accessions showed sig-
nificant secondary peaks (Rauscher et al. 2002). Of the
12 T4 (D3 × D5B) accessions sampled, 6 resulted in
clean sequence, 4 with the D3 homeologue, and 2 with
the D5B homeologue. The remaining 6 accessions pro-
duced patterns of additive sequence consistent with the
presence of both homeologous ITS copies. In the case
of G1469, the signal from the D5B homeologue was
very weak with respect to the dominant D3 signal, but
visible upon close inspection of the electropherogram.

In one T4 polyploid accession, G1469, direct sequenc-
ing with universal ITS primers also resulted in two nucle-
otide positions with double peaks on the electrophero-
gram that could not be accounted for by overlapping
signal from the two homeologous repeats (D3 and D5B).
Subsequent sequencing with specific primers (see be-
low) showed these to be the result of two minor ITS
repeats, one that was related to the D3 homeologue
and the other to the D5B homeologue. In addition, one
diploid accession (G2058, a D5A G. tomentella) and one
tetraploid (G1956) that is not part of the core G. tomen-
tella allopolyplid complex considered here had detect-
able minor repeats.

Specific-primer amplification and sequencing: In most
accessions that gave clean sequence for a single homeo-
logue with universal primers, the second ITS homeo-
logue was readily amplified using repeat-specific prim-
ers. In T1 polyploids with a dominant D5 repeat, the
D1 repeat amplified only weakly with the D1/D2-specific
primer, but there was sufficient product for direct se-
quencing to confirm its identity. In the single T1 acces-
sion with a dominant D1 homeologue (G1392), the D3
repeat amplified strongly with the D3-specific primer.
All T2 polyploids produced strong amplification with
the D3-specific primer, as did the T6 polyploid with the
D1/D2-specific primer.

Only a few accessions failed to yield a second ITS
homeologue when amplified with specific primers. This
included a single T4 accession (G2437) in which the
D3 homeologue could not be amplified and six T3 pol-
yploid plants. Among these T3 accessions, five (G1359,
1394, 1930, 2059, and 1766) had no amplifiable D5A
homeologue and a single accession (G1397) had no D3
homeologue. In the case of the five accessions with no
D5A, it is unlikely that any sequence other than the D3
homeologue was present since the exclusion primer
ITS-nonD3 was used and resulted in no amplification.

Using specific primers, several minor variants of one
or the other homeologous ITS repeats were detected
in polyploid accessions. Most of these minor repeats,
including a D3 repeat in G1392 (T1) and D5B repeats
in four T4 accessions (G2468, G2470, G2476, and G1469)
differed by just a single base pair from the major repeat
sequence. In several T1 accessions and the single T6
TABLE 1

Results of direct sequencing with universal ITS primers

<table>
<thead>
<tr>
<th>Polyploid race</th>
<th>Clean direct sequences</th>
<th>Additive direct sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1 (D1 × D3)</td>
<td>D3: G1133, 1136, 1180,* 1274, 1288,* 1361, 1367, 1427, 1763; 1561, 1392</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>D1: G1392</td>
<td></td>
</tr>
<tr>
<td>T2 (D3 × D4)</td>
<td>D4: G1134,* 1188,* 1286, 1393,* 1811, 1854</td>
<td>—</td>
</tr>
<tr>
<td>T3 (D3 × D5A)</td>
<td>D3: G1359, 1394, 1930, 1766, 2059, 2098, 2099, 2100, 2539; D5A: G1397</td>
<td>—</td>
</tr>
<tr>
<td>T4 (D3 × D5B)</td>
<td>D3: G1304, 1929, 1348, 3137; D5B: G2437, 2469</td>
<td>D3 + D5B: G1469, 1747, 2476, 2557, 2468, 2470</td>
</tr>
<tr>
<td>T5 (D1 × G. clandestina)</td>
<td>D5B: G1945</td>
<td>D1 + G. clandestina: G1487,* 1739,* 1969*</td>
</tr>
<tr>
<td>T6 (D1 × D5A)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

The first column lists accessions that had clean sequence (no significant secondary peaks on the electropherogram) and identifies which of the two parental homeologues resulted. The second column shows accessions that resulted in an additive signal from both homeologues (double peaks or unreadable sequence on the electropherogram).

