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ABSTRACT 
The main  purpose  of  this  article is to present several new statistical tests of neutrality of mutations 

against a class of alternative  models,  under  which DNA polymorphisms  tend  to  exhibit  excesses of rare 
alleles or young mutations.  Another  purpose is to study the powers of existing  and  newly  developed  tests 
and to examine  the  detailed  pattern of polymorphisms under  population  growth,  genetic  hitchhiking  and 
background  selection. It is found  that  the  polymorphic  patterns  in a DNA sample under logistic  popula- 
tion  growth  and  genetic  hitchhiking  are  very similar and  that  one of the newly developed  tests, F,, is 
considerably  more  powerful  than  existing  tests for rejecting  the  hypothesis of neutrality of mutations. 
Background  selection  gives  rise  to  quite  different  polymorphic  patterns  than  does  logistic  population 
growth or genetic  hitchhiking,  although all of them show excesses of rare alleles or young  mutations. 
We  show that Fu and Li's tests are  among  the  most  powerful tests against  background  selection.  Implica- 
tions of these results are discussed. 

w ETHER the observed pattern of polymorphism 
in  a set of DNA sequences is consistent with a 

neutral  model of evolution is of great  interest to the 
study of evolution. Several statistical tests (for example, 
WATTERSON 1977; TAJIMA 1989; Fu and LI 1993; Fu 
1996) are available for testing, for  a sample of DNA 
sequences  from  a  population,  whether  the polymor- 
phism can be  explained by the  neutral Wright-Fisher 
model. That is, the population evolves according to the 
Wright-Fisher model and all mutations are selectively 
neutral.  These tests are often  referred to as  tests of 
neutrality ( e.g., TAJIMA 1989; FU and LI 1993). A statisti- 
cal test  is useful only if it has some chance of rejecting 
the  neutral Wright-Fisher model when it is false. How- 
ever, since there  are many factors or natural forces that 
can play important roles in the evolution of a popula- 
tion, it is unlikely that  one statistical test will be powerful 
enough to detect all kinds of evolutionary forces that 
may affect the  pattern of polymorphism. It is therefore 
useful to develop a number of  statistical  tests, each be- 
ing  the most powerful one  for detecting  a class  of depar- 
tures  from the neutral  model. 

A mutation  that results in a polymorphic site can be 
regarded as old if it happened a  long time ago, ie., at 
a time close to the  generation in which the most recent 
common  ancestor (MRCA) of the  sequences lived, and 
can be  regarded as young if it happened recently. It is 
thus  convenient to classify various population genetics 
models into two major groups  according to their ten- 
dencies of having more  old or more young mutations. 
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The first group consists of those models that, when 
compared with the  neutral  model,  often  exhibit ex- 
cesses  of old  mutations or reductions of young muta- 
tions, or both. The second  group consists  of those mod- 
els that  often  exhibit excesses  of young mutations or 
reductions of old mutations, or both. Since a  recent 
mutant is most likely to be present  in  a small number 
of individuals, a  model  in  the  latter  group  often results 
in an excess  of the  number of rare alleles, i.e., alleles 
at low frequencies. 

Recently, I (Fu 1996) have developed several  new 
statistical tests that  are overall more powerful than ex- 
isting tests for  detecting  the  presence of the evolution- 
ary forces described by the first group of population 
genetics models, which includes population subdivi- 
sion,  population  shrinkage and  overdominance selec- 
tion.  In this article I will present several  new statistical 
tests for  detecting  the  presence of the evolutionary 
forces described by the second group of population 
genetics models, including  population growth, genetic 
hitchhiking and background selection. We shall use 
simulations under these models to examine in detail 
the  patterns of polymorphism and to study the powers 
of both new and existing statistical tests. We shall show 
that  one of the statistical tests developed in this paper 
is considerably more powerful than existing tests for 
detecting  population growth and genetic  hitchhiking, 
and that Fu and LI ( 1993) ' s  tests are  among  the most 
powerful tests for  detecting  the  presence of background 
selection. 

CONSTRUCTING  STATISTICAL TESTS 

All the statistical tests discussed in this paper  except 
one  are  dependent  on an essential parameter 8, which 
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is defined as 4Np for  an autosomal locus, and 2Np for 
haploid, such as mitochondria or Ychromosome, where 
Nis  the effective population size and p is the  mutation 
rate per sequence  per  generation. 

Test F,: Let p (  kI 8) be the probability of having k 
alleles in a sample of n sequences, given the value  of 8. 
For a sample with ko  alleles and  the mean  number of 
nucleotide differences between two sequences equal to e,, we define S’ to be the probability of having no fewer 
than ko alleles in a  random sample provided that 8 = 
T .  Then 

where &(e,)  = 8,(8, - 1) * - * ( e ,  - n + 1) and S, 
is the coefficient of in S, ( EWENS 1972; KARLIN and 
MCGRECOR 1972). It  should be noted  that S’ is the 
opposite of Strobeck’s statistic S ( STROBECK 1987; Fu 
1996), which is the probability of having K O  or fewer 
alleles in a sample. In a sample with  excess  of recent 
mutations, 8 estimated by 8, is likely to be smaller than 
that based on  the  number of alleles, therefore, S’ can 
give a  good  indication  whether  there  are  too many re- 
cent mutations. Although s’ can be used directly as a 
test statistic, it is not convenient to obtain its critical 
points because they are  often  too close to  zero, as in 
the case of Strobeck’s S ( FU 1996). I will instead use 
the logistic  of S’ as a test statistic, namely 

F s  = In - 
(1 S ’ S ’ )  

Since F y  tends to be negative when there is an excess of 
recent  mutations (therefore  an excess  of rare  alleles), a 
large negative value  of F y  will be taken as evidence 
against the neutrality of mutations. In other words, a 
one sided-test will be used. 

