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ABSTRACT
A novel fine structure mapping method for quantitative traits is presented. It is based on Bayesian

modeling and inference, treating the number of quantitative trait loci (QTLs) as an unobserved random
variable and using ideas similar to composite interval mapping to account for the effects of QTLs in other
chromosomes. The method is introduced for inbred lines and it can be applied also in situations involving
frequent missing genotypes. We propose that two new probabilistic measures be used to summarize the
results from the statistical analysis: (1) the (posterior) QTL-intensity, for estimating the number of QTLs in
a chromosome and for localizing them into some particular chromosomal regions, and (2) the locationwise
(posterior) distributions of the phenotypic effects of the QTLs. Both these measures will be viewed as
functions of the putative QTL locus, over the marker range in the linkage group. The method is tested
and compared with standard interval and composite interval mapping techniques by using simulated
backcross progeny data. It is implemented as a software package. Its initial version is freely available for
research purposes under the name Multimapper at URL http://www.rni.helsinki.fi/zmjs.

WHEN two purely homozygous, inbred, very geneti- ples of such methods are interval mapping (Lander

cally divergent lines are crossed, all offspring (F1 and Botstein 1989), least squares method (Haley and
generation) are genetically identical, being heterozy- Knott 1992), and composite interval mapping ( Jansen

gous at each locus. In the haplotypes of the F1 individu- 1993; Jansen and Stam 1994; Zeng 1993, 1994). For
als, the locus next to each quantitative trait locus (QTL) some species, it is very impractical, time consuming and
has the same allele as it had in the parental haplotype. also expensive to produce inbred lines. In such cases,
This is because, in this ideal case, parents are homozy- methods have been developed for considering crosses
gous at each locus and recombination events cannot between outbred lines that are genetically divergent and
change haplotypic arrangements. Therefore, linkage show two very separate groups of phenotypic values, for
disequilibrium (nonrandom allelic association) in this example, due to different selection histories. One such
group is maximal. procedure was presented in Haley et al. (1994), where

When an F2 or backcross generation is produced, link- the analysis was done in terms of line origins, with the
age disequilibrium is reduced slightly but still remains assumption that crossed lines are “fixed” for different
at a high level. The degree of reduction depends on genes (or alleles) and would then show homozygosity
the distance and on the recombination fraction between in most of the QTL loci. This method (design) requires
the considered QTL and the nearby marker locus. If genotypic data from the parental and grandparental
mating is continued till F3 and the succeeding genera- generations in addition to genotypic and phenotypic
tions, disequilibrium area surrounding a QTL is re- offspring data. Recently Jansen (1996) introduced a
duced further in each generation. This is why the back- general method for line crosses by applying the EM-
cross or F2 intercross data from inbred lines is algorithm (Dempster et al. 1977), where the evaluation
particularly suitable for QTL mapping. of the expectation step was conducted by a Markov chain

The commonly used QTL mapping methods for Monte Carlo (MCMC) technique analogous to that of
plants and animals introduced recently use offspring

Guo and Thompson (1992). All these methods are
data from divergent inbred lines in backcross or F2 in- based on the assumption that the distribution of the
tercross design. The reason for using such a design is phenotypes is Gaussian. A robust method in this respect
to maximize linkage disequilibrium and the amount of was developed recently by Kruglyak and Lander

heterozygosity (information content) in meioses. Exam- (1995). Modifications of (composite) interval mapping
to binary traits were presented by Visscher et al. (1996a)
and Xu and Atchley (1996), and a QTL mapping
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which is currently used routinely for QTL mapping of the number of influential QTLs as well as estimating
their locations in the (analyzed) chromosome and the(Mapmaker/QTL by Lincoln et al. 1992), it is possible

to calculate likelihood scores for a putative QTL placed corresponding phenotypic effects. Such a possibility was
hinted at in a conference presentation by A. F. M.in any position between two adjacent flanking markers.

By changing the flanking markers one at a time, it is Smith (1996), and it has been explicitly implemented
by Satagopan and Yandell (1996), Stephens andpossible to determine the likelihood curve over the

whole genome. The procedure is based on regression Fisch (1996), and Uimari and Hoeschele (1997).
MCMC methods (Metropolis et al. 1953; Hastingsof phenotypes on QTL genotypes, and because QTL

genotypes are unknown, results are obtained by using 1970) are not new techniques, but their widespread
application in statistics did not start before the introduc-an iterative EM algorithm in which convergence to a

local maximum is guaranteed. For each fixed location tion of Gibbs sampling (Geman and Geman 1984). For
a review of applications in gene mapping see Thompsonseparately, the algorithm searches the parameter vector

value giving the highest likelihood score. These (profile (1994), Thomas and Gauderman (1995) and refer-
ences therein. An excellent introduction to the Gibbslikelihood) scores are then used to draw the LOD-score

curve corresponding to different QTL positions. sampling and to the Metropolis-Hastings (M-H) algo-
rithm can be found from Casella and George (1992),The composite interval mapping procedure intro-

duced by Zeng (1993, 1994), and the multiple-QTL and Chib and Greenberg (1995). More advanced pa-
pers are Geyer (1992), and Besag et al. (1995). Variablemapping of Jansen (1993) and Jansen and Stam

(1994), are in principle similar to interval mapping ex- dimensional parameterizations are considered in Arjas

and Gasbarra (1994), and Green (1995).cept that also some markers outside the tested interval
(also in other chromosomes) are fitted to the model as Bayesian inference for gene mapping has been consid-

ered by Tai (1989), Thomas and Cortessis (1992),covariates in order to reduce background noise caused
by other QTLs and/or polygenic variation. The most Smith and Roberts (1993), and Stephens and Smith

(1993). A Bayesian QTL mapping method was proposedsignificant markers for such reduction can be chosen
in a preliminary analysis by using stepwise regres- recently by Satagopan et al. (1996), where a prespeci-

fied number of QTLs was assumed to be present in thesion. These background control markers lie near the
QTLs and they are used instead of the true QTLs (whose considered chromosome. The method did not take into

account effects of QTLs in other chromosomes. Judge-locations are unknown), yielding a better resolution
than would be possible if those QTL effects were not ment concerning the actual numbers of QTLs (in the

model) was proposed to be made by using Bayes factorsconsidered at all. Theoretical support is provided by
the fact that when a QTL has an effect on the trait one from separate MCMC runs with different numbers of

QTLs in each. Satagopan and Yandell (1996), andcan see the same effect indirectly through the closest
marker which is in linkage disequilibrium with the QTL Stephens and Fisch (1996) considered all chromo-

somes simultaneously, treating the number of QTLs as(Tanksley 1993). The degree by which the correspond-
ing phenotypic effect is reduced is determined by the a random variable. [The example in Satagopan and

Yandell (1996) included only one chromosome, how-recombination fraction between the marker and the
QTL. However, there should be at least some effect, ever.] Satagopan and Yandell (1996) used an M-H

within Gibbs scheme in estimation, in contrast to an M-Hbecause linkage disequilibrium is almost at its maximum
value in the backcross and F2 intercross population. The scheme applied by Stephens and Fisch (1996), as well

as here. Stephens and Fisch (1996) simulated 10 chro-improvement in resolution of the composite interval
mapping over standard interval mapping is sometimes mosomes in 6 different datasets, with a different herita-

bility in each. They also tested several priors. However,huge (e.g., Kuittinen et al. 1997), thus yielding more
putative QTL findings. However, the method does not they did not consider missing data.