* Sequences were presented in a previous publication (RAUSCHER et al. 2002).

accesion, minor D1 repeats that differed by 4–6 bp from the major D1 repeat were found. In each of theseaccessions the minor repeat could be inferred from the direct sequence because the signal of the minor D1 repeat was significantly weaker than that of the major repeat.

Phylogenetic analysis: A total of 104 accessions (62 diploids and 42 polyploids) were included in this study, including 37 for which sequences had been published previously (KOLLIPARA et al. 1997; HSING et al. 2001; RAUSCHER et al. 2002). From these, 155 ITS repeat sequences were obtained, 64 from diploids (62 major and 2 minor repeats) and 91 from polyploids (77 major and 14 minor repeats).

For the maximum-parsimony analysis of the entire data set there were 70 unique sequences. The heuristic search, limited to 20,000 trees, resulted in a set of trees with 285 steps, a consistency index of 0.74, and a retention index of 0.88. When only diploid accessions were included in the analysis the data set contained 48 unique sequences and resulted in the 56 shortest trees with a length of 268 steps, a consistency index of 0.75, and a retention index of 0.84. The strict consensus tree of the diploid analysis is shown in Figure 1 with bootstrap values (for both the diploid and the entire data sets) labeled on the major branches. Polyploid accessions from which ITS repeat sequences were obtained are shown in boxes to the side, with lines showing their affinities to diploid clades (specific relationships are shown in subsequent network figures). As shown in Figure 1, nearly all of the homeologous ITS sequences from polyploid accessions grouped with the diploid parental clades expected from previous studies (e.g., DOYLE et al. 2002). The only exception was accession G3137, a T4 (D3 × D5B) polyploid, in which the ITS-nonD3 exclu-
Figure 1.—The strict consensus tree resulting from a maximum-parsimony analysis of all diploid ITS sequences. Shaded boxes on the tree indicate clades that contain polyploid homeologous sequences when the analysis included both diploid and polyploid sequences; exact relationships between diploid and polyploid sequences for each of these clades are illustrated in Figures 2–6. Boxes on the right show the accessions of each tetraploid race for which ITS sequences were recovered and their phylogenetic affinities. Also indicated are the primers used to amplify and sequence these homeologues (“ITS” indicates that universal primers were used; “ITS-D3” and “ITS-cla” are repeat-specific primers and “ITS-nonD3” is an exclusion primer). Numbers above and below the branches are bootstrap values for the analysis with only diploid sequences and with all sequences, respectively; branches without numbers had bootstraps <50%. Four-digit numbers correspond to CSIRO “G” accessions and include new sequences or those from Rauscher et al. (2002). All other sequences are labeled with their GenBank accession numbers and are derived from either Kollipara et al. (1997) or Hsing et al. (2001).
D1 repeat by a single nucleotide substitution (Figure 2); unlike the T1 or T6 accessions, these plants did not contain a detectable minor D1 repeat.

Four of the polyploid races (T1, T2, T3, and T4) contained D3 homeologues. There was no variation in the D3 repeat among any of the T1 accessions sampled, except for G1392, which had a minor repeat differing by 1 bp (Figure 3). Sequences from the T1 accessions were not identical to any sampled diploid accession, but were closely related to sequences from G1403 and G1820 (Figure 3). D3 homeologues from all of the T2 polyploids, from nearly all of the T3 polyploids, and from about half of the T4 polyploids were identical to the repeat of an extant sequence detected in four diploid accessions. The remaining two T3 accessions (G1359 and G2098) had D3 sequences that each differed from this common repeat type by a single autapomorphy. A second group of T4 polyploids (G1747, G2468, G2469, G2470, and G2476) had a D3 homeologue that was divergent from those of all other polyploids, including the remaining T4 accessions. Although they were not identical to any sampled diploid sequences, they were closely related to a D3 diploid accession that is notably divergent from all other dipsloids (G1691; Figure 3).

The exact structure of the gene tree with respect to G1691 was ambiguous due to missing data in the polyploids that made it unclear whether three nucleotide characters were autapomorphies of G1691 or were shared with the polyploid sequences (Figure 3). There was also significant variation between G1747 and the other T4 accessions in this group.

