INHERITANCE OF PUBESCENCE IN SOY BEANS AND
ITS RELATION TO POD COLOR

C. M. WCODWORTH AND COLLINS VEATCH

University of Illinois, Urbana, Illinois

Received January 10, 1929

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Source of parent material</th>
<th>F₁ results</th>
<th>F₂ results</th>
<th>F₃ results</th>
<th>Pod color</th>
<th>Relation between pod color and presence or absence of pubescence</th>
<th>Summary</th>
<th>Literature Cited</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INTRODUCTION

Nagai and Saito (1923) described a glabrous soy bean plant that appeared in the F₂ generation of a cross between two pubescent parent plants. The data presented showed the glabrous character to be a simple mendelian dominant to pubescence, and the factor pair was designated as \(P₁p₁ \). Stewart and Wentz (1926) reported the discovery of a glabrous soybean outwardly resembling the type found by Nagai and Saito (1923), also arising from a cross between two pubescent parents, but behaving as a recessive to the pubescent type instead of as a dominant. This factor pair was designated \(P₂p₂ \).

The F₂ results reported by Stewart and Wentz (1926) deviated quite widely from a 3:1 ratio, an actual ratio of 6.76:1 being obtained. Results of the F₃ and later generations, however, fitted a 3:1 ratio much better. On the basis of this and other considerations, the authors interpreted the inheritance as being due to a single pair of mendelian factors, and concluded that the character they studied was not the same as that described by Nagai and Saito (1923).

As pointed out by Owen (1927) critical evidence on the genetic relationship of these two glabrous types should be furnished by a study of a cross between them. We propose to present in this paper the results obtained

1 Contribution from the Division of Plant Breeding, Department of Agronomy, University of Illinois. Published with the approval of the Director of the Station.
2 Associate Professor of Plant Breeding and Graduate Student in Plant Breeding, respectively.
in a study of such a cross, a genetic interpretation of them, and the relation between pod color and the presence or absence of pubescence.

SOURCE OF PARENT MATERIAL

Several years ago, through the courtesy of Mr. W. J. Morse of the United States Department of Agriculture, we obtained a glabrous soybean, which in crosses with pubescent types, has proved itself to be dominant. This likely carried the same factor for glabrousness that was carried by the type discovered by Nagai and Saito (1923). This is indicated by the fact that Owen (1927) made use of glabrous types from both sources in crosses with pubescent types and obtained similar results, so far as the inheritance of glabrousness was concerned. Seed of the recessive glabrous type was obtained through the kindness of Professor Wentz.

In our crossing experiments, we were successful in making a cross between the recessive glabrous type used as the female parent, and the dominant type used as the male. One pod was produced containing two seeds. The particular dominant glabrous plant used as a parent in this cross was a homozygous segregate from a cross between Medium Green and the original dominant glabrous type secured from Mr. Morse. In addition to dominant glabrousness from one parent, it had black pods and green cotyledons from the Medium Green parent. Since the green color of the cotyledons is, in this case, maternally inherited, it does not enter into consideration.

F1 RESULTS

The two F1 plants were grown in the greenhouse and were glabrous.

F2 RESULTS

Plants of the F2 generation were grown in the field in the summer of 1928. Both glabrous and pubescent plants were produced. Of a total of 232 plants grown, 183 were glabrous and 49 were pubescent. The data seem to fit a 13:3 ratio better than a 3:1, as evidenced by the fact that the deviation divided by the probable error on a 3:1 basis was 2.02, whereas on a 13:3 basis it was only 1.37.

The 13:3 ratio would be produced in F2 if the dominant glabrous parent is assumed to carry a factor for pubescence (P_2), but is inhibited from expressing the pubescent character by an inhibiting factor (P_1), and if the recessive glabrous parent is assumed to carry the recessive factor for pubescence (p_2) as well as the recessive inhibiting factor (p_1). The genetic constitutions of the parental, F1, and F2 generations, and the breeding behavior in F2 are as follows:
We should expect, therefore, that of 16 plants in the F2 generation, there would be the following types in the following ratio based upon their breeding behavior in the F2 generation.

\[
\begin{align*}
F2\text{ ratio} & \quad F3\text{ ratio} \\
13 \text{ glabrous} & \quad 7 \text{ would breed true for glabrousness} \\
16 & \quad 2 \text{ would segregate, } 3 \text{ glabrous: } 1 \text{ pubescent} \\
3 \text{ pubescent} & \quad 4 \text{ would segregate, } 13 \text{ glabrous: } 3 \text{ pubescent} \\
\end{align*}
\]

\(_{\chi^2 = 3.145} P = .5358^{2}

Due to lack of space, detailed data cannot be given. The authors would be glad to furnish a typewritten copy of the tables for the inspection of anyone particularly interested in seeing them.
ber in the progeny was smaller than desirable, especially for differentiation between 3:1 and 13:3 ratios. However, deviations and probable errors were calculated for each progeny for each ratio, and each segregating progeny from a glabrous parent was classed as a 3:1 or a 13:3 according to which ratio had the smaller quotient (deviation ÷ probable error), and therefore the better fit.