Bayesian QTL mapping in outbred livestock popula-yet seem to be widely used in practice, even though it
is implemented in some software packages (e.g., QTL tion, using granddaughter design, has been studied by

Uimari et al. (1996a,b) and Uimari and HoescheleCartografer by Basten et al. 1996, and MapQTL by van

Ooijen and Maliepaard 1996, and PLABQTL by Utz (1997). A Gibbs sampler was used in single and bi-QTL
models which included both major gene and polygenicand Melchinger 1996).

The purpose of this paper is to present an approach effects. Uimari and Hoeschele (1997) also tested the
idea of a variable dimensional model, consideringfor high resolution QTL mapping in inbred line crosses

from incomplete data when the phenotypic distribution the cases of either zero, one or two QTLs and using the
convention that the second QTL, if present, was alwaysis assumed to be Normal. Our modeling approach is

based on regression and the assumption that individual “to the right” of the first one. They concluded that their
method was sensitive to the way in which the parametersQTL effects are additive. The method belongs to the

general framework of variable dimensional Bayesian of the second QTL were chosen. Effects of major QTLs
in the other chromosomes were not taken into accountmodels (e.g., Green 1995), applying MCMC algorithms

(see appendix a) to obtain the posterior distribution in these studies, because composite interval mapping
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related techniques in multi-generational pedigrees are types at any (marker or QTL) locus, ordered so that all
difficult to apply. Apart from Uimari et al. (1996a), homozygote genotypes come before heterozygotes. In
techniques for handling missing genotypic data were this setting, genotypes AB and BA are considered to be
not considered. the same. The regression parameters are the following:

The contents of this paper are as follows. Next, we a is the regression intercept (mean value), bq 5 (bq1, ...,
describe our statistical model. The results from simula- bqNgen) is a vector of regression coefficients (classification
tion experiments are described thereafter. The final variables) where b qj is the regression coefficient for the
section contains a discussion of the method and of the qth QTL genotype aj at location l q, s2 5 Var(ei) is the
experiences we had. In appendix a we outline the residual variance and C 5 (ckj) is an Nbc 3 Ngen matrix
MCMC algorithm used in the estimation. of regression coefficients ckj for background controls.

We consider the following statistical model for y:

MODEL yi 5 a 1 o
Nqtl

q51
o
Ngen

j51

bq j1{x qi5aj } 1 o
Nbc

k51
o
Ngen

j51

ckj1{X *ik5aj } 1 ei . (1)
QTL search is usually concentrated on a given chro-

Here 1{xqi5aj} is the indicator variable (dummy), whichmosome (or chromosomal segment). Therefore every-
thing in the following is with respect to such a chosen takes value one if the ith individual’s q th QTL genotype
fixed linkage group (chromosome) unless the contrary xqi at location lq is aj , and otherwise its value is zero.
is stated. Let y 5 (y1,y2, ..., yNind) denote the vector of Similarly, 1{X *ik5aj } is the indicator variable taking value
known phenotypes (missing phenotypes are not consid- one if the ith individual’s marker genotype in the kth
ered here), where Nind is the number of individuals in background control is aj and otherwise its value is zero.
the experiment and yi is the phenotype of the ith indi- Here we assume that the residuals ei are independent
vidual. Suppose that the observations yi are distributed and normally distributed according to N(0, s2). In order
according to a normal law resulting from some design to maintain the traditional way of considering gene ef-
in inbred linecross data. We shall view the unknown fects one can make the following convention. In the
number of QTLs, denoted by Nqtl , as an unobserved case of three possible genotypes, say a 5 (AA,BB,AB),
random variable. Denote the QTL locations by l 5 (l1,l2, the constraint bq2 5 2bq1 will produce an additive effect
..., lNqtl) and let x be an Nqtl 3 Nind matrix, where the qth for homozygotes and make bq3 correspond to a domi-
column xq 5 (xq1,xq2, ...,xqNind)9 is the QTL genotype vec- nance effect of a heterozygote for each q. For the back-
tor in location lq , with element xqi referring to the ith ground control parameters, the constraint ck2 5 2ck1 for
individual. Let G* and G be the corresponding complete k 5 1, ..., Nbc will have a similar interpretation. In case
and incomplete (observed) marker information respec- of backcross, the corresponding constraints are bq1 5 0
tively; G* and G are taken to be Nind 3 N matrices, where and ck1 5 0, respectively.
N is the number of markers. Let I be the chromosomal We use the shorthand notation d 5 (a,b1, ..., bNqtl, s2,C)
interval with the first and the last markers of the chromo- and u 5 (d,x,l,G*,X*o ,Nqtl). Notation A* z A means that
some as endpoints. A fixed marker map (i.e., known A* is consistent with A in cases where A is incomplete
recombination fractions between markers whose order (observed) and A* is complete information. From
is known), denoted by m, is assumed known before the Bayes’ theorem, we get p(u|y,G,Xo,m) 5 1/p(y,G,Xo|m)
analysis. p(y,u,G,Xo|m), where the joint density p(y,u, G,Xo|m) can

We denote complete and incomplete (observed) be factored into a likelihood and a (joint) prior density
marker information in other chromosomes respectively as p(y,u,G,Xo|m) 5 p(y,G,Xo|u,m)p(u|m). Here the likeli-
by G*o and G o. Let X*o be a subset of the complete marker hood can be further written into the form of the product
information in other chromosomes, consisting of se- p(y,G,Xo|u,m) 5 p(G|u,m)p(Xo|G,u,m)p(y|u,m,G,Xo) 5
lected columns (marker genotype vectors) of G*o . Using 1{G *zG}1{X *ozXo}p(y|u,m). In this, 1{G *zG } and 1{X *ozXo} are indica-
an obvious set notation, X*o , G*o . Similarly, let Xo be a tors taking values one and zero depending on whether
subset of incomplete marker information, Xo , Go. We the complete genotypes G* in the chromosome and in
assume that X*o is chosen to correspond to known back- the background control sites X*o (in the other chromo-
ground control information (a selected set of markers somes) are consistent with their observed incomplete
that are hoped to be close to influential QTLs outside counterparts or not.
the interval I). Again, we arrange X*o into the form of As for the joint prior distribution p(u|m), given the
an Nind 3 Nbc matrix and denote its (i,k)th element by marker map m, we make the following (conditional)
X*ik , corresponding to the genotype of the ith individu- independence assumptions:
al’s kth background control. Here, Nbc is the number of

(i) Given Nqtl , the vector d consisting of the parametersbackground controls.
of the linear model (1) is independent of the otherIn the chosen design (i.e., experimental cross), let
coordinates of u, i.e., of (x,l,G*,X*o ), as well as of m;Ngen be the number of possible genotypes and let a 5

(a1, ..., aNgen) be the vector including all possible geno- (ii) X*o , the vector consisting of the true background
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control genotypes in other chromosomes, is indepen- where
dent of (x,l,G*,Nqtl), the true marker and QTL-informa-

p(M*s11,i|M*s,i,m) 5 rs,s111{M *s,i?M *s11,i } 1 (1 2 rs,s11)1{M *s,i5M *s11,i }tion in the considered chromosome as well as of the
(6)marker map m;

