Assessing Dissimilarity of Genes by Comparing Their RNase A Mismatch Cleavage Patterns

Andrey Rzhetsky,* Joaquín Dopazo,† Eric Snyder,* Charles A. Danger† and Francisco José Ayala*

*Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, †Research and Development Department, Tecnología para Diagnostico e Investigacion, S. A., 28028, Madrid, Spain and ‡Department of Veterinary Science, Pennsylvania State University, University Park, Pennsylvania 16802

Manuscript received May 16, 1996
Accepted for publication September 9, 1996

ABSTRACT

We propose a simple algorithm for estimating the number of nucleotide differences between a pair of RNA or DNA sequences through comparison of their RNase A mismatch cleavage patterns. In the RNase A mismatch cleavage technique two or more sample sequences are hybridized to the same RNA probe, the hybrids are partially digested with RNase A, and the digestion products are compared on an electrophoretic gel. Here we provide an algorithm for converting the numbers of unique and matching electrophoretic bands into an estimate of the number of nucleotide differences between the sequences. Computer simulation indicates that the proposed method yields a robust estimate of the genetic distance despite stochastic errors and occasional violation of certain assumptions. Our study suggests that the method performs best when the distance between the sequences is <15 differences. When the sequences under analysis are likely to have larger distances, we advise to substitute one long riboprobe with a set of shorter nonoverlapping probes. The new algorithm is applied to infer the proximity of several strains of pseudorabies virus.

The RNase A mismatch cleavage method (RAMCM) is a powerful technique for detecting single base substitutions (see LÓPEZ-GALÍNDEZ et al. 1995). This method is based on the observation that single base mismatches present in RNA:RNA or RNA:DNA hybrids can be cleaved with bovine pancreatic ribonuclease (RNase A, see MYERS et al. 1985; WINTER et al. 1985) or with other similar enzymes. In RAMCM a radioactively labeled RNA probe is hybridized to either an RNA or DNA sample, and the hybrid molecule is subjected to RNase A digestion. Each sample treated in this way generates a characteristic pattern of electrophoretic bands that is highly reproducible under specified digestion conditions (PERUCHO 1989), and the similarity between any pair of sequences can be quickly assessed.

RAMCM is particularly useful in screening a large number of similar sequences. At first, this technique was used for detecting single base substitutions in human genes that might have caused tumorogenesis (FORRESTER et al. 1987); it was then applied for other purposes such as studying genetic variability in RNA viruses. In this way, the genetic variabilities of influenza virus (LÓPEZ-GALÍNDEZ et al. 1988), cucumber mosaic virus (OWEN and PAULUKAITIS 1988), respiratory syncytial virus (GARCÍA et al. 1994), herpes simplex virus (ROJAS et al. 1995), and human immunodeficiency virus (LÓPEZ-GALÍNDEZ et al. 1991), among others, have been analyzed. Recent studies have shown that RAMCM generally produces the same phylogenetic classification as other techniques such as restriction fragment length polymorphism (RFLP, see ROJAS et al. 1995), direct sequencing (GARCÍA et al. 1994) and other molecular screening methods (WHO NETWORK FOR HIV ISOLATION AND CHARACTERIZATION 1994; SÁNCHEZ-PALOMINO et al. 1995). Although genetic variability can be analyzed in greater detail by direct comparison of nucleotide sequences (NEI 1987; NEI and JIN 1989), direct sequencing is rather expensive in terms of time and reagents required. Other approaches, such as RFLP, permit large-scale analyses (NEI and LI 1979), but lack the high resolution provided by nucleotide sequencing. RAMCM combines the advantages of both direct sequencing and RFLP, because many samples can be quickly and inexpensively analyzed, and the method is highly sensitive in detecting single base variations in nucleotide sequences.

Despite the apparent utility of the method, virtually no attempts to ascribe genetic distances between genes to the observed differences between RAMCM patterns were made until recently (DOPAZO et al. 1993). Using a computer simulation, DOPAZO et al. (1993) showed that the number of different fragments between two RAMCM patterns is proportional to the number of differences between the analyzed nucleotide sequences. The relationship holds for a wide range of realistic conditions used in the application of RAMCM. Unfortunately, the factor of proportionality appears to be differ-
ent in each particular case. Thus, in the absence of independent data allowing for calibration of the measurements, only a rough estimate of the genetic distances can be obtained by that method.