Tests F( r, r‘) and F’(  r, r ’ ) :  Segregating sites and 
mutations  that result in segregating sites can be classi- 
fied into  a  number of  types. We define  a segregating 
site as type i if the two segregating nucleotides at  the 
site are  present  in i and n - i( i 5 n - i) sequences, 
respectively, where n is the sample size, and a mutation 
that results in a segregating site as  type i if exactly i 
sequences in the sample carry the  mutant  nucleotide 
(see Fu 1994b and 1995 for details). 

Let q, ( i  5 n - i) be the  number of segregating sites 
of  type i and E ,  be the number of mutations of  type i. 
Then  the expectations of C i  and qi are ( FU 1995) 

E ( E i )  = azo 

where 

1 
a,  = 7 ( 2 )  

2 

1 1 - + -  , ,  i # n - i  
i n--2  

1 
i 

( 3 )  
- i =  n -  i. 

Since the variances and covariances of qi and ti are 
also  known ( FU 1995) , the  mean and variance of  any 
linear  function of 7,’s or ti’s can then be computed, so 
can the covariance between any pair of linear  functions 
of q t ’ s  or J2’s. Therefore,  one can construct  a statistical 
test from any pair of linear functions Ll and L2 of q, or 
E I  as 

Ll - L2 
( 4 )  

Jvar ( L ,  - ~ 2 )  

However, it is better  to impose the  condition  E ( L , )  = 
E (L) = 8 so that  the  expectation and variance of the 
test statistic are approximately zero and  one, respec- 
tively under  the assumption of neutrality of mutations. 

Consider  linear  functions of the forms 

L ( r )  = c,’ a:[:  ( 5 )  

L ‘ ( r )  = cp’ c Plql, (6)  

2 

I 

where ai and Pi are given by ( 2 )  and ( 3 )  , respectively, 
[i = [ , / a , ,  c, = &aj, q:  = q I / P z  and co = X$:. 
BecauseE([:) = E ( q : )  = O a n d E [ L ( r ) ]   = E [ L ’ ( r ) ]  
= 0, L (  r )  and L’ ( r )  are estimators of 8 that  are 
weighted averages, respectively, of n - 1 and [ n /2 ]  
unbiased estimators of 6 where [ n/  21 is the largest 
integer  that is not larger than n/ 2; the value of rdeter- 
mines the relative contributions of E E and q I. 

The linear forms L (  r )  and L’ ( r )  are generalization 
of several  well-known quantities. For example, Watter- 
son’s estimator Ow ( WATTERSON 1975) of 8 is given by 

ow = (X + ) - I  c q, = ( i‘ 1)” c E i  

I i = l  z 

= L ( l )  = L ’ ( 1 ) .  

Another example is the  mean number of nucleotide 
differences between two sequences, known  as  Tajima’s 
estimator 8, of 8 ( TAJIMA 1983) that can be written as 

Therefore, it is  easy to show that 

n is odd, 

8, + 5 q ( n / z ) ,  n is even. 
L ’ ( 0 )  = [ :i 1 1 

Because a1 > > 0 and Pz  > , 8 , + 1  > 0, it follows 
that  the larger the value of r in L ( r )  is, the  more weight 
is given to 6 than to I+’, and similarly the  larger  the 
value of r in L‘ ( r )  is, the  more weight is given to 
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than  to r] On the other  hand, a negative r in L ( r )  
and L’ ( r )  gives more weight to and r]l+l than  to 
< and 7:. In  the  extreme, we have 

< I  = L(W)  

n +  1 
n 71 = - L’ (03). 

For a pair of  values  of r and r’ ( r < r’ ) , we define 
tests F( r, r’ ) and F’ ( r ,   r )  as 

F( r, r’ ) = 
L (  r )  - L (  r ’ )  

&ar ( ~ ( r )  - ~ ( r ’ ) )  
( 7 )  

To compute  the values of F( T,  r’ ) and F’ ( r, rr ) , an 
estimate of 8 is required  for substituting the f? in Var 
( L ( r )  - L ( r ’ ) )  andVar (L’(r) - L(r’)) ,bothbeing 
of the form a8 + M2. Unless stated otherwise, Watter- 
son’s estimate 8, is assumed to be  the substitute for 8. 
Because the  purpose of these tests is to  detect  depar- 
tures characterized by an excess  of the  number of rare 
alleles and a  reduction of the  number of common al- 
leles, which tends to give rise  negative  values for these 
tests, large negative  values are taken as evidence against 
the neutrality model. That is, one-sited test will be used. 

It follows from the above  analysis that  the tests D ,  D* 
and P by  FU and LI ( 1993) are equivalent to 

D = F(l, a), (9) 

D* = F’(1, m),  (10) 

P = F‘(0, w ) .  (11) 

The test F by Fu and LI (1993) can be written as 

L’ ( 0 )  - L ( m )  
Jvar ( ~ ’ ( 0 )  - ~ ( m )  

F =  (12) 

Tajima’s test is for all practical purposes equivalent to 

T =  F’(0, 1). (13) 

Watterson’s  test: In  addition  to  the  three types  of 
tests presented above, we  will also include WATTERSON’S 
(1978) homozygosity test for comparisons. Watterson’s 
test W is defined as 

W =  n - ‘ C f f ,  (14) 

where J ;  is the  number of allele i in a sample of  size 
n. Since given the  number of  alleles  in a sample, the 
frequencies of allele of  various  types are  independent 
of 8 ( EWENS 1972; KARLIN and MCGFWXR 1972) , Watt- 
erson’s test Wis thus independent of 8 when condition- 
ing on the observed number of  alleles in the sample. 