(iii) the true genotypes at marker locations, G*, are is the probability of having genotype M*s11,i at the marker
conditionally independent of the number of QTLs (Nqtl) position s 1 1 in case there is genotype M*s,i at position
and their locations (l) given the marker map m. s, and p(M*1,i) is the probability of genotype M*1,i at a

marker locus 1 in individual i. Here rs,s11 is the recombi-Then the joint prior density function can be factored
nation fraction between the markers s and s 1 1. (Notefurther and be presented in the product form
that rs,s11 5 rs11,s, and therefore also p(M*s11,i | M*s,i,m) 5

p(u|m) 5 p(G*|m)p(Nqtl|m)p(l |m,Nqtl) p(M*s,i | M*s11,i,m).)
p(x|G*,l,m,Nqtl)p(d|Nqtl)p(X*o ). (2) In the case of F2 intercross, for each individual the

transition probabilities p(M*s11,i|M *s,i,m) from position sThe density p(X*o ) is not conditioned on the fixed
to s 1 1 can be arranged into the 3 33 matrix containingmarker map, because the prior for genotypes can be
all possible transitions between states AA, BB, and ABthought not to be dependent on the marker order or

distances.The posterior density of u is then proportional
to the joint density





(1 2 rs,s11)2 r 2
s,s11 2rs,s11(1 2 rs,s11)

r 2
s,s11 (1 2 rs,s11)2 2rs,s11(1 2 rs,s11)

rs,s11(1 2 rs,s11) rs,s11(1 2 rs,s11) 1 2 2rs,s11(1 2 rs,s11)





.

p(u|y,G,Xo,m)~p(u|m)p(y,G,Xo|u,m) 5
(7)

p(u|m)p(y|u,m)1{G *zG,X *ozXo} , (3)
The prior distribution of Nqtl, the number of QTLs, is

where here assumed to be truncated Poisson, where the Pois-
son mean l and the maximum number Nqtlmax of QTLs
are fixed control parameters such that 0 # l # Nqtlmax .p(y|u,m) 5 p

Nind

i51

1

√2ps2
exp 32 1

2s2
The upper bound Nqtlmax is introduced for computational
reasons.

(yi 2 (a 1 o
Nqtl

q51
o
Ngen

j51

bq j1{x qi5aj } 1 o
Nbc

k51
o
Ngen

j51

ckj1{x*ik5aj }))24 (4) In the following, we shall use the generic term “ob-
ject” for any marker or QTL in the chromosome. The

is the likelihood function (normal density) constructed prior distribution of QTL genotypes at locations l is
from residuals ei . Here complete background control assumed to have the following product form:
genotypes X*ik are determined uniquely from X*o . The

p(x|G*,l,m,Nqtl) 5 p
Nqtl

q51
p(xq|G*,x1,.,xq21,l,m)expression for the posterior distribution depends on

the prior densities, where the parameter values are re-
stricted to only that part of the parameter space which

5 p
Nqtl

q51
p
Nind

i51
p(xqi|G *q

iL ,G*q
iR ,rq) . (8)

is consistent with what is already observed.
In specifying prior densities it is important to note

Here, G *q
iL and G *q

iR are the genotypes of the left and thethat the number of possible alleles and genotypes (Ngen) right flanking object (marker or QTL) for the qth QTLdepends on the (experimental) design in question.
in individual i, chosen among the complete set of theTherefore, also the prior densities p(x|G*,l,m,Nqtl),
markers in the chromosome and the QTLs at positionsp(G*|m) and p(X*o ) should reflect the design. Crosses
l1,.,lq21. When the location of a QTL and the correspond-between inbred lines have two alleles, forming two
ing flanking object genotypes are known, the QTL geno-(three) different genotypes in backcross (F2 intercross)
type is independent of the genotypes of other objects

designs.
(markers or QTLs) in this list. We denote by rq 5 (rq1,Let M*s be the complete genotype vector in the sth
rq2) the resulting recombination fractions between the

marker position, i.e., the sth column in G*, and let
QTL at lq and the corresponding flanking objects. As is

M*s,i be its ith component. In case there are some unob-
often done in QTL mapping applications, the same

served genotypic data, i.e., G*\G 5/ 0, we consider the
recombination rates for male and female meioses are

following conditional independence structure for the
assumed also here. The algorithms for constructing the

prior p(G*|m): we assume that p(M*s |G*2s,m) 5 p(M*s |
probabilities of different QTL genotypes (last term in

M*s21 ,M*s11,m) 5 PNind
i51 p(M*s,i|M*s21,i, M*s11,i ,m), where G*2s Equation 8) under backcross and F2 designs can be

includes all the other columns in G* except the sth. In
found in appendices b1 and b2, respectively. In this

a backcross design, the prior for an individual i with
construction, Haldane’s map function is used for con-

complete genotype information G* can be computed verting the distance between lq and the left flanking
as the product object to a corresponding recombination fraction for

each q. Haldane’s formula rq2 5 (r q
fm 2 rq1)/(1 2 2rq1)P(G*i |m) 5 p(M*1,i) p

N21

s51
p(M*s11,i|M *s,i ,m), (5)

then gives the recombination fraction between lq and
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the right flanking object, with r q
fm being the recombina-

D̂j(d) 5
RNcycs

k51 RN (k)
qtl

q51 1{l (k)
q PDj, b(k)

q2 2b(k)
q1 #d}

RNcycs
k51 RN (k)

qtl
q51 1{l (k)

q PDj}

(10)
tion fraction between the two flanking objects of the
qth QTL. Note that Equation 8 allows more than a sin-

be the empirical estimator of Dj(d). To obtain corre-gle QTL within the same marker interval. Apart from
sponding formulas for the additive, D̂ a

j (d), and domi-being more general than models in which at most one
nance, D̂ d

j (d), genetic effects (in unconstrained model)QTL is allowed, this feature is thought to improve the
in an F2 design, we must replace the indicator functionmixing properties of the MCMC sampling algorithm.
in the numerator of Equation 10 by 1{l (k)

q PDj, b(k)
q1 2m(k)

q #d },An obvious choice for the priors of all the QTL loca-
and 1{l(k)

q PDj, b(k)
q3 2m(k)

q #d }, respectively. Here m(k)
q 5 (b(k)

q1 1tions is the uniform distribution on the considered chro-
b(k)

q 2)/2. In the constrained model (where the constraintmosome, corresponding to the assumption that no prior
bq 2 5 2bq1 is assumed for each q) the correspondingknowledge concerning the QTL loci is available. How-
indicators are 1{l (k)

q PDj, b(k)
q1 #d } and 1{l (k)

q PDj, b(k)
q3 #d }. For eachever, if some ‘non-data dependent’ knowledge has been

empirical c.d.f. we determine its median and the 2.5-obtained, for example, using cytogenetical methods
and 97.5-percent quantiles. The statistics are then drawn(e.g., physical exclusion mapping), one can specify a
as functions of j, to get curves as shown in Figure 2. Theprior which has most of its mass on some narrower
estimates are stable when the denominator Ncycsl̂j iDj i inchromosomal area. (Note that the uniform prior densi-
Equation 10 is large. In practice one should thereforeties here do not cause any integrability problems, be-
concentrate on bins j for which l̂j is not too small. Butcause all chromosomes are of finite length.) We shall
these are precisely those bins which are most likely toassume equal prior probabilities for background control
contain a QTL anyway.genotypes and use uniform prior distributions for all

regression parameters. The natural range for the resid-
ual variance, for example, is between zero and the phe- SIMULATION ANALYSIS
notypic variance.