Here we present a new and more accurate algorithm for estimating the number of different nucleotides between two sequences with RAMCM. We use computer simulations to test the validity of the method and to define the optimal conditions under which to apply this technique in large-scale genetics studies.

MODEL

Definitions and parameters: The ultimate goal of our modeling is to relate the observed numbers of electrophoretic bands in RAMCM to the actual number of nucleotide differences between a pair of sequences. That is, we consider two sample sequences, S_i and S_j, that are each hybridized to a reference sequence, S_R, to yield hybrids $S_i:S_R$ and $S_j:S_R$ (see Figure 1, A and B). Comparing two electrophoretic lanes corresponding to the fragments of the digested hybrids (see Figure 1, B-D), we count separately the bands that are common for two lanes (B_{ij}) and the bands that are unique for $S_i:S_R$ and $S_j:S_R$ (B_1 and B_2, respectively, see Figure 1, C and D). Our goal is to estimate the expected number of differences, N_{ij}, between sequences S_i and S_j from the observed values B_1, B_2, and B_{ij}.

To derive analytical expressions, we need to make assumptions about the model of nucleotide substitution in sequences S_i, S_j, and S_R. Since the hybridization of these sequences must be similar to each other and have nearly identical nucleotide frequencies, we can assume that nucleotide substitution is governed by a stationary time-reversible Markov process (see Keilson 1979 for details). We shall use only two properties common to all stationary time-reversible models: (1) that the expected nucleotide frequencies do not change with time, and (2) that the mathematical description of the substitution process does not change when substitution events are considered “backwards in time” (from the present to the past), which makes the position of the root in a phylogenetic tree immaterial. In other words, labeling nucleotides A, T (U), G, and C by integers 1, 2, 3, and 4, respectively, we can introduce parameters π_1, π_2, π_3, and π_4, that specify the expected nucleotide frequencies in each of the sequences S_i, S_j, and S_R and in their common ancestors. Further, we can represent the history of origin of these sequences with an unrooted three-sequence tree (Figure 1A), denoting by S_A the ancestral sequence corresponding to the interior node of this tree.

We shall also need two additional assumptions regarding the evolution of the sequences: that the only source of evolutionary change in the sequences is nucleotide substitution (e.g., no deletions, insertions, etc.), and that all nucleotide sites of the three sequences accumulate nucleotide substitutions at roughly the same rate.

The actual procedure of digestion of heteroduplexes with RNase A has two important features that also have to be incorporated into the model: (1) some mismatches are undetectable with RNase A digestion and (2) the digestion can be partial or total depending on the conditions of the experiment. The first property is evident from experiments showing that the efficiency of mismatch cleavage by RNase A depends on the actual kind of mispaired bases, the nucleotide sequences flanking this mismatch (López-Galindo et al. 1988; Peruchó 1989), and the total time allowed for reaction. Since under a time-reversible stationary model the relative frequencies of different mismatches do not change with time, the probability of observing a particular sequence flanking a specified mismatch is time-independent. Therefore, assuming that the reaction time is fixed, we can introduce an additional parameter, P_d, to specify the probability of detecting an existing mismatch, so that on average $(1 - P_d) \times 100$ percent of the actually existing mismatches would remain undetected under our model. For example, the value of P_d inferred from the experimental data of Peruchó (1989) is close to 0.45.

We assume here that when a mismatch is present in both $S_i:S_R$ and $S_j:S_R$ heterohybrid molecules at the same site, it is either detectable in both hybrid molecules, or is undetectable in both. The second property applies to the cleavage of detectable mismatches. Under partial digestion individual heterohybrid molecules with several detectable mismatches may not be cleaved at all, may be cleaved only at one of these mismatches, at any two of them, and so on. Since the number of hybrid molecules in the typical sample is very large, the partial digestion generates the set of all possible fragments of the heterohybrid molecule. In the case of total digestion, the same subset of detectable mismatches is cleaved in every hybrid molecule in a sample. We assume for the moment that all nonhomologous heterohybrid fragments can be distinguished by electrophoresis.