I 

THE  CRITICAL  POINTS OF THE  TESTS 

The critical points (or value) of each test described 
earlier  (except for Watterson’s test W) can be  obtained 

by the Monte-Carlo method used by  FU (1996). The 
process of finding  the critical values of a test for a sam- 
ple of  size n essentially  consists of two steps. The first 
step is to obtain an estimate 8 of 8 from the sample for 
computing  the value  of the test statistics and later for 
use in the second step. For test F y ,  8 is Tajima’s estimate 
8, and for other tests, 8 is Watterson’s estimate 8,. The 
second step is to obtain  the critical points of the test 
from simulated samples from a random-mating popula- 
tion with 0 equal to 8. In other words, we first generate 
a large number of simulated samples of  size n from a 
random-mating population with 0 = 8 and for each 
simulated sample, the value  of the test  statistic is com- 
puted, and after all the samples have been examined 
obtain an empirical distribution of the test statistic, 
from which we obtain the critical points. After de- 
termining  the critical points of a test, and if the value 
of the test statistic is  less than  the critical point, the null 
hypothesis of neutrality of mutations is then rejected. 
Although one should try to simulate as large number of 
samples as possible to avoid random  errors, it is usually 
unnecessary to simulate > 10,000 samples. 

To illustrate the  procedure described above, consider 
Fu and Li’s test D and a hypothetic sample of size 50. 
Suppose we obtain from the sample that Watterson’s 
estimate 8, = 5 and D = -1.95. To determine whether 
this result is statistically significant, we generate 10,000 
samples of  size 50 from the  neutral Wright-Fisher model 
with 8 = 5. Since for each simulated sample, we have 
a value  of D ,  we thus have 10,000 D’s. If in 5% percent 
of the samples D is smaller than -1.83 (this is taken 
to  be  the 5% cutoff value of the test, ie., the critical 
value  of the test at 5% significance level),  then we can 
conclude  that  the test is significant at 5% level since 
the observed D from the real DNA sample is smaller 
than - 1.83. 

Extensive simulations were carried out  to study the 
critical points of the tests examined in this article. It 
was found  that  the critical point  at 5% significance  level 
for each of the tests except for F y  is the  point corre- 
sponding to the lower  fifth percentile of  its empirical 
distribution. The critical point for test F 7  is however the 
value corresponding to the lower second percentile of 
its empirical distribution. Therefore, if the value corre- 
sponding to the lower  fifth percentile of the empirical 
distribution of Fs is used, the probability of rejecting 
the  neutral model when it is true will be larger than 
5%. Although why Fs behaves differently from the  other 
tests  is not fully understood, it appears partly due to 
the form of the test  statistic and partly due to be the 
large sampling variance of Tajima’s estimate of 8. 

The above procedure  for  determining  the critical 
points in a test is adequate when we have  only one or 
a few  DNA samples, but it is too time-consuming to use 
for investigating the power  of a statistical test because 
many hundreds  or thousands of samples need to be 
tested as in this  study. To reduce  the  amount of compu- 
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tations in our simulations, we obtained  the critical 
points of a test for only a  number of  values  of 8 and 
used a  linear  interpolation to obtain  the critical points 
for  a given  value of 8 as  follows. Suppose 8, ( i = 1, . . . , 
m) are  the values  of 8 examined and  the  corresponding 
critical values are c (  O j ) .  Then  the critical point  for 8, 
< 8 < 8i+1 is determined by 

Similar interpolation of critical points for sample 
sizes can also be made. This method is  very effective and 
sufficiently accurate. In fact, one can go even further by 
finding  a regression equation  to summarize the critical 
points so that  for  a given sample size and 0 within cer- 
tain ranges they can be  computed from the regression 
equation, as in FU (1996) for several statistical tests. 

The critical points of Watterson's test  Win this study 
are also determined by Monte-Carlo simulation, using 
the algorithm by STEWART ( 1977). Although the critical 
points of this test are available in the  literature (e.g. ,  
WATTERSON 1978; EWENS 1979)  for some combinations 
of n and  the  number of alleles, it is simpler for our 
purpose to regenerate all the critical points. Our critical 
points  agree well  with those in EWENS ( 1979)  for com- 
parable combinations of n and the number of alleles. 

POLYMORPHISM PATTERNS AND THE 
POWERS OF TESTS 

In this section, we  will examine  the  pattern of  poly- 
morphisms and the powers  of  various  tests described 
in the early sections under  three models: population 
growth, genetic hitchhiking and background selection. 
These will be accomplished by using simulated samples 
under  the  three models. Since there  are simply too 
many  tests  of  types F(  r, r' ) and F' ( r, r' ) , we  will focus 
on T ,  D*, I;'x and a few others  that  appear promising 
and sufficiently different from T ,  D, F, D* and P. It 
should be pointed  out  that in our simulation studies, 
recombinations  are not considered, so one should be 
cautious when applying the tests described in this article 
to DNA samples containing recombinations. The effects 
of recombinations  are  different  for  different tests and 
they will be discussed in DISCUSSION section. 

Population growth: Let N, be the effective  size of the 
population  at  generation t .  The generation 0 ( t = 0 )  
is the reference time point  and somewhat arbitrary. 
Consider the logistic model of population growth 

where Nmi, and N,,, are  the minimum and maximum 
effective population sizes, rand  care both nonnegative, 
and  one  unit of time corresponds to 2N,, generations. 
The  parameter rin the logistic equation  determines  the 
speed of growth and  parameter c is the reflection point 
of the growth curve. Because the logistic model of popu- 
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FIGURE 1.- N,/ N,, of the logistic model with Nmin = 1000, 
N,, = 20,000 and c = 1.  One unit of t corresponds to 2N,, 
generations. 

lation growth has four  parameters, it is a very general 
model of population growth and is much  more flexible 
than  the  exponential  model of population growth. Fig- 
ure 1 plots Nt/ N,,, for several  values of r when Nmi, = 
1000 and N,,, = 20,000. 