Although there was some variation within the D4 clade, all sequences from the T2 polyploids were identical to the most common D4 diploid repeat (Figure 4). Similarly, analysis of the G. clandestina clade (which is closely related to the D4 clade; Figure 1) showed that all homeologous repeats from the T5 polyploids were either identical to or one mutational step away from one of the diploid accessions (G1126; Figure 4).
The D5A diploid sequences were highly variable and the phylogenetic analysis revealed two distinct clades, which have been labeled D5A.1 and D5A.2 (Figures 1 and 5). One T3 accession (G1397) had a D5A homeologue that was identical to an extant diploid sequence (G3119) in the D5A.1 clade. Also grouping with the D5A.1 accessions was the anomalous T4 (G3137), which was identical to the diploid accession G1934. The only other polyploid accessions for which the D5A repeat could be isolated were the collections from the island of Timor (G2098, G2099, G2100, and G2539) and these sequences grouped with the D5A.2 clade, but were not identical to any sampled diploid sequences. In the D5A gene tree, these sequences branch from a node connecting two branches of diploids (G2058 and G2054). Because the autapomorphic character forming the branch to G2058 (Figure 5) was among the missing data in the polyploid sequences, it is also possible that the polyploid accessions share this character.

Both the T4 and T6 tetraploids contained D5B homeologues (Figure 6). One T4 accession (G2437) was identical to a diploid sequence (G1941), while all other accessions were not identical to diploid sequences and grouped in two different clades on the tree. The D5B homeologue from the T6 accession was not identical to, but grouped one step away from sequences from a closely related species, *G. pullenii*, a member of the H genome that has previously been shown to have close affinities with the *G. tomentella* D5B group (Brown et al. 2002).

DISCUSSION

nrDNA homeologue evolution in Glycine: The evolution of the nrDNA gene family is extremely complex and the mechanisms of concerted evolution are not well understood. Allopolyploids have the unique potential to help elucidate these mechanisms, as well as other genomic interactions such as nucleolar dominance, because their genomes are hybrid and, at least in the first generation, contain a minimum of two unique, homeologous ribosomal DNA loci. Describing the fate of these loci following the polyploid event is a necessary first step in understanding mechanisms of rDNA evolution, and the *G. tomentella* polyploid complex provides an interesting opportunity to study this because it includes at least six species that are derived from a common set of progenitor diploid species.

Direct sequencing of the ITS region using universal primers is a useful tool for obtaining a qualitative estimate of the relative ratio of homeologous nrDNA repeats from the two progenitor species that exist in an allopolyploid. A previous study (Rauscher et al. 2002), which used ITSs amplified from two diploids and mixed

Figure 4.— ITS repeat network for all diploid D4 and *G. clandestina* sequences and related polyploid homeologues. See Figure 2 for details on network symbols used. Accession 1126 is U60534 and 1300 is AF02-3446 from Figure 1.

Figure 5.— ITS repeat network for all diploid D5A sequences and related polyploid homeologues. See Figure 2 for details on network symbols used. Large boxes circumscribe the two divergent D5A clades. Asterisks next to lines show characters that were ambiguous in the polyploids due to missing data caused by the downstream position of the ITS non-D3 exclusion primer.
The imbalance in relative copy number was most extreme in the single T4 and several T3 accessions for which a second homeologous sequence could not be amplified with specific primers and in the T1 accessions that consistently had very weak D1 amplification (Rauscher et al. 2002). While some of this variation might be explained by differences in the number of nrDNA copies contributed by the two diploid ancestors that gave rise to these polyploids, it is more likely, especially in accessions with missing or weakly amplifying homeologues, that there has been a loss or homogenization of nrDNA repeats following the polyploid event.

These results in Glycine are similar to those obtained from direct sequencing of the ITS region in allopolyploids of the genus Gossypium (Wendel et al. 1995) in which monomorphic sequences were also observed. In the case of Gossypium, the authors suggested that interlocus concerted evolution was responsible for the observed homogenization of nrDNA tandem arrays in the polyploids. This inference was possible because in Figure 6.—ITS repeat network for all D5B and related diploid sequences and associated polyploid homeologues. See Figure 2 for details on network symbols used. The open box around one accession of G. hirticaulis indicates that it is a polyploid, but not part of the complex studied in this article. pull, G. pulleni; pind, G. pindanica; aren, G. arenaria; hirt, G. hirticaulis. Accession 1305 is U60543 from Figure 1.

at known concentrations, showed that direct sequencing (at least using this particular sequencing chemistry) will probably reveal signal only for sequences that are at least 10% or more of the population of PCR amplicons. Therefore, the fact that 34 of the 42 accessions included in this study produced clean ITS sequence (Table 1) suggests that in the genomes of most of these allopolyploids there is a bias of at least 9:1 in favor of one nrDNA homeologue.