Before proceeding to the derivation of distance estimators, we need to introduce a number of additional notations that will enable us to shorten the following derivation. First, let S_{i0}, S_{10}, S_{20}, and S_{n0} stand for nucleotides occupying the ith homologous site in sequences S_i, S_1, S_2, and S_n respectively. Second, let p_i, p_1, and p_2 define the probabilities of observing $S_{i0} \neq S_{n0}$, $S_{10} \neq S_{n0}$, and $S_{20} \neq S_{n0}$ respectively (see Figure 1A). Third, we need to define the following configurations of sites resulting from the pairwise comparisons of sequences S_i and S_j with sequence S_R:

\[
C_1 = [S_{i1} \neq S_{n1} \wedge S_{i2} = S_{n2}] , \quad C_2 = [S_{i1} = S_{n1} \wedge S_{i2} \neq S_{n2}] ,
\]

and

\[
C_{12} = [S_{i1} \neq S_{n1} \wedge S_{i2} \neq S_{n2}] . \quad (1)
\]

(Here the symbol \wedge stands for "and.") Fourth, we denote by D_1, D_2, and D_{12} the observed numbers of sites
with detectable mismatches and configurations C_1, C_2, and C_{12}, respectively. Finally, by analogy with Equation 1, we introduce eight possible site configurations (denoted here by K_1, K_2, . . . , and K_8) identifiable by pairwise comparisons of the ith sites of sequences S_1, S_2, and S_3 with the ith site of the sequence S_a.

$$K_1 = (S_a = S_{i1} = S_{i2} = S_{a})$$
$$K_2 = [(S_a \neq S_{i1}) \land (S_{i1} \neq S_{i2}) \land (S_{a} \neq S_{i2})]$$
$$K_3 = [(S_a \neq S_{i1}) \land (S_{i1} \neq S_{i2}) \land (S_{a} = S_{i2})]$$
$$K_4 = [(S_a \neq S_{i1}) \land (S_{i1} = S_{i2} = S_{a})]$$
$$K_5 = [(S_{i1} \neq S_{i2}) \land (S_{i2} = S_{i2} = S_{a})]$$
$$K_6 = [(S_a \neq S_{i1}) \land (S_{i1} \neq S_{i2}) \land (S_{a} = S_{i2})]$$
$$K_7 = [(S_a \neq S_{i1}) \land (S_{i1} = S_{i2} = S_{a})]$$

and

$$K_8 = (S_a = S_{i1} = S_{i2} \neq S_{a})$$

(2)

ESTIMATING THE DISTANCE

The forthcoming derivation consists of the following two steps. At the beginning we shall clarify the relationship between the numbers of observed electrophoretic bands, B_1, B_2, and B_{12}, with the numbers of detectable differences, D_1, D_2, and D_{12}, between the hybridized sequences (see Figure 1, A and B). After that, we shall relate the expected values of D_1, D_2, and D_{12} to the parameters of the evolutionary tree for sequences S_1, S_2, and S_3 and connect the expected values of B_1, B_2, and B_{12} with the expected number of differences, N_{12}, between sequences S_1 and S_3.

Converting B_1, B_2, and B_{12} into D_1, D_2, and D_{12}: partial digestion

Assuming that all fragments generated by the partial digestion of S_a and S_2 are identifiable, one can obtain the following simple relationships between the observed numbers of bands and the numbers of detectable mismatches in the hybrid molecules.

$$B_{12} = 2D_{12} + \left(\frac{D_{12}}{2}\right) + 1, \quad \text{and}$$

$$B_l = 2D_l + \left(\frac{D_l}{2}\right) + D_{12}, \quad l = 1, 2. \quad (3)$$

Therefore, we obtain the following expressions for computing D_1, D_2, and D_{12} from the observed values of B_1, B_2, and B_{12}:

$$D_{12} = \sqrt{8B_{12} + 1} - 3, \quad \text{and} \quad D_l$$

$$= \sqrt{8B_{l2} + 8B_l + 1 - \sqrt{8B_{12} + 1}}, \quad l = 1, 2. \quad (4)$$

Total digestion: If all fragments of the total digestion can be identified, the relationship between the numbers of detectable differences and the total numbers of electrophoretic bands in two lanes is as follows:

$$(B_l + B_{12}) = (D_l + D_{12} + 1), \quad l = 1, 2. \quad (5)$$

Although the quantities $(B_l + B_{12})$ and $(B_l + B_{12})$ are constant for all fixed values of D_1, D_2, and D_{12}, the actual values of B_1, B_2, and B_{12} can vary depending on the arrangement of mismatches in the hybrid molecules. If the distribution of mismatches is completely random, the probability of observing exactly $B_{12} = k$ shared bands between two electrophoretic lanes is given by:

![Figure 1](https://via.placeholder.com/150)
Prob\{B_{12} = k\} = \frac{(D_{12} + 1)(D_1 + D_2 - 1)(D_1 + D_2 + D_{12})^{-1}}{D_{12} - k}.