We are  interested  in  the effects  of sampling at differ- 
ent times on  the  pattern of DNA sequence polymor- 
phism and  the powers  of some statistical tests. Suppose 
a sample of  size n is taken at time T,. Select a new 
time scheme so that  generation  0, 1 ,  2, . . . represent, 
respectively, the  generation  at T y ,  1,2, . . . generations 
before  the  generation at Ts. That is, time is counted 
backward starting  at  the  generation  represented by time 
Ts. Then  the effective population size N,' at  the new 
time t is 

The coalescent theory for  a deterministic change in 
population size such as ( 16) was developed by  GRIF- 
FITHS and TAVARF~ (1994). Let t k  be the kth coalescent 
time (one  unit corresponds  to 2Nm, generations), its 
density function f ( tk) conditional on . . . , t, is 
then given by 

v - ' ( t ) d t ]  , (17)  

where s,+~ = 0, &+I = t ,  + * * + tk+l, v (  t )  = 
NE / N,,, and thus v-l ( t )  = Nmax/ NE. A random value 
of tk conditional on Sk f l  can be  generated by solving tk 
for the equation 

( t )  dt = log (U), (18) 
-2 

k ( k  - 1)  
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FIGURE 2.- R( i) = E( 77: ) / E (  q, ) of  logistic population 
growth with Nmin = 1000, N,, = 20,000, r = 10 and c = 
1.0. Each  curve is based on 20,000 independent samples  and 
R( i) ( i = 1, . . . , 25) for each T, are  connected by line 
segments for clarity. 

where Uis  a  random value  of a uniform random vari- 
able over (0, 1 ) . The solution to  the equation can be 
obtained by a  numerical  integration.  Therefore, we can 
generate  the coalescent times for  a sample of  size n 
sequentially by generating t, first, then tBP1 and so on 
until  obtaining 6 .  

One way to measure  the effect of population growth 
on the  pattern of polymorphism is to examine  the  ratio 
R ( i )  = E ( r ] : ) / E ( q i ) ,  where E ( 7 : )  and E(r] , )  are, 
respectively, the expected  numbers of segregating sites 
of  type i under  the logistic model of population growth 
and  under  the neutral  model, or similarly one can ex- 
amine  the  ratio E (  ) / E (  Ei). For example, if R( i )  ( i 
= 1, - * ) are roughly constant, then  the effect of popu- 
lation growth is about  the same on each type  of segre- 
gating sites. We expect to observe this pattern when T, 
is either small or very large, because when T, is small, 
the  population size at  the time of sampling is only mar- 
ginally larger  than N,,,; while when T, is  very large,  the 
population size has already been close to N,, for some 
times, thus coalescent to  the  common  ancestor  often 
occurs before  population size decreases significantly. 
Figure 2 shows the effects  of sampling  at  different times 
on R( i) for  a sample of 50 sequences with r = 10 and 
c =  1. 

Figure 3 shows the powers  of  several  tests for sam- 
pling  at  different times with two different values of 0 = 
4Nmaxp. As indicated by the above analysis  of R( i) , it 
is indeed  true  that all these tests  have little power when 
the sampling time T, is either  too small or too large. 
The peak of the power for  each test  lies between T, = 
1 and 1.5, which happens to correspond to the period 
in which the  population size differs significantly from 
the initial size but before it reaches a steady size when 
r = 10 and c = 1. Similar patterns were observed for 
different values  of r and c, suggesting that  in  general, 
sampling at a time when the  population size has grown 

(a) 8 = 5 
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0.0 0.5 1 .O I .5 2.0 2.5 3.0 
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0.0 0.5 1 .o 1 .s 2.0 2.5 3.0 

Ts 

FIGURE 3.-Powers of tests  when n = 50  against  logistic 
population growth with Nmin = 1000, Nmax = 20,000, r = 10 
and c = 1.0. The same  line  pattern is used in both  panels for 
each  test. 

substantially but  before it reaches a steady  size provides 
the best opportunity to detect  a  population growth. 

Among the tests considered,  the new test Fs is clearly 
the most powerful one; in  fact, it is often  more  than 
twice  as powerful as  any other test examined. On the 
other  hand, Watterson's test Wis the least powerfd test. 
In between are Tajima's test T,  Fu and Li's  tests D* and 
F* and  the new test F' ( - 1, 1 ) . These  four tests do  not 
differ significantly in  their powers. We also examined 
several other tests, including Fu and Li's test D and F, 
tests F(  -0.5, 1.5),  F' (-0.5, 1)  and F ' ( 0 ,  2 ) ,  and 
found  that  their powers are all similar to those of T,  
D*, P and F' (-1, 1 ) .  