In order to test the performance of this method, aThe main features of the proposed model are summa-
data set was simulated by the QTL Cartografer softwarerized graphically in Figure 1. Our main interest is in
(Basten et al. 1996). In particular, we wanted to com-the number of QTLs and in their positions in the consid-
pare its performance in the case of a simple backcrossered chromosome. In order to arrive at a meaningful
design to interval mapping (IM), and to composite inter-description of the results from the estimation we con-
val mapping with five background controls (CIM/05).sider the QTLs as forming a nonhomogenous Poisson
A backcross population (Nind 5 250) was generated ofprocess over the chromosome. The results of the statisti-
individuals having three 100-cM length chromosomescal analysis can then be expressed in an intuitive and
and in each 11 equally spaced markers 10 cM apartcoincise manner in terms of the corresponding esti-
from each other. The trait was assumed tohave heritabil-mated intensity. In practice, we divide the chromosome
ity (the proportion of phenotypic variance explainedinto intervals (bins) D1, D2, ...,DNbins of equal length (accord-
by the simulated QTLs) 0.7 and phenotypic varianceing to the Haldane distance). The interval length iDj i
1.0. The effects and the locations of the six simulatedchosen by the analyst reflects the resulting mapping
QTLs can be found in Table 1. A second data set wasresolution. Denote the number of MCMC cycles (sam-
generated from this complete simulated set by randomlypling iterations) by Ncycs , and let
deleting 30 percent of the marker genotypes. The sec-
ond set was used to test how well our method is capable

l̂j 5 3 1
Ncycs

o
Ncycs

k51
o

N
(k)
qtl

q51

1{l (k)
q P D j }4/iDj i (9)

of handling situations where a large proportion of geno-
types are unknown.

be the approximate posterior QTL intensity on interval First, the two data sets were analyzed by using the IM
Dj obtained from the Monte Carlo simulation. Here and CIM/05 methods. The background controls for the
RN (k)

qtl
q51 1{l (k)

q PDj} is the number of QTLs in Dj in round k of analyses were chosen by standard stepwise regression
the simulation. The product l̂jiDj i gives then an obvious (QTL Cartografer software). The background control
approximation of the posterior expected number of markers for the complete data were marker two in chro-
QTLs in interval Dj . (Note that some bins might occa- mosome 1, markers zero, one, and six in chromosome
sionally contain more than just one QTL during the 2, and marker two in chromosome 3. In the analyses
same iteration cycle.) We combine the estimates l̂j into where 30 percent of genotypes were missing, the back-
a single QTL-intensity function by writing l̂(s) 5 Rj ground controls were marker two and three in chromo-
l̂j1{sPDj} , that is, l̂(s) 5 l̂j for s P Dj . some 1, markers one and six in chromosome 2 and

For assessing phenotypic effects in the backcross de- marker three in chromosome 3. The same background
sign, let Dj(d) be the cumulative distribution function controls were also used in the corresponding Bayesian
(c.d.f.) associated with the phenotypic effect of a puta- analyses. In the CIM, “window width” was 10 cM (i.e., the
tive QTL in bin Dj. There will then be one such c.d.f. background controls less than 10 cM from the analyzed

interval were not included in the model).for each bin. In the backcross design, let



1378 M. J. Sillanpää and E. Arjas

Figure 1.—Hierarchical structure of the model. Boxes refer to fixed values and ellipses to random variables. Layer one is
observed, layer five given, and the others are unknown (sampled). Solid arrows indicate the direction of hierarchical dependency.
Dotted arrows describe direct functional relationship.

Several test runs were made in order to carefully ad- was chosen to be uniform over the range [0.0, 0.89], the
right endpoint being equal to the phenotypic variancejust the range of the proposal distributions (i.e., parame-

ters that control the maximal step size) of the Metropo- estimate from the data. The prior of the intercept was
taken to be uniform over [2100, 100], and that for QTLlis-Hastings algorithm. Such a range is specified for each

of the following: (1) QTL locations, (2) regression mean, and background control genotypic regression coeffi-
cients uniform over [22, 2]. In all cases the chosen(3) residual variance, and regression coefficients of both

(4) the QTLs and (5) background control genotypes. ranges were certain to cover all realistic parameter val-
ues. Finally, the prior for QTL locations was uniformThese control parameters influence directly the rejec-

tion rates; if they are chosen carelessly the chain may not over [0, 100].
Results: The likelihood ratio statistic (LRS) curvesconvergence to the correct limiting distribution within a

reasonable time. The values used in the final analyses (in base 10 logarithmic scale) from IM and CIM/05
runs, and the Bayesian posterior QTL intensities in theare given in Table 2.

The (C-program implementing a Metropolis-Hastings- considered three chromosomes, are shown on the left
side of Figures 2 (complete data) and 3 (incompleteGreen) chain was run 500,000 rounds for all analyses in

chromosomes 1 and 2 and 1,000,000 and 1,500,000 data). The phenotypic effect estimates given by the IM
and CIM/05 methods, as well as the curves consisting ofrounds respectively for the complete and incomplete

data in chromosome 3. Computations were made on an the pointwise (i.e., in different locations of the putative
QTLs) medians and the 2.5- and 97.5-percent quantilesUltraSparc Model 170 workstation, with running times

varying between 1 hr and 30 min, and 6 hr and 20 min, of the posterior distributions of phenotypic effects are
shown in the same figures on the right. For an obviousdepending on the chromosome and on other work load

on the computer. The initial value for the number of reason, the phenotypic effect estimates deserve serious
consideration only in those chromosomal regions inQTLs was three, and the corresponding locations were

20.0 cM, 50.0 cM, and 80.0 cM in all MCMC runs. The which the statistical analysis suggests that there actually
might be a QTL. Judging by the level of the QTL-inten-Poisson mean (hyperparameter) was set to l 5 2 and

the maximum number of QTLs (in the analyzed chro- sity, we have shaded such areas in the figures.
Approximate posterior probability distributions ofmosome) to Nqtlmax 5 3. The prior of the residual variance
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Figure 2.—The com-
plete data analysis. On the
left, the results from interval
mapping (IM, solid line)
and composite interval
mapping with five back-
ground controls (CIM/05,
broken line) are shown.
Simulated true QTL loca-
tions are indicated with an
asterix (*). The histogram
corresponds to the (approx-
imate) posterior QTL inten-
sity over the chromosome,
with binlength 1 cM. The
left (right) y-axis corre-
sponds to the likelihood ra-
tio statistic (posterior QTL
intensity). On the right, cor-
responding phenotypic ef-
fect estimates are shown.
The solid line is the poste-
rior median and the grey
lines are the 2.5- and 97.5
percent quantiles of the
posterior distribution of the
phenotypic effect of a puta-
tive QTL. Shaded regions
are suggested credible in-
tervals for QTL localization
(see Table 5). The pheno-
typic effect estimates (poste-
rior median and quantiles)
are reliable only in these
regions.

the number of QTLs in different chromosomes, for ing the number of QTLs in I by N I
qtl, one can calculate

both the complete and the incomplete data, are given various MCMC approximations of that probability as
in Tables 3 and 4. The posterior expectation of the shown in Equation 11 below, where l(s) is the QTL-
number of QTLs in each chromosome (shown in Tables intensity at point s, and l̂(s) is its estimator:
3 and 4) coincides with the area under the correspond-
ing QTL-intensity curve (in Figures 2 and 3). P(N I

qtl $ 1 | data) ≈ 1
Ncycs

o
Ncycs

k51

1{l (k)
q P I for some q}

Perhaps the most natural question to ask in this con-
text is the following: “What is the (posterior) probability ≈ 1 2 exp{2 #I l̂(s)ds}
that some particular chromosomal area, say I, contains

≈ #I l̂(s)ds. (11)at least one QTL,given the evidence in the data?” Denot-
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TABLE 1

The locations and the phenotypic (additive genetic)
effects of the simulated QTLs

Chromosome Left marker uL distanceL uR Additive effect

1 2 0.0398 0.0415 0.0553 0.9337
1 7 0.0216 0.0221 0.0721 20.0796
2 0 0.0720 0.0777 0.0218 1.1358
2 3 0.0791 0.0861 0.0137 0.0727
2 6 0.0164 0.0167 0.0767 20.4984
3 1 0.0413 0.0431 0.0538 0.2444

The left column refers to the chromosome in which the considered QTL is. The next column refers to the
nearest left flanking marker of the QTL in the chromosome. uL (uR) is the recombination fraction between
the QTL position and the left (right) flanking marker. distanceL gives the distance (in Morgans) between the
left flanking marker and the QTL position, converted from uL by using Haldane’s map function.