(6)

It is then easy to find that the expected value of \(B_{12}\) is as follows:

\[E(B_{12}) = \frac{D_{12}(D_{12} + 1)}{(D_1 + D_2 + D_{12})}. \]

(7)

Finally, combining Equation 7 with Equation 5 yields

\[L = \left[3E(B_{12}) + 2E(B_0) - 1 \right. \]

\[\left. - \frac{\sqrt{\left[9E(B_{12})^2 + 4E(B_{12})E(B_0) \right]}}{\sqrt{E(B_0)^2} - 6E(B_{12}) + 1} \right] / 2. \]

\[D_{12} = \left[-E(B_{12}) - 1 \right. \]

\[\left. + \sqrt{\left[9E(B_{12})^2 + 4E(B_{12})E(B_0) + E(B_0) \right]} \right] / 6E(B_{12}) + 11 / 2, \]

(8)

where \(l = 1, 2 \). Therefore, we can obtain estimates of \(D_1, D_2, \) and \(D_{12} \) by replacing the expected values of \(B_1, B_2, \) and \(B_{12} \) in Equation 8 with their observed values.

Another way to estimate these quantities is to start with finding an integral value of \(D_{12} \) that maximizes the following likelihood function.

\[L(D_{12} | B_1, B_2, B_{12}) = \left(\begin{array}{c} D_{12} + 1 \\ B_{12} \end{array} \right) \left(\begin{array}{c} D_1 + D_2 - 1 \\ D_1 + D_2 + D_{12} \end{array} \right) \]

\[\times \left(\begin{array}{c} D_1 + D_2 + 2B_{12} - D_{12} - 2 \\ D_{12} \end{array} \right)^{-1}. \]

(9)

The values of \(D_1 \) and \(D_2 \) are then found from the following equation

\[D_l = B_l + B_{12} - D_{12} - 1 \quad (l = 1, 2). \]

(10)

Expressing \(N_{12} \) in terms of \(D_1, D_2, \) and \(D_{12} \): Using the definition of conditional probability, we can express the expected values of \(D_1, D_2, \) and \(D_{12} \) in terms of the probabilities of observing the \(G_i \)'s and \(K_j \)'s configurations as follows:

\[E(D_i) = P_dN \sum_{j=1}^{8} \text{Prob}\{G_i | K_j\}\text{Prob}\{K_j\}. \]

(11)

where the \(G_i \)'s and \(K_j \)'s are the configurations defined in Equations 1 and 2, \(N \) is the common length of sequences \(S_i, S_0, \) and \(S_s \), and \(l \) takes values from the set \{1, 2, 12\}. To find an explicit form of system 11, we need to derive the \(\text{Prob}\{G_i | K_j\} \)'s and \(\text{Prob}\{K_j\} \)'s. Since many of the \(\text{Prob}\{G_i | K_j\} \)'s are equal with each other, it is convenient to show them as entries of a \((3 \times 3)\) matrix, \(M \), where

\[M_{ij} = \text{Prob}\{G_i | K_j\}, \quad M_{2j} = \text{Prob}\{G_2 | K_j\}, \]

and \(M_{3j} = \text{Prob}\{G_3 | K_j\}. \)

(12)

After a few algebraic operations we find that

\[\alpha = \sum_{i=1}^{4} \frac{\pi_i^2(1 - \pi_i - \pi_j)}{(1 - \pi_i)^3}, \]

\[\beta = \sum_{i=1}^{4} \frac{\pi_i(1 - \pi_i - \pi_j)^2}{(1 - \pi_i)^2}, \]

\[\gamma = \sum_{i=1}^{4} \frac{\pi_i^2(1 - \pi_i - \pi_j)}{(1 - \pi_i)^2}, \]

\[\delta = \sum_{i=1}^{4} \frac{\pi_i(1 - \pi_i - \pi_j)}{(1 - \pi_i)^2}. \]

(13)

In the absence of specific information about the equilibrium nucleotide frequencies \(\pi_i \)'s, we can assume that \(\pi_i = 1/4 \) for each \(i \), in which case the constants \(\alpha, \beta, \gamma, \) and \(\delta \) assume the values \(4/9, 4/9, 1/4, \) and \(2/3 \), respectively.