Two possible alternative explanations for bias toward one homeologue are PCR selection and PCR drift (Wagner et al. 1994). The former, which could result from differences in primer affinities between homeologues, is unlikely since the same primers favored different repeats in different accessions, even within the same polyploid race (e.g., T1, T3, and T4; Table 1). PCR drift, a consequence of random events early in the cycling, is also unlikely to account for most of this variation. A previous experiment showed that estimates of the ratio of the two homeologous repeats derived from direct sequencing were consistent with those obtained from screening clones of PCR products from independent reactions (Rauscher et al. 2002). In addition, homeologue repeat ratios determined by direct sequencing have been shown to be repeatable for different extractions from the same plant, for both rDNA and rPCR of rRNA (S. Jolie, S. Sherman-Broyles, J. T. Rauscher, J. J. Doyle and A. H. D. Brown, unpublished results).

The imbalance in relative copy number was most extreme in the single T4 and several T3 accessions for which a second homeologous sequence could not be amplified with specific primers and in the T1 accessions that consistently had very weak D1 amplification (Rauscher et al. 2002). While some of this variation might be explained by differences in the number of nrDNA copies contributed by the two diploid ancestors that gave rise to these polyploids, it is more likely, especially in accessions with missing or weakly amplifying homeologues, that there has been a loss or homogenization of nrDNA repeats following the polyploid event.

These results in Glycine are similar to those obtained from direct sequencing of the ITS region in allopolyploids of the genus Gossypium (Wendel et al. 1995) in which monomorphic sequences were also observed. In the case of Gossypium, the authors suggested that interlocus concerted evolution was responsible for the observed homogenization of nrDNA tandem arrays in the polyploids. This inference was possible because in Figure 6.—ITS repeat network for all D5B and related diploid sequences and associated polyploid homeologues. See Figure 2 for details on network symbols used. The open box around one accession of G. hirticaulis indicates that it is a polyploid, but not part of the complex studied in this article. pull, G. pulleni; pind, G. pindanica; aren, G. arenaria; hirt, G. hirticaulis. Accession 1305 is U60543 from Figure 1.

Two possible alternative explanations for bias toward one homeologue are PCR selection and PCR drift (Wagner et al. 1994). The former, which could result from differences in primer affinities between homeologues, is unlikely since the same primers favored different repeats in different accessions, even within the same polyploid race (e.g., T1, T3, and T4; Table 1). PCR drift, a consequence of random events early in the cycling, is also unlikely to account for most of this variation. A previous experiment showed that estimates of the ratio of the two homeologous repeats derived from direct sequencing were consistent with those obtained from screening clones of PCR products from independent reactions (Rauscher et al. 2002). In addition, homeologue repeat ratios determined by direct sequencing have been shown to be repeatable for different extractions from the same plant, for both rDNA and rPCR of rRNA (S. Jolie, S. Sherman-Broyles, J. T. Rauscher, J. J. Doyle and A. H. D. Brown, unpublished results).

The imbalance in relative copy number was most extreme in the single T4 and several T3 accessions for which a second homeologous sequence could not be amplified with specific primers and in the T1 accessions that consistently had very weak D1 amplification (Rauscher et al. 2002). While some of this variation might be explained by differences in the number of nrDNA copies contributed by the two diploid ancestors that gave rise to these polyploids, it is more likely, especially in accessions with missing or weakly amplifying homeologues, that there has been a loss or homogenization of nrDNA repeats following the polyploid event.