The last approximation, where the integral on the We do not display empirical threshold values (corre-
sponding to permutation tests) for IM and CIM in Fig-right is actually an expression for the (posterior) ex-

pected number of QTLs in I, is reasonable only if the ures 2 and 3 because they were not the main issues here.
However, the LOD score 3.0 would correspond to theintegral is small. Table 5 gives a few such approximations

for some chromosomal areas, based on either the com- likelihood ratio statistic 3.0 3 2/log10(e) ≈ 13.82, which
can be used as a rule-of-thumb threshold when examin-plete or the incomplete data. These regions represent

a moderate to high posterior QTL-intensity region sur- ing the figures (even though it was originally derived
for monogenic traits in human). In practice the CIMrounding the mode. Making the interval I longer will

obviously always increase both the probability P(N I
qtl $ method needs a somewhat higher threshold than IM

(Zeng 1994). Note that the LRS curves and posterior1 | data) and the expectation E(N I
qtl | data), but this will

be at the cost of less accurate localization of the genes. QTL-intensity decrease sharply close to some marker
positions. This is because genotype information con-In other words, given the evidence in the data, there is

always a trade-off between accuracy and probability, just cerning putative QTLs tends to be more accurate close
to markers, and unless a QTL actually coincides with aas in confidence intervals in classical statistical infer-

ence. In this sense, Table 5 represents only one possible marker locus, there will be strong evidence against plac-
ing a QTL in exactly, or very close to, these positionssummary of our findings. We have not made an attempt

to establish a standard for forming such intervals or (see Kuittinen et al. 1997).
In Figure 2, the IM and CIM curves, apart from CIMcorresponding cut-off points here. Indeed, we think that

the intensity curve in itself is the best summary of the in chromosome 3, contain enough evidence (in the
sense that the LRS is greater than the threshold valueinformation concerning the number of QTLs and their

locations in the chromosome as obtained from the statis- 13.82) of QTL activity. From Figure 2 it can be seen
that our method performs well in all chromosomes, bytical analysis.

TABLE 2

Ranges of the proposal distributions R(.), proposal probabilities, numbers of iterations, and
background control markers (BGCs) from other chromosomes,

used in the simulation analyses

R(lq) R(a) R(r2) R(bqj) R(ckj) pa 5 pd Iterations BGCs

Complete data
Chromosome 1 1.0 cM 0.01 0.01 0.1 0.1 1/3 500,000 2
Chromosome 2 1.0 cM 0.01 0.01 0.1 0.1 1/3 500,000 0,1,6
Chromosome 3 2.0 cM 0.01 0.01 0.1 0.1 1/3 1,000,000 2

Incomplete data
Chromosome 1 1.0 cM 0.01 0.01 0.1 0.1 1/3 500,000 2,3
Chromosome 2 1.0 cM 0.01 0.01 0.1 0.1 1/3 500,000 1,6
Chromosome 3 2.0 cM 0.01 0.01 0.1 0.1 1/3 1,500,000 3

Notation is as follows: R(lq) is the range of proposals for the QTL location parameters, R(a) for the regression
mean, R(r2) for the residual variance, R(bqj) for the regression coefficients of the QTL genotypes, and R(ckj)
for the regression coefficients of the background control genotypes.
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Figure 3.—The incom-
plete (30% of genotypes
missing) data analysis. On
the left, the results from in-
terval mapping (IM, solid
line) and composite inter-
val mapping with five back-
ground controls (CIM/05,
broken line) are shown.
Simulated true QTL loca-
tions are indicated with an
asterix (*). The histogram
corresponds to the (approx-
imate) posterior QTL inten-
sity over the chromosome,
with binlength 1 cM. The
left (right) y-axis corre-
sponds to the likelihood ra-
tio statistic (posterior QTL
intensity). On the right, cor-
responding phenotypic ef-
fect estimates are shown:
the solid line is the posterior
median and the grey lines
are the 2.5- and 97.5-per-
cent quantiles of the poste-
rior distribution of the phe-
notypic effect of a putative
QTL. Shaded regions are
suggested credible intervals
for QTL localization (see
Table 5). The phenotypic
effect estimates (posterior
median and quantiles) are
reliable only in these re-
gions.

giving well localized high intensities for QTLs close to estimated separately with a permutation test (Churchill

and Doerge 1994) or by bootstrapping]. Our methodtheir true locations. Note that the highest QTL-intensi-
ties are often found near the modes of CIM or IM curves. gave posterior credible intervals for the phenotypic ef-

fects in all cases.The weakest QTLs in chromosomes 1 and 2 remained
undetected by any of these methods, apparently because In the case of incomplete data, the mode of the inten-

sity given by our method differs by 12 cM from theof their small phenotypic effects. All three methods
estimated the phenotypic effect of the most influential simulated true location in chromosome 3 (Figure 3).

This is apparently a consequence of reduced genotypeQTLs very accurately, but IM and CIM/05 do not give
confidence intervals for the estimates [unless they are information in the incomplete data set, as well as of the
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TABLE 3

The posterior distribution of the number of QTLs and its posterior expectation in the three
chromosomes (complete genotype data)

P(Nqtl 5 x | y,G,Xo,m)

x 5 0 x 5 1 x 5 2 x 5 3 E(Nqtl | y,G,Xo,m)

Chromosome 1 0.0000 0.8916 0.1070 0.0014 1.1098
Chromosome 2 0.0000 0.0000 0.7414 0.2586 2.2586
Chromosome 3 0.1516 0.8018 0.0443 0.0023 0.8973

weak phenotypic effect attributable to this particular At the “left end” of chromosome 2, we obtained the
one-lod-support interval [2.9 cM, 9.0 cM] when usingQTL. Note in this case the low maximal level of the

posterior QTL-intensity, compared to the levels reached the IM, and [10.0 cM, 11.9 cM] when using the CIM
method. The latter interval is actually so narrow thatin the other two chromosomes.