Noting that each of the eight configurations, \(K_1, \ldots, K_8 \), represents an outcome of three independent random events, we can express the \(\text{Prob}\{K_j\} \)'s in terms of the parameters \(p_1, p_2, \) and \(p_3 \). After substituting these probabilities into Equation 11 and combining the result with Equation 13, we obtain the following system:

\[E(D_1) = NP_d(\alpha p_1 p_2 p_3 + p_1 q_1 q_2 + \gamma q_1 p_2 p_3), \]

\[E(D_2) = NP_d(\alpha p_1 p_2 p_3 + q_1 p_2 q_3 + \gamma p_1 q_2 p_3), \]

and

\[E(D_{12}) = NP_d(\beta p_1 p_2 p_3 + q_1 q_2 p_3 + \delta p_1 q_2 p_3 + \delta q_1 p_2 p_3 + p_1 p_2 q_3). \]

(14)

(15)

where \(q_1 = 1 - p_1 \). In the general case, an analytical solution with respect to \(p_1, p_2, \) and \(p_3 \) for this system of equations could not be found, and one has to use one of the numerical algorithms. We solved System 15 by searching for the values of parameters \(p_1, p_2, \) and \(p_3 \) that minimize the following residual sum of squares.

\[[D_1 - f_1]^2 + [D_2 - f_2]^2 + [D_{12} - f_{12}]^2, \]

(16)

where \(D_1, D_2, \) and \(D_{12} \) are the right sides of the three equations in System
Newton algorithm implemented in a computer subroutine kindly provided to us by Dr. Ziheng Yang.

Once the estimates of \(p_1 \) and \(p_2 \) (\(p_1 \) and \(p_2 \), respectively) are obtained, they can be used to compute an estimate of \(N_{12} \) (the number of differences between sequences \(S_i \) and \(S_j \)) with the following equation by substituting the parameters in the right side with their estimates.

\[
N_{12} = N(p_1 + p_2 - p_1p_2) \text{Prob}[S_{i1} = S_{j2} | C_{12}] .
\] (17)

Incidentally, we have \(\text{Prob}[S_{i1} = S_{j2} | C_{12}] = \gamma \), where \(\gamma \) is as given in Equation 14.

In the case when \(p_1, p_2, \) and \(p_3 \) are small, the following approximate expressions are useful:

\[
N_{12} = N(p_1 + p_2) = (\sqrt{8B_{12}} + 8B_1 + 1
+ \sqrt{8B_{12}} + 8B_2 + 1 - 2\sqrt{8B_{12} + 1})/(2P_d),
\]

if digestion is partial,

\[
= (3B_{12} + B_1 + B_2 - 1
- \sqrt{9B_{12}^2 + 4B_{12}[B_1 + B_2] - 6B_{12} + 1])/P_a
\]

if digestion is total. (18)

The actual digestion pattern may turn out to be something in between the total and partial digestions; in that case the formulas for computing \(N_{12} \) under “ideal” partial and total digestions can be viewed as the upper- and the lower-bound estimates.

In the case of partial digestion the variance of the estimated distance can be approximately calculated by the

\[
\hat{V}(N_{12}) = (\sqrt{8B_{12}} + 8B_1 + 1 + \sqrt{8B_{12}} + 8B_2 + 1
- 2\sqrt{8B_{12} + 1})(1 - P_d)/2, \] (19)

while an estimate of \(V(N_{12}) \) for the total digestion can be computed in the following way.