Genetic  hitchhiking: Consider a  neutral locus that 
is linked to a locus under natural selection. When a 
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FIGURE 4.-Frequency of selected allele with respect to 
times. Solid lines are with N = l o4  and  dotted lines are with 
N = IO6.  In all the cases h = 

favorable mutant  at  the locus under selection sweeps 
the whole population, it drags along  the  neutral locus 
and therefore  the  pattern of polymorphism at the neu- 
tral locus can be strongly affected by the linkage to 
the selected locus. Suppose  there  are two alleles at  the 
selected locus and  the fitness of genotypes are 

AA Aa aa 

l + s  l + h s  1 ’  

where allele A is a  mutant favored by natural  selection, 
and s (  s > 0 )  and h(  1 2 h > 0 )  are  the selection 
coefficient and  the  dominance coefficient, respectively. 
Assuming the initial frequency of the allele A is 1 / ( 2 N )  
and neglecting the effect of random  drift, hlAyNARD 
SMITH and HAICH (1974) showed that  the  frequency 
of allele A at n + 1-th generation is  given by 

The speed  at which the  mutant allele A reaches fixation 
is largely determined by selection intensity defined as 
a = 2Ns. Equation 19, however, is inconvenient to use 
because a  huge number of iteration is usually needed 
to compute  the allele frequency. Instead of using one 
generation as an  unit of time, we can define S ( 2 N )  
generations as one unit of time where 6 > ( 2 N )  -’, 
then an approximation to ( 19) is 

p ( t +  1) = p ( t )  + (62N) 

x s p ( t )  (1 - p ( 0 )  [ h  + p ( t ) ( l  - 2 h ) l  
1 + sp(  t )  [ 2 h  + p (  t )  (1 - 2h)  I * ( 2 0 )  

Figure 4 shows p (  t )  for several  values  of the selection 
intensity a. 

An algorithm for simulating a sample under  the 
hitchhiking  model used here was developed by WLAN 
et al. (1987). For simplicity, we assume that  the se- 
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FIGURE 5.- R( i) = E (  7 : )  / E (  7 , )  under hitchhiking with 
N = lo6,  2Ns = 50 and h = Each curve is based on 20,000 
independent samples and R( i) ( i  = 1, . . . , 25) for each T, 
are  connected by line segments for clarity. 

quences in a sample are randomly drawn from those 
carrying allele A at  the selected locus. With  this  simpli- 
fication, the simulation of the genealogy of a sample is 
similar to the algorithm for  population growth  dis- 
cussed in the previous section. Let T, be the time at 
which a sample is taken.  Start  at  the  generation and 
look backward in time. Then  the frequency u (  t )  of 
allele A at time t is p (  T, - t )  , namely 

u ( t )  = p ( t ’ )  + [6(2N)1 

x s p ( t ’ )  [1 - $ ( t ’ ) l  [ h  + p ( t ’ )  (1 - 2 h ) l  
1 + s p ( t f ) [ 2 h + p ( t ’ ) ( 1  - 2 h ) l  7 (21)  

where t‘ = T, - t - 1. Substituting the u ( t )  in ( 17) by 
the above u (  t )  gives the density function of the kth 
coalescent time under  the hitchhiking  model, and thus 
the kth coalescent time can be generated by solving 
(18). For the purposes of studying the powers of tests, 
we found  that  setting 6 = 10 p3 gives  sufficiently accurate 
results, which was also the  increment value used by 
BRAVEMAN et al. ( 1995 ) . 

Similar to the case  of population growth, we can ex- 
amine  the ratio R ( i )  = E ( r ] ; ) / E ( v i ) ,  where E ( r ] i )  
and E (  r], ) are, respectively, the  expected  numbers of 
segregating sites of  type i under  the hitchhiking  model 
and  under the  neutral  model. Figure 5 shows  how  sam- 
pling at  different times affects the value of R( i) for  a 
sample of 50 sequences. Comparing  the  pattern of R (  i) 
to that in Figure 2, it is clear that they are overall  very 
similar. A closer examination shows that R (  i) ( i = 1, 
. . . , 25)  decreases more deeply under  the hitchhik- 
ing  model  than under  the population growth model. 
For example,  the value of R (  1 ) for T, = 0.8 under 
hitchhiking is about  the same as that  for T ,  = 1.3 under 
population growth, but  the values  of R (  25 ) under 
hitchhiking and population growth are, respectively, 
0.11 and 0.23. Similar patterns were  also observed for 
a  number of different  parameter sets. 

Figure 6 shows the powers  of  several  tests under dif- 
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FIGURE 6.-Powers of tests  when n = 50 for  hitchhiking with N = lo", h = 0.5 and a = 2Ns = 50 [ ( a )  6' = 5 and ( b )  6' = 
103 and 100 [ ( c )  6' = 10 and ( d )  6' = 201. (The power of F' ( -1, 1 ) is almost  identical to that of F' ( 3/2) .) The  same 
line  pattern is used in all the panels for each  test. 

ferent  conditions with N = lo6.  One can see from Fig- 
ure 4 that  for N = lo6 and a = 50 the  frequency of 
allele A starts to increase significantly when T, = 0.45, 
reaches 0.50 when T, = 0.60 and becomes 0.99 when 
T, = 0.77; while for a = 100, the  frequency of allele A 
starts to increase significantly when T, = 0.20, reaches 
0.50 when T, = 30 and reaches nearly fixation ( i . e . ,  
0.99) when T, = 0.39. Figure 6 shows that  there is a 
sharp increase in the power of each test when allele A 
climbs from low frequency to fixation, and afterward 
the power gradually declines. 

It  should be noted  that we assume that  the sequences 
are  a  random sample from those carrying allele A at 
the selected locus. When allele A is fixed or nearly fixed 
in the  population, our sample is not different from a 
random sample from  the  entire  population. However, 
when the frequency of allele A is not close to 1, a ran- 
dom sample from the population may contain some 
sequences carrying allele a at  the selected locus, and 
because it takes longer  to coalesce one sequence car- 
rying alleles A and  one sequence carrying allele a than 
to coalesce two sequences under  the neutral Wright- 



922 Y.-X. FU 

Fisher model,  the excess of recent  mutations  in  such  a 
sample is  less  severe than  in  a sample of sequences 
carrying only allele A. Consequently when the fre- 
quency of allele A is not close to fixation, the power of 
a test for  a  random sample from the  entire  population 
will be less than  that shown in Figure 6. In other words, 
the power of a test for  a  random sample of sequences 
will start to climb later  than  indicated  in Figure 6 and 
increase more rapidly, as observed by SIMONSEN et al. 
( 1995) . On  the  other  hand, if a  random sample is taken 
and  the allelic status at  the selected locus is known for 
each sequence, it is more powerful to use  only those 
sequences carrying the advantageous allele. 