For a more explicit comparison of the three methods, the true QTL at 7.77 cM falls just outside it. The poste-
rior QTL-intensity in this region is concentrated almostone-lod-support intervals (see Ott 1991, pp. 66–67)

were determined around the modes of the IM and CIM/ completely on the interval I 5 [4 cM, 10 cM] which
again contains the true QTL. At the “right end” of chro-05 curves estimated from the complete data. The thresh-

old values defining the one-lod-support intervals are the mosome 2, the LRS curve arising from CIM is bimodal,
resulting in two overlapping one-lod-support intervals,maximal value (the mode) minus 1.0 LOD (i.e.,

2/log10(e) units in the LRS scale). An alternative would [53.6 cM, 59.6 cM] and [52.9 cM, 67.3 cM]. The shorter
CIM interval is so narrow that it does not contain thehave been to estimate confidence intervals for the QTL

locations, by applying a permutation test (see Church- true QTL at 61.67 cM, but the wider one does. In this
case, a natural choice for a Bayesian credible regionill and Doerge 1994) or by bootstrapping, as in

Visscher et al. 1996b. The results from the comparison would be the interval I 5 [53 cM, 68 cM], which is
very close to that obtained by CIM and for which theare summarized in Table 6. (The numerical accuracy

of the estimated support interval depends on the chosen posterior probability of there being at least one QTL
in the region is 0.64. The IM method failed to revealstep size which specifies how frequently the LRS is evalu-

ated along the chromosome.) any statistically significant QTL activity in this part of
chromosome 2.Considering first the complete data set and the first

chromosome with the LRS evaluated at every 0.1 cM, In chromosome 3, we obtained the one-lod-support
interval [0.0 cM, 39.8 cM] with the IM method. With thewe obtained the one-lod-support interval [23.0 cM, 29.2

cM] using the IM, and [21.6 cM, 27.3 cM] using the CIM CIM method, we could not determine a corresponding
support interval because the maximum LRS value wasmethod. The latter almost coincides with the interval

I 5 [21 cM, 28 cM] (see Tables 5 and 6), obtained from less than the critical value LOD 3.0. Because of the small
phenotypic effect of the simulated QTL, the BayesianFigure 2 so that it contains practically all moderate to

high posterior QTL-intensity values. All these intervals method did not localize this QTL as well as in chromo-
somes 1 and 2. Perhaps a natural interval to suggest, ifcovered the true QTL at 24.15 cM. The posterior proba-

bility that the region I contains at least one QTL is 0.63. at all, would be [0 cM, 37 cM], which would be nearly
identical to the interval suggested by the IM-analysisThe true phenotypic effect of the second QTL (at 72.21

cM) in chromosome 1 was so small that this QTL was and which would cover 90.2 percent of the total area
under the QTL-intensity curve in that chromosome.not detected by any of the three methods discussed

here. Whenever possible, all three methods estimated the

TABLE 4

The posterior distribution of the number of QTLs and its posterior expectation in the three
chromosomes (incomplete genotype data)

P(Nqtl 5 x | y,G,Xo,m)

x 5 0 x 5 1 x 5 2 x 5 3 E(Nqtl | y,G,Xo,m)

Chromosome 1 0.0000 0.7803 0.2058 0.0139 1.2336
Chromosome 2 0.0000 0.0000 0.7966 0.2034 2.2034
Chromosome 3 0.0820 0.8292 0.0785 0.0103 1.0171
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TABLE 5

Approximate (posterior) probability (1 2 exp{ 2#I
l̂(s)ds}) that a given chromosomal area I contains

at least one QTL calculated for different areas I

I Length (I) P(NI
qtl $ 1 | data) E(N I

qtl | data)

Complete data
Chromosome 1 [21 cM, 28 cM] 7 cM 0.63 0.9901
Chromosome 2 [ 4 cM, 10 cM] 6 cM 0.63 0.9940
Chromosome 2 [53 cM, 68 cM] 15 cM 0.64 1.0148
Chromosome 3 [ 0 cM, 37 cM] 37 cM 0.55 0.8093

Incomplete data
Chromosome 1 [21 cM, 30 cM] 9 cM 0.64 1.0106
Chromosome 2 [ 3 cM, 11 cM] 8 cM 0.63 0.9960
Chromosome 2 [52 cM, 68 cM] 16 cM 0.63 1.0019
Chromosome 3 [12 cM, 48 cM] 36 cM 0.57 0.8434

The (posterior) expected number of QTLs in I, calculated as the integral of the QTL intensity over I is
also determined.

locations of the QTLs fairly well (see Table 6). In all For the estimation of the parameters (see appendix a)
we use the Metropolis-Hastings algorithm with “revers-these analyses the Bayesian estimates (posterior medi-

ans) of individual phenotypic effects were close to the ible jumps” (Green 1995) between models with differ-
ent numbers of QTLs. In the case of more than onetrue values, and they were practically the same as what

was obtained when applying the CIM method. In this QTL, this construction improved the mixing properties
of the sampler when compared to a single-QTL modelrespect, the IM method turned out to be much inferior.

The results from analysing the incomplete data were (results not shown). The effects on the QTLs in other
chromosomes are taken into account indirectly,largely similar, see Tables 5 and 6, and Figure 3 for

details. The main difference was that the one-lod-sup- through nearby markers. When the genotype of a
marker is missing, information from surrounding mark-port intervals become somewhat wider, as did the corre-

sponding Bayesian credible regions. The differences ers is utilized by applying the conditional probabilities
as specified in Equation 5.were not very large, however.

The main advantage in using Bayesian, instead of the
more traditional frequentist inferential methods, is that

DISCUSSION
they enable the analyst to quantify probabilistically the
uncertainty involved in each claim made about QTLs,We have presented here a novel method for high

resolution mapping of multiple QTLs and for the esti- without needing to use problematic mental constructs
such as “the relative frequency of incorrect decisionsmation of their phenotypic effects, using the general

framework of Bayesian variable dimensional models. made in a long sequence of trials repeated under similar

TABLE 6

True locations (QTL), estimated locations and one-lod-support intervals for IM and CIM,
and Bayesian point estimates (modes of the QTL intensity) together with the support

intervals (I ) from Table 5

QTL IM CIM I
Complete data

Chromosome 1 24.15 26.3 [23.0, 29.2] 24.4 [21.6, 27.3] 24.3 [21, 28]
Chromosome 2 7.77 6.3 [2.9, 9.0] 10.0 [10.0, 11.9] 7.3 [4, 10]
Chromosome 2 61.67 no peak 56.9 [53.6, 59.6], 63.3 [52.9, 67.3] 56.7 [53, 68]
Chromosome 3 14.31 5.2 [0.0, 39.8] LRS too low 16.5 [ 0, 37]

Incomplete data
Chromosome 1 24.15 26.1 [22.5, 29.2] 25.0 [21.8, 28.1] 25.6 [21, 30]
Chromosome 2 7.77 7.3 [2.8, 11.3] 10.0 [10.0, 11.8] 7.9 [3, 11]
Chromosome 2 61.67 no peak 56.9 [53.3, 59.8], 63.2 [52.0, 68.8] 57.1 [52, 68]
Chromosome 3 14.31 34.4 [0.0, 43.7] LRS too low 26.6 [12, 48]

LRS was evaluated at every 0.1 cM in IM and CIM estimation. Bayesian modes (intervals) were obtained
with binlength 0.1 cM (1.0 cM).
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Figure 4.—The sample
path k → N (k)

qtl from a simula-
tion trial of 1,000,000 itera-
tions with complete data set
(Chromosome 3).

conditions.” The transformation of the prior distribu- rior QTL-intensity captures the essential information
about their number and positions in an easily interpret-tion into the posterior through Bayes’ formula, corre-

spondsdirectly to the natural intuition of “learning from able probabilistic form. In this way we can avoid com-
pletely the difficult inferential problems concerning thethe data.” Depending on the goals of the study, the

specification of the prior can be “neutral” if the goal is “correct” threshold values of a LOD score (or a LRS)
which arise in testing multiple QTL hypotheses. More-to present a statistical summary of the information in

the data, or, if available, it can also reflect an expert’s over, our method does not appear to produce false
positives easily, as one can expect to get a low QTL-prior knowledge about unobserved quantities, in which

case the posterior will be a synthesis of such expert intensity in regions where there is no, or is only little,
QTL activity.knowledge and empirical evidence coming from the

data. Another major advantage of the Bayesian ap- The performance of our method was compared to
interval mapping (IM) and composite interval mappingproach is the relative ease by which missing data (such as

missing genotypes) problems can be handled, together (CIM) by using a simulated backcross population of 250
offspring. A second data set was obtained by randomlywith the estimation of all other unobservables. Finally,

the application of MCMC methods gives considerable deleting 30 percent of the marker genotypes in the
complete set.freedom in building large hierarchical statistical models

corresponding to the analyst’s perception of the under- In the execution of the MCMC sampling we used an
overparametrized regression model which has one extralying genetic structures and dependencies.