\[
\hat{V}(N_{12}) = (3B_{12} + B_1 + B_2 - 1
- \sqrt{9B_{12}^2 + 4B_{12}[B_1 + B_2] - 6B_{12} + 1})(1 - P_d)
+ 4\hat{V}(B_{12})(b_1 + b_2 - b_{12})^2/(P_a)^2, \] (20)

where

\[
\hat{V}(B_{12}) = \frac{\hat{D}_{12}(\hat{D}_{12} + 1)(\hat{D}_1 + \hat{D}_2 - 1)(\hat{D}_1 + \hat{D}_2)}{\hat{D}_1 + \hat{D}_2 + \hat{D}_{12} - 1}(\hat{D}_1 + \hat{D}_2 + \hat{D}_{12})^2,
\]

\[
\times b_1 = 1 - B_{12}/S, \quad b_2 = -B_{12}/S, \quad b_{12} = [3 - 9B_{12} + 2(B_1 + B_2) - 3]/(2S), \quad S
= \sqrt{9B_{12}^2 + 4B_{12}[B_1 + B_2] - 6B_{12} + 1}, \] (21)

and the \(\hat{D}_i \)'s are computed by substituting the \(E(B_i) \)'s in the right sides of Equation 8 with their observed values. The \(B_i \)'s. Both formulas for estimating \(V(N_{12}) \) were obtained by applying the “delta-technique” and the well-known statistical identity \(V(X) = V[E(X | Y)] + E[V(X | Y)] \).

Computer simulation: The simulation scheme was very similar to those described by DOPAZO et al. (1993). First, an “ancestral” sequence was generated as a random sequence of equiprobable nucleotides. Second, the ancestral sequence was duplicated to give rise to the “extant” sequences \(S_i \), \(S_j \), and \(S_k \). Third, each of the three extant sequences was randomly modified at each site with probabilities \(p_1 \), \(p_1 \) and \(p_2 \), respectively. Fourth, hybridization between \(S_i \) and \(S_j \), and \(S_j \) and \(S_k \), and the digestion by RNAse A were modeled. [In the simulations, we used the probabilities of cleavage for each type of mismatch that were estimated by PERUCHO (1989), so that \(P_d \approx 0.45 \). Although we simulated both partial and total digestion schemes, only the results of the former are shown here (Figure 2).] Fifth, the numbers of shared and nonshared fragments, \(B_1 \), \(B_2 \), and \(B_{12} \) were computed. We computed these numbers under two conditions: (1) when all assumptions of our model are satisfied, so that the “observed” values of \(B_1 \), \(B_2 \), and \(B_{12} \) were equal to their actual values (Figure 2A), and (2) assuming that different heteroduplex fragments of the same size were lumped into a single electrophoretic band, so that the observed values of \(B_1 \), \(B_2 \), and \(B_{12} \) were smaller than their actual values (Figure 2B). Finally, the observed values of \(B_1 \), \(B_2 \), and \(B_{12} \) were used to estimate \(N_{12} \) with Equations 4, 8, 15, and 17, as described above.

We simulated RAMCM with five different riboprobe sizes, 100, 300, 500, 700 and 900 bp, with 200 simulation replications for each set of parameter values. In all simulations required for generating the plots in Figure 2, we used the following parameter values: \(P_d = 0.45 \), \(\pi_1 = \pi_3 = \pi_4 = 0.25 \), \(p_1 = 0 \), \(p_2 = (1 + \delta)/\pi_4 \), \(p_{12} = (1 + \delta)/N \), \(p_3 = (p_2 - p_1)/(1 - \gamma p_1) \), where \(i = 1, 2, \ldots, 30 \) for Figure 2A, and \(i = 1, 2, \ldots, 16 \), for Figure 1B. The estimation of \(N_{12} \) was done by numerically solving the system of Equations 15.

Results of simulation: The simulations strongly indicated that the estimator of \(N_{12} \) has the desired statistical properties when the model assumptions are fully satisfied. Figure 2A shows the typical result of a computer simulation in which all assumptions are satisfied (\(N = 900 \)). The plots computed for shorter or longer riboprobes are virtually identical to the plot shown in Figure 2A, because the correspondence between the average estimate and the expected number of difference always remains strong, and the variance of the estimate is determined by the value of \(P_d \) (the variance is large for small values of \(P_d \)) rather than by the length of the riboprobe. As is expected, an increase of any combination of the values of \(p_1 \), \(p_2 \), and \(p_d \) also results in the growth of the variance of the distance estimate. Therefore, the best choice of the riboprobe for a set of genes is an average sequence that is close to the nearest common ancestor of all sequences in the set.
Application of the approximate Equation 17 instead of numerically solving System 15 produced more erratic but very similar results (data not shown), provided that the expected distance between S_1 and S_2 was not too large. Therefore, Equation 17 appeared to be sufficiently accurate for the practical calculations.