It is clear that Fs is the most powerful test among  the 
six  tests showed in Figure 6: Watterson's test W is the 
least powerful one  and in between are tests T ,  P, D* 
and F' ( - 1, 1 ) , which is similar to the situation of popu- 
lation growth. It is also true  that  the powers of  tests T 
and F' (-1, 1) [and F( -0.5, 1.5), result not shown] 
are very similar, but unlike the situation of population 
growth, test T and F' ( - 1 ,  1 ) are now considerably 
more powerful than tests D* and E* (and D and F, 
results not  shown). These results probably reflect the 
similarity and difference between the  patterns in Fig- 
ures 2 and 5, and they also agree with those by SI- 
MONSEN et al. ( 1995) . 

Figure 6 also  shows that  the value  of the selection 
intensity a is a key factor  determining  the power  of a 
test. Comparing b and c shows that  the larger the value 
of a is, the  more powerful a test becomes, which is 
naturally expected.  It is also obvious that  a  larger value 
of 6 results in more powers in all these tests. 

If there  are  recombinations between the  neutral and 
selected loci, the effect of genetic  hitchhiking will be 
reduced  and so will the power of a test ( BRAVEMAN et 
al. 1995). However, we expect  that test F s  continues to 
be a powerful test in such  a situation. 

Background selection: Consider  a  neutral locus that 
is linked to a number of  loci subject to the  natural 
selection that eliminates gametes carrying too many del- 
eterious mutations. Such type  of selection is known  as 
background selection (e.g., CHARLESWORTH et al. 
1993). We consider  a simple model of  fitness in which 
a gamete carrying j deleterious  mutation has fitness wi 
= (1 - sh) where s and h are  the selection and domi- 
nance coefficients. Assume that  the  number of  new mu- 
tations per individual that arise each generation is a 
Poisson variable with mean U. Then  under  the above 
fitness model,  the frequency of gametes carrying i muta- 
tions will reach  the  equilibrium  frequency ( KIMURA and 
MAEWYAMA 1966; CROW 1970) 

e - L ' / ( Z $ h )  [ u/ ( 2 s h )  1 
i! 

Our simulation algorithm is a slight modification of 
the  algorithm by CHARLESWORTH et al. ( 1995 ) . To simu- 
late the genealogy of a sample of  DNA sequences from 
the  neutral locus, one first generates  the  number ni of 

J =  ( 2 2 )  

gametes with i mutations  from  the equilibrium distribu- 
tion ( 2 2 ) .  At each generation,  the first step of the algo- 
rithm is to determine  the  number of mutations in the 
parent  gamete of each gamete. Given a gamete carries 
i mutations, the probability that its parent has j muta- 
tions is 

where mipi is the probability that  a  gamete  experiences 
i - j new mutations  in one generation.  Therefore, m,- 
= e-L'U-i/ ( i - j) !. For each gamete with i deleterious 
mutations, we generate  a  random  number and deter- 
mine from Q], ( j  = 0, . . . , i) the  number of deleteri- 
ous mutations in its parent gamete. Note that 
CHARLESWORTH et al. (1995)  determined this number 
by using Poisson variable with mean Qj that is economic 
in  computation  but is less accurate than using Qj di- 
rectly.  After the  number of mutation  in  the  parent ga- 
mete of each gamete has been  found, we determine  the 
coalescent events. Coalescence can occur only between 
alleles with the same number of deleterious  mutations. 
Let nl be the  number of sequences with i deleterious 
mutations  in  the  parent  generation. Then  the probabil- 
ity of a coalescent event within this group of alleles is 

nE(nl - 1)  

k=O 4NJ 

Note that multiple coalescences in  different  groups of 
alleles can occur. This process continues  until  there is 
only one ancestral gamete left. Once  the genealogy is 
obtained, we superimpose  neutral  mutations onto  the 
genealogy. 

As in  the previous sections, we can examine  the ratio 
R(i) = E(qE)/E(qi) ,where E ( q 1 )  andE(q i )  are  the 
expected  number of segregating sites  of  type i under 
the  background selection and  the neutral  model, re- 
spectively. Figure 7 shows  how R( i) are affected by 
background selection. In comparison with the effects 
of population growth and genetic  hitchhiking  (Figures 
2 and 5 ) ,  background selection shows  strikingly differ- 
ent pattern:  the  frequencies of segregating sites of  vari- 
ous type, except  for  that of singletons, are  reduced by 
about  the same proportion  from  the neutrality, the fre- 
quency of singletons on  the  other  hand is much closer 
to that  under  the  neutral model. This pattern largely 
explains the observation by CHARLESWORTH et al. 
(1995)  that Fu and Li's test D is more powerful than 
Tajima's test T ,  because D is a  contrast between single- 
ton and non-singleton. However, when computing  the 
value of D and T ,  CHARLESWORTH et al. ( 1995) used 
fixed  values  of 6' to substitute the unknown 6' in these 
two statistics, instead of estimating 6 by Watterson's esti- 
mate 8,  of 6' as proposed, thus it is not clear whether 
their conclusions still hold when these two tests are 
used as they are in practice. 
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is based on 20,000 independent samples. 