Some difficulty was experienced in classifying the progeny of pubescent F₂ parents. Thirteen progenies were classed as breeding true for pubescence, and 36 as segregating in a 3:1 ratio. Of those classed as breeding true, four produced a few glabrous plants. Thus one plant produced 29 pubescent: 2 glabrous, two plants each, 49 pubescent: 1 glabrous, and the fourth, 47 pubescent: 3 glabrous. It is not certain just how these anomalous results may be accounted for. The pods were picked off the plants and shelled by hand. For this reason, it is very unlikely that the glabrous plants are the result of seed mixture. As the F₂ plants were grown close together in the row so that the branches of adjacent plants were in contact, a certain amount of natural crossing may have occurred. It is known that natural crosses take place in soybeans more or less frequently, depending upon the variety, locality, season, and probably other factors. If a pollen grain from a dominant glabrous plant fertilizes an ovule on a pubescent plant, the seed thus produced will develop into a glabrous plant. Such mixtures, due to natural crossing, can not be identified in progenies of heterozygous or homozygous dominant parents, though they probably occur with equal frequency. We believe we are justified in classifying these four progenies with those breeding true for pubescence (1) because such wide deviations from a 3:1 ratio, due to chance alone, are improbable, and (2) because natural crosses are known in soybeans, and are known to have produced anomalous results in other genetic studies (Woodworth (1921); Stewart and Wentz (1926)).

Since the F₂ glabrous and pubescent plants tested in F₃ were not in the ratio of 13:3, it was necessary to correct the results before determining the deviation from the expected ratio. This procedure has been followed by Lindstrom (1917) in studies on aleurone and chlorophyll factors in corn, and by Woodworth (1921) in determining the genetic relation between cotyledon and seed-coat colors in soybeans. The correction is justifiable and necessary in the present instance, since the wide deviation from a 13:3 ratio in the numbers of F₂ plants tested is not due to segregation and recombination.

The low value of χ², and the consequent high value of P, (table 1) indicate that the above genetic hypothesis is the correct one. Hence, it appears
that the dominant type of glabrousness carried a pubescence factor \((P_2)\) and an inhibiting factor \((P_1)\), and the recessive type, the recessive allelomorphs of both \((p_1, p_2)\). It should be possible to isolate, by appropriate crosses, still a third glabrous type in homozygous condition; namely, that which is recessive for the pubescence factor \((p_2)\), but dominant for the inhibiting factor \((P_1)\). The genetic constitutions of the three homozygous glabrous types are \(P_1P_1P_2P_2\), \(P_1P_1p_2p_2\), and \(p_1p_1p_2p_2\).

Factor symbols \(P_1p_1\) and \(P_2p_2\) have been used in this case, in order to avoid revisions in symbolism respecting other character pairs in soybeans. It appears that Nagai and Saito (1923) in their experiments with the glabrous type, were really studying the effect of an inhibiting factor which prevented the production of hairs on the plant. Hence, \(P_1\) is retained but thought of as an inhibitor of pubescence rather than as a factor for glabrousness. Also, Stewart and Wentz (1926) were concerned with a single factor pair designated by them \(P_2p_2\), the dominant member producing pubescence, the recessive member, glabrousness. The inhibiting factor was recessive and therefore not involved in their experiments. The symbol \(I\) has usually been used to designate inhibition, but in soybeans this symbol is already in use to designate inhibition of black and brown pigments in the seed-coat. Hence, it appears simplest to retain \(P_1p_1\) and \(P_2p_2\) to express genetically the glabrous-pubescence relationship in soybeans.

POD COLOR

The dominant glabrous type used in the cross had dark or black pods \((L)\) and the recessive type light brown pods \((l)\). The \(F_1\) plants bore dark pods, and in \(F_2\) there was segregation for pod color in approximately a 3:1 ratio. Of a total of 232 plants, 183 were dark-podded, and 50 were light-podded. This represents a deviation of 8 from expectation, with a probable error of 4.908. The quotient \((\text{deviation} \div \text{probable error})\) is 1.63. Thus, one factor pair \((LL)\) is involved, and the results confirm those reported elsewhere (Woodworth (1923)).

RELATION BETWEEN POD COLOR AND PRESENCE OR ABSENCE OF PUBESCENCE

The cross between the dominant and recessive glabrous types affords an opportunity for determining whether there is any linkage between the factor pairs \(LL\) and \(P_1p_1\) or \(LL\) and \(P_2p_2\). The data are summarized in table 2.
The actual results obtained corresponded quite closely with those expected on the basis of independence between the factor pairs concerned.

Table 2

Classification of F2 plants showing independent relation between presence and absence of pubescence and pod color.

<table>
<thead>
<tr>
<th>Types</th>
<th>Actual Numbers</th>
<th>Expected Numbers</th>
<th>Expected Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glabrous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pubescent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pod Color</td>
<td>Dark</td>
<td>Light</td>
</tr>
<tr>
<td></td>
<td></td>
<td>146</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>141</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>39</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>232</td>
<td>64</td>
</tr>
</tbody>
</table>

$x^2 = 2.9416 \quad P = .40218$

It is, therefore, concluded that the factor pair Ll is independent of the factor pairs P_1p_1 and P_2p_2 for the presence and absence of pubescence.

SUMMARY

1. In a cross between a dominant glabrous and a recessive glabrous soybean, the F1 was glabrous and there was segregation in the F2 in the ratio of 13 glabrous to 3 pubescent plants. The F2 ratio was substantiated by the F1 results.

2. The data were interpreted as being the result of the interaction of two factor pairs P_1p_1 and P_2p_2. P_2 is responsible for pubescence; p_2 for glabrousness; P_1 inhibits P_2 from producing pubescence, thus causing glabrousness; p_1 has no effect on P_2. Thus three different pure types of glabrous plants are possible, namely, $P_1P_1P_2p_2$, $P_1P_1p_2p_2$, and $p_1p_1p_2p_2$. The pure pubescent type is $p_1p_1P_2P_2$.

3. In F2 two color types of pods were found, dark (L) and light (l). Segregation occurred in the ratio of 3 dark to 1 light.

4. The presence or absence of pubescence was found to be inherited independently of pod color.

LITERATURE CITED

GENETICS 14: S 1929