Another series of simulations (Figure 2B) showed that the algorithm is robust to violation of certain assumptions when the divergence between sequences S_1 and S_2 is not large ($N_{12} = 15$). More specifically, in the second series of simulations we assumed that nonidentical fragments of heterohybrid molecules having the same size form single "electrophoretic bands" and cannot be distinguished. As the result, the average distance estimate tends to be smaller than the true value (see Figure 2B), although for small distances the bias is negligible. (Note that this bias can be significant when the distance between compared sequences exceeds 15 differences and the sequences are not very long, ~100 nucleotides.) The standard errors of the estimates were very close to those in Figure 2A and are not shown on the plot.

The computer simulations clearly indicated that for the best results, the length of the riboprobe should be selected such that the distance between the sequences under comparison does not exceed 15 differences. This can be accomplished by substituting one long riboprobe with a set of shorter nonoverlapping probes. The overall distance between two long sequences should be then computed as a sum of distances estimated with each riboprobe.

To illustrate the application of the suggested algorithm to real data, we analyzed the proximity of the gII genes of several strains of the pseudorabies virus.

ASSESSING PROXIMITY OF VIRAL STRAINS

Gene gII of pseudorabies virus: Pseudorabies virus (PRV) belongs to alpha herpesviridae subfamily of the herpesviridae family of DNA viruses. It is known to cause severe damage to the nervous system of affected swine; a complex of symptoms caused by PRV infection was described as Aujeszky disease. For our analysis we have chosen PRV gene gII encoding a glycoprotein that appears on the surface of a nature virus particle and is recognized by the host immune system.

Viral DNA preparation: We used nine PRV strains derived from field isolates. The strains were obtained from a few different sources: from the National Veterinary Services Laboratory in Ames, Iowa (strains Powlen, BE71, Indiana/Funkhauser, and Shope), from Dr. Maes at the Michigan State University, East Lansing (strain P2208), from the American Type Culture Collection (strains Aujeszky and Bucharest), and from Dr. Hahn at the University of Illinois, Urbana-Champaign (strain FL81). Strains P2208 and Indiana/Funkhauser are viral clones from the same field strain and served in our experiment as an index of possible intrastrain genetic variation. We propagated these eight PRV strains in vitro along with a commercial vaccine strain derived from the Iowa strain and prepared samples of viral DNA for subsequent amplification [see Dangler et al. (1992) for details].

Primers: We selected a pair of primers for PCR amplification from the published sequence for the PRV gII gene (Robbins et al. 1987), using a commercial software package (Low et al. 1990). The sense primer (gII(s)) had the PRV-specific sequence 5'CTTCAAGGAGAA-5'CTTCAAGGAGAA, while the antisense primer (gII(a)) had the sequence 5'ACGTGCGTGCTGTTGTAGCG3'. We also synthesized a set of primers in which the SP6 RNA polymerase promoter sequence, 5'ATTTAGGTGACACTATAGAA3', was concatenated to the 5' end of each virus-specific primer sequence (SP6/gII(s) and SP6/gII(a)).

PCR: We amplified viral DNA in parallel amplification reactions using as a negative control DNA from
Vero cells prepared as described by Danler et al. (1992). (For amplification of the PRV gII gene, each 100 μl reaction contained 3 μl of viral DNA suspension, 6% DMSO, 3 units of Taq DNA polymerase, 0.75 μM MgCl₂, and 400 nM of each primer.) Two different primers were used for amplification of each strain: (1) SP6/gIIASN and gIIASN, and (2) gIIASN and SP6/gIIASN. Reactions were run in a programmable heating block for 35 cycles with the following temperature profile: cycles 1–34, 45 sec; cycle 35, 95° for 30 sec, 50° for 30 sec, and 72° for 45 sec; cycle 35, 95° for 30 sec, 50° for 30 sec, and 72° for 5 min. The negative control Vero cell DNA consistently yielded no amplification.

RNA mismatch cleavage: We amplified viral RNA samples using the PCR products as transcription templates and following specifications provided by the manufacturer of a commercial kit for RNA transcription (Epicentre Technologies, Madison, WI). The presence of the SP6 polymerase promoter sequence on the 5' end of either the sense or antisense strand permitted the synthesis of complementary RNA strands; the sense RNA strand was radiolabeled with 32P during the transcription reaction.