Table 1 gives the powers  of  several  tests for  detecting 
background selection under several parameter sets and 
we summarize the results  as  follows: 

The value  of Uhas a substantial effect on the  amount 
of polymorphism and  the power  of a test. The larger 
the value  of U is, the less the polymorphism and 
larger  the  chance of detecting background selection. 
It is more effective to increase sample size than to 
increase sequence  length  for  detecting background 
selection, but a sufficient amount of polymorphism 
is necessary. 

Among the tests considered,  the  four tests by Fu and 
LI ( 1993) are  the most powerful  tests and the powers 
do not differ much among  them,  but they are often 
more  than twice  as  powerful as Tajima's test T. Inter- 
estingly the powers  of  tests F' ( 1, r )  ( r > 2 )  are all 
similar to  that of test D* = F' ( 1 ,  00). 
Watterson's homozygosity  test is the least  powerful 
test among all the tests examined, similar to what 
was observed in the cases  of population growth and 
genetic hitchhiking. Overall the power  of test Fs is 
between those of  Fu and Li's ( 1993) tests and Taji- 
ma's test T. 
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TABLE 1 

Power of tests against background selections 

Parameters  Estimates of 0 

N n e n- ew E ,  
u= 0.01 
25000 
10000 
5000 
2500 

u= 0.1 
25000 

5000 

u= 0.2 
5000 

10000 

100 
100 
100 
100 

50 

100 

50 

100 

50 

100 

50 

100 

100 
100 
100 
100 

10 
50 
100 
10 
50 
100 
10 
50 
100 
10 
50 
100 

10 
50 
100 
10 
50 
100 
10 
50 
100 
10 
50 
100 

78.6 
77.7 
78.6 
78.5 

0.8 
4.2 
8.3 
0.8 
4.2 
8.3 
0.9 
4.4 
8.8 
0.9 
4.4 
8.7 

0.1 
0.4 
0.7 
0.1 
0.4 
0.8 
0.1 
0.5 
1 .o 
0.1 
0.5 
1 .o 

78.4 
78.1 
79.2 
79.5 

0.9 
4.4 
8.8 
0.9 
4.6 
9.2 
1.1 
5.4 
10.8 
1.2 
6.2 
12.3 

0.1 
0.5 
1 .o 
0.1 
0.6 
1.3 
0.2 
1.1 
2.3 
0.3 
1.6 
3.2 

78.7 
80.2 
81.8 
83.5 

1.1 
5.3 
10.7 
1.3 
6.4 
12.8 
1.8 
9.3 
18.5 
2.6 
13.1 
26.2 

0.2 
1.1 
2.2 
0.4 
1.8 
3.6 
0.7 
3.4 
6.8 
1.1 
5.6 
11.2 

Powers of tests 

0.04 
0.05 
0.04 
0.04 

0.02 
0.04 
0.04 
0.05 
0.05 
0.06 
0.04 
0.09 
0.11 
0.13 
0.14 
0.20 

0.00 
0.04 
0.10 
0.02 
0.16 
0.22 
0.02 
0.23 
0.30 
0.13 
0.39 
0.48 

0.05 
0.05 
0.05 
0.06 

0.06 
0.07 
0.07 
0.09 
0.09 
0.09 
0.14 
0.17 
0.18 
0.22 
0.30 
0.33 

0.02 
0.15 
0.21 
0.05 
0.30 
0.35 
0.13 
0.51 
0.64 
0.30 
0.72 
0.86 

0.03 
0.04 
0.04 
0.05 

0.06 
0.08 
0.1 1 
0.08 
0.12 
0.15 
0.25 
0.31 
0.39 
0.20 
0.46 
0.60 

0.02 
0.17 
0.21 
0.05 
0.28 
0.33 
0.15 
0.52 
0.69 
0.30 
0.72 
0.91 

0.05 
0.06 
0.06 
0.07 

0.06 
0.09 
0.1 1 
0.08 
0.16 
0.21 
0.15 
0.33 
0.40 
0.29 
0.66 
0.81 

0.02 
0.15 
0.25 
0.04 
0.30 
0.54 
0.12 
0.47 
0.83 
0.23 
0.84 
0.98 

0.05 
0.06 
0.06 
0.07 

0.07 
0.09 
0.10 
0.09 
0.16 
0.19 
0.17 
0.31 
0.37 
0.30 
0.63 
0.75 

0.02 
0.18 
0.29 
0.04 
0.34 
0.53 
0.13 
0.63 
0.83 
0.27 
0.86 
0.98 

0.05 
0.06 
0.05 
0.07 

0.06 
0.09 
0.09 
0.08 
0.15 
0.20 
0.15 
0.28 
0.32 
0.30 
0.64 
0.79 

0.02 
0.15 
0.26 
0.04 
0.30 
0.54 
0.12 
0.58 
0.81 
023 
0.84 
0.97 

0.05 
0.06 
0.06 
0.07 

0.07 
0.08 
0.09 
0.09 
0.15 
0.18 
0.17 
0.28 
0.32 
0.29 
0.61 
0.74 

0.02 
0.17 
0.27 
0.04 
0.33 
0.52 
0.13 
0.61 
0.81 
0.27 
0.86 
0.98 

0.05 
0.06 
0.06 
0.07 

0.07 
0.08 
0.09 
0.09 
0.15 
0.19 
0.16 
0.27 
0.32 
0.30 
0.64 
0.78 

0.02 
0.17 
0.27 
0.04 
0.33 
0.54 
0.13 
0.62 
0.81 
0.26 
0.86 
0.98 

10,000 samples  were  simulated for each parameter set. 