These results in Glycine are similar to those obtained from direct sequencing of the ITS region in allopolyploids of the genus Gossypium (Wendel et al. 1995) in which monomorphic sequences were also observed. In the case of Gossypium, the authors suggested that interlocus concerted evolution was responsible for the observed homogenization of nrDNA tandem arrays in the polyploids. This inference was possible because in Figure 6.—ITS repeat network for all D5B and related diploid sequences and associated polyploid homeologues. See Figure 2 for details on network symbols used. The open box around one accession of G. hirticaulis indicates that it is a polyploid, but not part of the complex studied in this article. pull, G. pulleni; pind, G. pindanica; aren, G. arenaria; hirt, G. hirticaulis. Accession 1305 is U60543 from Figure 1.
the specific accession used in the FISH study was not available for our ITS study. PCR with specific primers was successful in isolating both ITS homeologues from all T1 accessions examined. This can be explained either by the presence of a much reduced second locus that was not detected by FISH or by a single locus composed predominantly of one homeologous repeat but with <10% of the second homeologous repeat class. The former explanation seems more plausible.

Although it is unclear whether the conversion of nrDNA repeats through interlocus concerted evolution or the loss of nrDNA repeats is responsible for biases in G. tomentella homeologue ratios, two clear patterns are evident. First, the bias is not always toward the same repeat type. For example, the D3 homeologue is predominant in most accessions of the T1 (D1 × D3) and T3 (D3 × D5A) polyploids, but not in the T2 (D3 × D4) polyploids (Table 1). This result is similar to the condition in Gossypium, in which concerted evolution was found to favor the A genome in some allopolyploid species and the D genome in others (Wendel et al. 1995). In Glycine, however, this pattern is even more striking in that different homeologues have been favored among different accessions of the same polyploid race. For example, the D1 repeat was predominant in a single accession (G1392) of T1 polyploid while in all other T1 accessions sampled the D3 was predominant (Table 1). Similarly, in the T3 polyploids the D3 homeologue was predominant in all accessions but one (G1397; Table 1). The T4 polyploids were particularly diverse in this respect, with some accessions favoring one homeologue, others favoring the second, and still others with additive sequence. This diversity in patterns of nrDNA homeologue-copy-number bias may be common in other polyploid taxa as well, but requires thorough sampling across broad geographical areas to detect.

The second pattern of note was the fact that in most of these allopolyploids homogenization of the nrDNA repeats has not gone to completion. In contrast to previous studies of ITSs in G. tomentella (Hsing et al. 2001), both of the parental homeologous sequences were isolated from 36 of the 42 accessions sampled, even from accessions for which direct sequencing with universal primers showed no trace of a second repeat. In most Glycine polyploids the history of hybrid origin has been retained in the nrDNA, providing a useful source of phylogenetic information. Obtaining this information from rare repeats, however, requires a method that not only detects them, but also makes them available for sequencing. Southern hybridization has been used in groups such as Gossypium to detect rare nrDNA repeats in polyploids (Wendel et al. 1995), but requires diagnostic restriction site differences between homeologues and does not provide a practical way to isolate those repeats for sequencing. PCR with specific and exclusion primers not only is an effective tool for both detecting and sequencing rare homeologous ITS repeats in polyploids, but also is more practical for screening large numbers of accessions (Rauscher et al. 2002).

Origins of G. tomentella allopolyploids: Because allopolyploid species are the result of hybridization events, it is possible for the same species to originate multiple times, in different geographical areas and at different points in time. Having information on the number and timing of these events is useful, not only for understanding the evolution of a particular group of plants, but also for interpreting genomic variation between accessions of a polyploid species.

Phylogenetic analysis of ITS sequences from diploids and both homeologous copies of the polyploids can help to identify diploid progenitors as well as elucidate the time of origin and number of independent origins of these polyploids. In nearly all G. tomentella polyploid accessions for which two ribosomal repeats could be amplified and sequenced, phylogenetic analysis of the ITS homeologues confirmed the results of previous studies that identified the diploid progenitors (Doyle et al. 2002). Thus, in G. tomentella, ITSs seem to be a reliable tool for identifying diploid progenitors of allotetraploids. The only exception was a single T4 accession (G3137) that, in addition to its D3 ITS homeologue, had a D5A homeologue instead of the D5B homeologue, which had been found with nuclear histone H3D sequence data (Doyle et al. 2002); additional research will be necessary to explain this incongruence.