Next, we performed a series of hybridizations in which the radiolabeled sense RNA strand from the Aujeszky strain was used as the probe to the antisense RNA strand from each PRV strain. For the RAMCM steps of hybridization and enzymatic cleavage we used reagents from a commercial RAMCM kit (Ambion, Austin, TX) following the manufacturer’s instructions. (We used in this experiment the proprietary mismatch RNAse stock solution #2, and the cleavage reactions were incubated at 70° to reduce intramolecular interactions.) The digested RNA mixtures were analyzed by electrophoresis through a 6% polyacrylamide sequencing gel run at 50° and autoradiography (see Figure 3).

Analysis of RAMCM patterns: We analyzed the resulting RAMCM patterns (Figure 3A) with an automatic densitometer (see Figure 3B) and then converted them into a matrix of differences between strains (Figure 4A) using the approximate formula (Equation 17). The distance matrix was then used to compute a dendrogramm (Figure 4B) with the neighbor-joining method (Saitou and Nei 1987) by the program METREE (Rzhetsky and Nei 1994). Note that in this example the maximum value in the distance matrix does not exceed 9 (see Figure 4A), so that the estimates should be virtually unbiased.

DISCUSSION

Properties of the proposed method: RAMCM is an inexpensive, sensitive, and fast procedure for detecting differences between related sequences (Erllich and Arneheim 1992), which is now applicable to quantitative analyses. Previously, this method was relegated to qualitative use, in which evaluation of dissimilarity between sequences was both cumbersome and subjective, seriously limiting the overall utility of the approach.

The performance of the procedure could be substantially improved by fine-tuning the experimental stage of RAMCM. Indeed, our computer simulation indicated that the largest contribution to the overall error of estimated differences comes from the existence of mismatches that are “undetectable” by RNAse A. Therefore, statistical efficiency of the estimates could be significantly improved by modifying the experimental procedure aiming to decrease the proportion of “undetectable” mismatches (for example, an increase of Pd from 0.45 to 0.75 would decrease the variance of distance estimates approximately fivefold). Some other modifications of the RAMCM procedure, such as using a labeled probe (similar to procedure by Maxam and Gilbert 1977) to detect the actual type of each mismatch under partial digestion, are likely to be explored in forthcoming studies.

As we have shown by computer simulation, the RAMCM technique gives the best results when applied to closely related sequences, up to a maximum of 15 differences. This is because as the number of mismatches increases, the overall number of electrophoretic bands grows explosively under the partial diges-
tion conditions, causing errors in counting shared and unique bands between electrophoretic lanes. If the sequences under analysis are likely to be separated by large distances, we recommend substituting a single long riboprobe (which is commonly used in studies of this kind, see LOPEZ-GALINDOZ and NEI 1987) computed from this matrix.

Further improvement of the model: In the future, one may attempt to develop a model accounting for additional features of the real nucleotide genes and peculiarities of RAMCM technique. For example, in certain situations it may prove useful to take into account the following factors: (1) in some sequences, the distribution of mutations is significantly nonrandom, which is usually manifested as an existence of "conservative" and "mutation hotspot" sites, (2) the actual causes of underestimation of the observed number of electrophoretic bands are sometimes known and can be incorporated into the model, and (3) in some sequences insertions and deletions are not infrequent and should be included into the model. Although the model suggested in our study is somewhat oversimplified, the predictions it provides seem to be sufficiently accurate to make the inclusion of many of the additional factors unnecessary in most actual data analyses.

Conclusion: We proposed an algorithm that opens the possibility of using RAMCM as a quantitative tool in large-scale sequence analyses. Although the RAMCM does not provide as much information as direct nucleic acid sequencing, it allows for quick and inexpensive examination of a large number of samples and constitutes a feasible alternative for population genetics and molecular epidemiology studies.

We are grateful to MASATOSHI NEI, STEVE SHAFFER, TANYA SITNIKova, and two anonymous reviewers for a number of helpful comments on the earlier versions of the manuscript. This study was supported by National Science Foundation and National Institutes of Health grants to MASATOSHI NEI.

LITERATURE CITED

Genetic Distance From RAMCM Patterns

Communicating editor: M. K. UYENOYAMA