The results of the statistical analysis are summarized coefficient for each QTL and for each background con-
trol locus. Therefore the model intercept and the geno-by two new measures: the posterior QTL-intensity, con-

sidered as a function of its location in the chromosome, typic coefficients are not identifiable as such, but their
contrasts (phenotypic effects) are. We also tested theand the posterior distribution of the phenotypic effect

of the corresponding putative QTL. Such probabilistic alternative updating scheme used by Satagopan and
Yandell (1996) where, when the number of QTLs wassummary measures seem to correspond directly to the

immediate objectives of QTL mapping, that is, localizing proposed to be changed, its effect was first balanced
against a corresponding change in the overall mean.the important QTLs in different chromosomes and esti-

mating their effects on the phenotype(s). In particular, Our overparametrized model seemed to have better
mixing properties, however.in situations where one can expect that there are several

QTLs in the considered chromosomal area, the poste- The MCMC methods require some amount of compu-
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tational effort and will, in practice, need the capacity mented version is currently being developed. The pres-
ent framework will be extended later to cover outbredof a workstation. To ensure sufficient mixing, we per-

formed some relatively long test runs before a final QTL linecross and (human) pedigree data. Epistatic effects
(interactions between QTLs) and multiple trait analysisanalysis. Another possibility is to apply some diagnostic

tools, such as CODA (Best et al. 1995). Because we ran would also be worth considering in the future.
long simulation trials, no sampled values were rejected M.S. thanks Kari Auranen, Jukka Ranta and Dario Gasbarra

because of burn-in. The mixing properties of the sam- for many useful discussions about Metropolis-Hastings algorithms, and
Matti Taskinen for helpful hints in the programming and computerpling algorithm do not seem to be very sensitive to
work. We are also grateful to Outi Savolainen, Leena Peltonen,the prespecified proposal probabilities. In the case of
Claus Vogl, Janne Pitk̈aniemi, Pekka Uimari and four anonymousadding or deleting a QTLs, the only restriction appeared
referees for their constructive comments on an earlier version of the

to be that the proposal probabilities of changing the paper. This work was supported by a research grant from the Academy
dimension should not be too small. As an illustration of Finland.
of the degree of mixing which was typically encoun-
tered, we show (Figure 4) how Nqtl was varying in a
simulation run of length 1,000,000. In the final runs,
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model, may help to understand the relationships be- l

(N (t21)
qtl 1 1)2

5
l

(N (t21)
qtl 1 1)

(5 the Poisson prior ratio)
tween the parameters in the following updating scheme.

Step 1: We consider here three different move types:
3

1
(N (t21)

qtl 1 1)
(5 the proposal probability

(1.1) modify the location(s) and configuration(s) of
ratio of selecting a

existing QTL(s), (1.2) add one QTL to the model, and
particular QTL for a delete

(1.3) delete one QTL from the model. These move
step and selecting a QTLtypes have proposal probabilities pm, pa, and pd, respec-
for an add step)tively, such that pa 5 1{Nqtl,Nqtlmax}c, pd 5 1{Nqtl.0}c, and pm 5

3 1 (5 the ratio of two uniform
1 2 pa 2 pd. Here c is a given positive constant in [0,

proposal densities)
1/2]. In step 1.1 we do not fix the order of QTLs unlike
in Richardson and Green (1997). The term in the denominator is squared only because

Step 1.1: N(t)
qtl: 5 N (t21)

qtl . The following cycle is repeated we are not fixing the order of the QTLs (p. 23 in Geyer

for each QTL, q 5 1, . . ., N (t)
qtl : A new proposal for a 1996, where the order of quantities is fixed).

QTL location, l new
q , is sampled from a symmetric uniform Step 1.3: Delete one QTL. The proposal is made that

density around the previous value. The proposal is ac- the number of QTLs is decreased from N (t21)
qtl by one,

cepted with probability each of the deletions being equally likely. The deletion
is accepted with probability

min51,
p(x q5x (t21)

q |G *(t21),x (t)
1 ,.,x (t)

q21,l (t)
1 ,.,l (t)

q21,l new
q ,l (t21)

q11 ,.,l (t21)
Nqtl ,m)

p(xq5x (t21)
q |G*(t21),x (t)

1 .,.x (t)
q21,l (t)

1 ,.,l (t)
q21,l t21)

q ,.,l (t21)
Nqtl

,m) 6.
min




1,

L1

L2

3
(N (t21)

qtl )2

l
3

pa

pd




,

When nothing else is changed, the likelihood remains
where the likelihoods L1 5 p(y|u(N (t21)

qtl 11),m) and L2 5unchanged even if the proposal is accepted and there-
p(y|u(N (t21))qtl ,m) are evaluated at the new and the old pa-fore these two likelihoods cancel from the acceptance
rameter value, respectively. If the proposal is accepted,probability expression. If a proposal is accepted then
then N (t)

qtl 5 N (t21)
qtl 2 1, and otherwise N (t)

qtl 5l (t)
q 5 l new

q , and otherwise l (t)
q 5 l (t21)

q . New QTL genotypes
N (t21)

qtl .are proposed separately for each individual so that
Step 2: The marker genotype proposals G*new, denotedx new

qi is sampled from p(xqi | G*(t21)
qi,l , G*(t21)

qi,r , rq) (con-
by G*i,new for individual i, in the chromosome are sampledstructed as show in appendix b). Individual proposals
for all individuals from the distribution, where all theare accepted with probabilities {1, L i1/L i2}, where the
consistent genotypes are considered as equally likely.likelihoods L i1 5 p(yi | d(t21), x new

qi , x (t21)
2qi , l (t),

p(G*new | m) is evaluated for all the individual accordingX*(t21)
i,o , N (t)

qtl , m) and L i2 5 p(yi | d(t21), x (t21)
qi , x (t21)

2qi , l (t),
to Equation 5. The marker genotype proposals are ac-X*(t21)

i,o , N (t)
qtl, m) for individual i are evaluated at the new

cepted for each individual i separately with probabilityand the old QTL genotypes, respectively. If the proposal
for individual i is accepted then x(t)

qi 5 x(new)
qi , and other- min{1, PN(t)

qtl
q51[p(xqi 5 x(t)

qi | G*i,new,x(t)
1i , ., x(t)

(q21)i,
wise x(t)

qi 5 x(t21)
qi . Here x(t21)

2qi includes all except the qth
l (t),m)p(G*i,new | m)/[p(xqi 5 x(t)

qi | G*(t21)
i , x(t)

1i ,.,QTL genotypes in individual i in round t for QTLs
having indices lower than q and in round t 2 1 for x(t)

(q21)i,l
(t),m)p(G*(t21)

i | m)]]}.
higher indices.