When rapidly evolving homeologous alleles in polyploids are identical or nearly identical to diploid alleles, the polyploid is assumed to have arisen relatively recently. For most polyploid accessions in G. tomentella, ITS repeat sequences were identical to those found in extant diploids. Several other polyploid sequences had single-base-pair autapomorphies distinguishing them from diploid repeats, including the D3 homeologue of two T3 accessions (G1359 and G2098; Figure 3), the D1 homeologue of all three T5 accessions (Figure 2), and both the D1 and D5B homeologues from the T6 (Figures 2 and 6). The low level of divergence between diploid and polyploid sequences is consistent with previous studies of the histone H3D nuclear gene in both the G. tomentella (Doyle et al. 2002) and the G. tabacina polyploid complexes (Doyle et al. 1999) and provided an estimate of the origin of the latter species of <30,000 years ago (Doyle et al. 1999, 2002).

Several polyploid accessions, however, had ITS sequences that were not identical to any sampled diploids. This was especially true in many of the T3 (D3 × D5A) and T4 (D3 × D5B) polyploids. The highest level of divergence was in the D3 homeologues from one group of T4 accessions (e.g., G1747, G2568, and G2476; Figure 3), which differed by at least six to eight mutational steps from the closely related diploid (G1691). At the histone H3D locus, a similar result was discovered, with four to seven mutations between the polyploid and diploid D3 sequences (Doyle et al. 2002). While the
possibility of a considerably more ancient polyploid event cannot be ruled out, it seems more likely that this
divergence is the result of the extinction or lack of sampling of diploid D3 individuals that are closely re-
lated to the progenitors of the polyploid. The fact that only one diploid individual (G1691) of this divergent
D3 clade has been discovered to date may attest to its
current rarity.

Due to the fact that nrDNA loci are organized in tandem repeats, it is possible that, in addition to varia-
tion between homeologous loci, there is also variation between repeats within a locus, a pattern that has been
found in other polyploid species (e.g., Hughes et al. 2002) and that may provide additional clues on poly-
pliod origins and evolution. In most Glycine polyploids, direct sequencing of a single parental ITS homeologue
with either universal or specific primers revealed no observable repeat variation that could be detected as
double peaks on the electropherogram, suggesting that minor variants or pseudogenes are in low copy number
relative to the major repeat type. Two exceptions to this pattern were the D1 repeats from the T1 and T6
polyploids. In these accessions, the D1 sequence was amplified and isolated using the D1/D2-specific primer,
and in both races signals from major and minor D1 repeats were detected. In the T1 polyploids, the second
repeat does not seem to be a descendant of the domin-
ant D1 repeat, but instead forms a clade that diverges
from an internal node on the D1 network (Figure 2).
The fact that this variation is found in nearly all of the
T1 polyploids and across a wide geographic area suggests
either that it was present in the diploid D1 ancestral population prior to the polyploid event, as has
been suggested for other polyploid taxa (Hughes et al.
2002) or that it arose rapidly in a polyploid ancestor
that gave rise to the modern T1 race. Evidence for the
first hypothesis would require finding a D1 diploid that contained this minor repeat, but in the limited D1 ac-
sessions sampled to date it has not been found. The lack
of a minor repeat in the two accessions from Brampton
Island (G1133 and G1274) and the one accession in
which the D1 repeat is predominant (G1392) may point
to independent origins of these T1 polyploids or inde-
pendent evolutionary histories that resulted in the loss
or decreased relative copy number of the minor D1
repeat.

Phylogenetically informative variation among access-
sions of the same tetraploid race, in either homeologous
parental copy, is useful for detecting independent ori-
gins of the race. Polyploids that group with different
diploids on the gene tree for either of their two homeo-
logues are most likely the result of independent origins. Autapomorphic variation between polyploid accessions
could result either from independent origins from dip-
loids that have not been sampled or from divergence
following a single origin and so gives little support for
multiple origins in the absence of additional evidence.

In many cases for which multiple accessions were
available from the same *G. tomentella* polyploid race, there was little to no ITS sequence variation in either
homeologous copy, precluding any test of multiple ori-
gins. As was found with histone H5D data (Doyle et al.
2002), there was no variation among T2 or T5 accessions
other than single-base-pair autapomorphies, and the
only variation among T1 accessions was between the
major and minor D1 repeats. As mentioned above, it is
possible that the presence of a minor D1 repeat in some
T1 accessions and not in others is a result of different
origins. Similarly, the fact that accession G1392 has an
unusual D1/D3 homeologue copy ratio, demonstrated
by the amplification of D1, not D3 repeats with universal
primers, may suggest another independent origin of the
T1 race. However, this may also have been caused by
differential patterns of concerted evolution. In both of
these cases, additional data from other loci are necessary
to discriminate between these hypotheses.