Our simulation results on the power of Tajima’s  test 
T and Fu and LI (1993) test D agree with those by 
CHARLESWORTH et al. ( 1995) in the case N = 25000, U 
= 0.1, but  the powers of the two tests in our simulation 
are both less  powerful than  found in CHARLESWORTH et 
al. ( 1995) . One reason for this is that we used all the 
samples simulated regardless of the  amount of  polymor- 
phism, while CHARLESWORTH et al. (1995) used only 
those samples with polymorphism, since samples with- 
out polymorphism do not result in rejecting the  neutral 
model,  the power of a test in our study should  be less. 
Another difference between this  study and that by 
CHARLESWORTH et al. ( 1995) is that our tests are per- 
formed in the way they are used (or should be used) 
in practice, while  CHARLESWORTH et al. (1995) used 
fixed  values  of 8 to substitute the unknown 8. 

However, our simulation results in the case N = 
25000, U = 0.01 are  quite different from those of 
CHARLESWORTH et al. ( 1995) . For example, when n = 
100 and 8 = 10, CHARLESWORTH et al. (1995)  found 
that tests T and D have  powers  0.116 and 0.289 (their 
Table 4) ,  respectively, at  5% significance level;  while 

in our simulation, we found  that  none of the tests  has 
power  significantly larger than  the nominal level (0.05) 
(see Table 1 ) . This appears  to  be  a result of the differ- 
ence in applying these tests and  not  a result of the way 
samples are selected because almost all the samples are 
polymorphic in this situation (see Table 1 ) . 

DISCUSSION 

The statistical properties of tests for detecting  an ex- 
cess  of the  number of rare alleles are  more complex 
than those of  tests for detecting  an excess  of the num- 
ber of common alleles. We developed in this paper  the 
new  test Fs and several  new  tests of  types F( r ,  r‘ ) and 
F’ ( r ,   r ’ )  . Although it is unlikely that  the resource for 
developing new and hopefully more powerful  statistical 
tests is exhausted, it appears  that l$ is a very promising 
test for  detecting population growth and genetic hitch- 
hiking while Fu and LI’S ( 1993) tests are  among  the 
best for detecting background selection. There  are  a 
number of other statistical  tests examined in this study. 
Their results are  not  presented because they are  either 
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less powerful or  are  not significantly better  than those 
presented. For example,  instead of using Watterson’s 
estimate of 8, one can use the estimate (e,, = 71 / [ 1 + 
1 / ( n - 1 ) ] ) based on only the  number of singleton- 
segregating sites to substitute 0 in F(  r ,   r ’ )  and F’ ( r ,  
r’ ) , doing so results in slightly better tests in most cases. 
We also examined  the  three tests W, G, and GE by FU 
( 1996)  and  found  that Wis  less powerful than F s  while 
G, and Gc have little power against an excess  of the 
number of rare alleles. 

As in my previous study ( FU 1996), I used the infi- 
nite-sites model  to  generate critical values  of each test. 
Therefore, when multiple hits at some sites are evident 
for  a given sample of DNA sequences, some corrections 
should  be  taken  before applying these tests. One effec- 
tive  way to minimize the effect of multiple hits is to 
compute  the values  of  statistics in a test from a parsi- 
mony tree of the sample. For example, instead of  as- 
signing  the number of segregating sites in a sample to 
K in Tajima’s test T ,  one should use the  number of 
mutations  inferred by the parsimony analysis [also see 
the discussion in FU ( 1996) ] . 

This study also assumes no recombination within the 
locus from which DNA sequences are obtained. When 
there  are  recombination events, the  number of alleles 
is usually inflated, while the means of 7r and O w  are  not 
affected. Therefore, test Fy may be sensitive to recombi- 
nations, so one should be cautious when applying F y  to 
a sample if there is evidence of recombination. If future 
studies show that F s  is indeed sensitive to recombina- 
tion, it may be a good statistic for testing the  presence 
of recombination. Since F y  appears to be a very powerful 
test against population growth and hitchhiking, it will 
be very useful to  explore in future study whether it can 
be modified to allow recombination. 

Statistical  tests  of  type F( r ,   r ’ )  and F’ ( r ,  r ’ )  should 
be  less  sensitive to the existence of recombination be- 
cause the expectations of the estimates of 8 used in these 
tests are  the same with or without recombination. There- 
fore, tests  of  type F(  r, r‘ ) and F‘ ( r, r’ ) can be  used when 
there is recombination. However, since recombination 
reduces variances of the estimates of 0, these tests  may 
be conservative when there is recombination. Therefore, 
there is also a  need to expand these tests  to  allow recom- 
bination without significant loss  of power. 

The observation that FU and LI’S (1993) tests are 
considerably more powerful than Tajima’s test and F s  
in  the case of background selection, and  the reverse 
for  population growth and genetic  hitchhiking, has an 
interesting implication: these tests can indicate  the 
likely mechanism that is responsible for  the observed 
polymorphism. For example, if only Fu and Li’s  tests 
are significant, this suggests that  background selection 
is the  more likely cause. On  the  other  hand, if only F s  
is significant, it is more likely to be due  to population 
growth or hitchhiking ( or  perhaps recombination ) . In 
my previous study on statistical tests for  detecting  an 

excess of common alleles ( FU 1996) , it was found that 
the relative powers  of  tests are consistent over different 
population  genetic models that all result in  an excess of 
common alleles, although only a few alternative models 
were examined. 

Computer  programs to perform  the statistical  tests 
discussed in this article will be available at  the web page: 
http: / / hgc.sph.uth.tmc.edu/fu 

I thank two reviewers for their  comments. This  research was sup- 
ported by National  Institutes of Health grant R29 GM-50428. 
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