[Note that p(M*1,i) for each individual i in Equation 5
Step 1.2: Add one new QTL. A proposal

cancels from the Hastings ratio]. If the proposals for
(N (t)

qtl 5 N (t21)
qtl 1 1) for the number of QTLs is made.

individual i are accepted, then G*(t)
i 5 G*i,new, and other-

The new QTL location, l(N (t21)
qtl 11), is proposed from the

wise G*(t)
i 5 G*(t21)

i .
uniform density on I. The QTL genotypes at location Step 3: New proposals for the regression parameters
l(N (t21)

qtl 11) are proposed from p(x(N (t21)
qtl 11)|G*(t21),x (t21)

1 ,., are sampled from the symmetric uniform densities
x (t21)

Nqtl , l (t21), l(N (t21)
qtl 11),m). The regression coefficients of around their previous values (random walk). Denoting

the new QTL genotypes are drawn from their priors. the likelihoods L1 5 p(y|dnew,x(t),l (t),X*(t21)
o ,m,N(t)

qtl ) and
The proposal is accepted with probability L 2 5 p(y|d(t21),x(t),l (t), X*(t21)

o , m,N (t)
qtl), the proposals (in

the prior range) are accepted simultaneously with prob-
min




1, L1/L2 3

l

(N (t21)
qtl 1 1)2

3
pd

pa




, ability min{1,L1/L2}. If new regression parameter values

are accepted, then d(t) 5 dnew, and otherwise d(t) 5 d(t21).
where the likelihoods L1 5 p(y | u(N (t21)

qtl 11),m) and L2 5 Step 4: The genotype proposals for the background
p(y | u(N (t21))qtl , m) are evaluated at the new and the old control markers in other chromosomes are sampled
parameter value, respectively. If the proposal is ac- directly from the uniform prior density p(X*o ) for all
cepted, then N (t)

qtl 5 N (t21)
qtl 1 1, and the new QTL loca- the individuals. All proposals which are consistent with

tion, the corresponding genotypes and the regression the incomplete observations are considered as equally
coefficients are all accepted simultaneously; otherwise likely. The proposals are accepted, separately for each
N (t)

qtl 5 N (t21)
qtl . The term l/(N (t21)

qtl 1 1)2 in the Hastings individual i, with probability min{1,L1/L2}, where the
corresponding likelihoods L1 5 p(yi | d(t),x(t)

i ,l (t),X*new
i,o ,ratio comes from the product
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m,N (t)
qtl ) and L2 5 p(yi|d(t),x(t)

i ,l(t),X*(t21)
i,o , m,N(t)

qtl) are evalu- p(G*iR|xi 5 aj,rq)/p(G*iR|G*iL,m) for j 5 1, . . ., Ngen. p(G*iR|
G*iL,m) is a normalizing constant (total) which makesated at the new and the old parameter values, respec-

tively. If the proposals for individual i are accepted, probabilities add to one. [It is also equivalent to the
probability of getting a certainflanking object haplotypethen X*(t)

i,o 5 X*new
i,o , and otherwise X*(t)

i,o 5 X (t21)
i,o .

Step 5: Go back to the start, Step 1, until a prespecified from an F1 parent, which is rfm 5 (r1 1 r2 2 2r1r2) or
(1 2 rfm).]number of cycles has been reached.

B2:
APPENDIX B

for i 5 1, . . ., Nind
This appendix contains pseudo code algorithms for total 5 0

calculating the conditional probabilities of different for j 5 1, . . ., Ngen
QTL genotypes given the flanking objects (Equation 8) heterozygoteQTL 5 (aj1 not equal aj 2)
for each individual i in backcross (appendix b1) and heterozygotes(R ) 5 (G*iR(1) not equal G*iR(2)) AND (G *iR(1)
F2 intercross (appendix b2) designs. The main idea of not equal G*iR(2))
the algorithms is described in detail in the backcross if (heterozygoteQTL) Ncomb 5 2
case. else Ncomb 5 1

B1: if (heterozygotes(R )) Ncomb 5 Ncomb 3 2
pij 5 0for i 5 1, . . ., Nind

x1 5 aj1total 5 0
x 2 5 aj 2for j 5 1, . . ., Ngen

Mr1 5 G *iR(1)alleleshareL 5 max[[(aj1 equal G *iL(1)) 1 (aj 2 equal G *iL(2))],
Mr2 5 G *iR(2)[(aj1 equal G *iL(2)) 1 (aj 2 equal G *iL(1))]]
for k 5 1, . . ., NcomballeleshareR 5 max[[(aj1 equal G*iR(1)) 1 (aj 2 equal G *iR(2))],

if ((heterozygoteQTL) AND ((k equal 2) OR (k equal 4)))[(aj1 equal G*iR(2)) 1 (aj 2 equal G *iR(1))]]
swap (x1, x 2)if (alleleshareL equal 2) p1 5 (1 2 r 2)

if ([(not heterozygotesQTL) AND (k equal 2)] ORelse p1 5 r1

[(heterozygotes(R )) AND (k equal 3)]) swap (Mr1, Mr2)if (alleleshareR equal 2) p 2 5 (1 2 r 2)
if (x1 equal G *iL(1)) p1 5 (1 2 r1)else p 2 5 r 2

else p1 5 r1pij 5 (p1 3 p2)
if (x1 equal Mr1) p2 5 (1 2 r 2)total 5 total 1 pij

else p 2 5 r 2for j 5 1, . . ., Ngen

if (x2 equal G *iL(2)) p3 5 (1 2 r1)pij 5 pij/total
else p3 5 r1

B1 Inbred lines; backcross (P 3 F1): A pseudo code if (x 2 equal Mr 2) p4 5 (1 2 r 2)
algorithm for constructing conditional QTL genotype else p4 5 r 2

(Ngen 5 2) probabilities given the flanking objects for pij 5 pij 1 ((p1 3 p2) 3 (p3 3 p4))
each individual i. Backcross offspring always get the total 5 total 1 pij

same phase from the parental strain and the genotypic for j 5 1, . . ., Ngen

offspring ratio is 1 : 1 for genotypes AA and AB. The pij 5 pij/total
alleles in the jth genotype are aj1 and aj 2. The alleles
in the left (right) flanking object (marker or QTL) B2 Inbred lines; F2 intercross (F1 3 F1): A pseudo code
genotype in individual i are denoted by G*iL(1) and algorithm for constructing the conditional probabilities
G*iL(2) (G *iR(1) and G*iR(2)). The algorithm first calculates of QTL genotypes (Ngen 5 3) given the flanking objects
the numerator p(xi 5 aj|G*iL,rq) 3 p(G*iR|xi 5 aj,rq) for j 5 for each individual i. Different combinations for haplo-
1, . . ., Ngen. Inside the same loop, the algorithm accumu- typic assignments must be taken into account as well as
lates the denominator according to the Chapman-Kol- the genotypic offspring ratio, which is 1 : 2 : 1 for the
mogorov equation p(G*iR|G *iL,rq,m) 5 p(G*iR|G*iL,m) 5 genotypes AA, AB, and BB, respectively. The alleles in
RNgen

j51 [p(xi 5 aj | G*iL,rq) 3 p(G*iR|xi 5 aj,rq)]. The condi- the jth genotype are a j1 and aj2. The alleles in the left
tional probabilities are then calculated from the formula (right) flanking object genotype in individual i are de-

noted by G*iL(1) and G*iL(2), [G*iR(1) and G*iR)].p(xi 5 aj|G*iL,G*iR, rq) 5 p(xi 5 aj|G*iL,rq) 3