In the T3 polyploids, the D3 homeologue was nearly
identical in all accessions, except for two with single-
base-pair autapomorphies. Unfortunately, since the
D5A homeologue was absent in several of the T3 ac-
sessions, it is not possible to assess diversity across the entire
polyploid race, but at least one accession, G1397, had
a D5A repeat that differed significantly from the D5A
repeat in all other T3 accessions. In fact, the diploid
gene tree shows that there are two distinct D5A clades,
and the T3 repeats fall out in each of these two clades.
This result is nearly identical to that previously found
using the histone H3D locus (Figure 5 in Doyle et al.
2002), in which two distinct D5A clades were also identi-
fied; G1397 grouped with the D5A.1 diploid accessions
and all others grouped with the D5A.2 diploids. The
four T3 accessions for which no D5A ITS repeat could
be found in this study (G1359, 1394, 1766, and 2059)
belonged to a divergent branch of the D5A.2 clade on
the histone H3D gene tree. But because this branch
coaesced to the same diploid sequence on the histone
tree as the other T3 accessions (those from the island of
Timor, including G2098, 2099, 2100, and 2539), no
clear inference of multiple origins could be made
(Doyle et al. 2002). The fact that these two groups have
difficulty patterns of ITS homeologue evolution,
have very different patterns of ITS homeologue evolu-
however, may support the hypothesis of their separate
origin. If so, this would suggest that there have been at
least three independent origins of the T3 polyploids,
represented by G1397, the Timor accessions, and the
group lacking a D5A nrDNA homeologue.

The T4 polyploids showed an even more striking level
of between-accession diversity for both of the ITS ho-
meologues. In the D5B gene tree, T4 repeats are found
in three distinct clades (Figure 6). Four accessions from
Northern Territory, western Queensland, the Philip-
pines, and Taiwan (G1304, 1348, 1469, and 1929) group
in a unique clade, six more from the Cape York Penin-
sula of northern Queensland (G1747, 2468, 2469, 2470,
a useful base with which to study genome interactions in this and previous studies will, in the future, serve as a valuable tool to aid in understanding of evolution in any allopolyploid taxon. nrDNA polymorphism. Am. J. Bot. 114: 1657–1659.

These results are in agreement with the histone allele networks, especially for the D5B alleles, which found the same three distinct groups (Doyle et al. 2002, Figures 5 and 7).

These results show that sequence data from nrDNA ITS homologous loci have the potential to provide significant insights into the origins of allopolyploid species. In Glycine, evidence from multiple loci, including two ITS homologues and two histone H3D homologues, is beginning to elucidate a complex pattern of evolution, which shows not only that the G. tomentella complex is composed of several different species that combine different parental genomes, but also that several of these races have arisen multiple times. In the future it will be instructive to compare these gene trees to those of other loci, especially from the chloroplast, to see if there is congruence or evidence for even more origins of these allopolyploid races. Multiple origins have been found in several polyploid plant taxa such as Tragopogon (Soltis and Soltis 1991; Cook et al. 1998), Heuchera (Segraves et al. 1999), and Asplenum (Trewick et al. 2002), and even in some animals (Tsengenopoulos et al. 2002), suggesting that a complete understanding of evolution in any allopolyploid taxon requires broad geographical sampling of multiple accessions and phylogenetic data from multiple loci. Together, the variation in patterns of nrDNA molecular evolution and multiple origins of polyploids elucidated in this and previous studies will, in the future, serve as a useful base with which to study genome interactions (such as nucleolar dominance) and patterns of gene expression in this diverse allopolyploid complex.

The authors acknowledge Jane Doyle for her assistance with work in the laboratory and Marc Ellis, Rohit Mago, and Randy Bayer for valuable comments on a previous version of this manuscript. This research was funded by grant DEB-0098483 from the U.S. National Science Foundation Systematic Biology Program.

LITERATURE CITED

Crameri, A., C. S. Pikaard and M. J. Doyle, 1992 Restriction mapping of the 5S and 18S–28S nrDNA loci in different species (such as nucleolar dominance) and patterns of gene expression in this diverse allopolyploid complex.

Communicating editor: S. W. Schaeffer