Molecular Polymorphism in the *period* Gene of *Drosophila simulans*

Ezio Rosato,*+ Alexandre A. Peixoto,† Guido Barbujani,† Rodolfo Costa* and Charalambos P. Kyriacou†

*Dipartimento di Biologia, Università di Padova, 35121 Padova, Italy, †Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom, and ‡Dipartimento di Scienze Statistiche, Università di Bologna, Bologna, Italy

ABSTRACT

The throneine-glycine (Thr-Gly) repeat region of the *period* (*per*) gene of eight natural populations of *Drosophila simulans* from Europe and North Africa was analyzed by polymerase chain reaction, DNA sequencing and heteroduplex formation. Five different length alleles encoding 21, 23, 25 and two different kinds of 24 Thr-Gly pairs in the uninterrupted repeat were found. In the 3' region flanking the repeat 6 nucleotide substitutions (3 synonymous, 3 replacement) were observed in three different combinations that we called haplotypes I, II and III. The complete linkage disequilibrium observed between the haplotypes and these length variants allowed us to infer from the repeat length, the DNA sequence at the 3' polymorphic sites. The haplotypes were homogeneously distributed across Europe and North Africa. The data show statistically significant departures from neutral expectations according to the Tajima test. The results suggest that balancing selection might have played a role in determining the observed levels and patterns of genetic diversity at the *per* gene in *D. simulans*.

The sex-linked *period* gene in *Drosophila* represents the best studied “behavioral” gene in any eukaryotic organism. Mutations in this gene disrupt the fly’s normal 24-hr circadian behavior (Konopka and Benzer 1971), and have corresponding effects on both the male’s 60-sec ultradian lovesong rhythm (Kyriacou and Hall 1980, 1989), and the infradian 10-day developmental cycle (Kyriacou et al. 1990). The *period* gene has been cloned and sequenced in *Drosophila melanogaster* (Bargiello and Young 1984; Reddy et al. 1984; Jackson et al. 1986; Citri et al. 1987), *Drosophila pseudoobscura* and *Drosophila virilis* (Colot et al. 1988), *Drosophila yakuba* (Thackeray and Kyriacou 1990), and *Musca domestica* (A. Piccin, personal communication). Comparison of these sequences reveals a patchwork of conserved areas interspersed with highly variable regions. One of the variable regions is in the middle of exon 5 and encodes a series of about 20 throneine-glycine (Thr-Gly) repeats in *D. melanogaster* (Citri et al. 1987). The region is polymorphic in length in both laboratory and natural populations (Yu et al. 1987; Costa et al. 1991), but the major length variants in Europe appear to be the (Thr-Gly)17 and the (Thr-Gly)26 alleles (Costa et al. 1992). These two variants show a highly significant geographical differentiation in Europe, producing a robust latitudinalcline with the (Thr-Gly)20 and (Thr-Gly)17 alleles predominant in Northern and Southern Europe, respectively (Costa et al. 1992).

The Thr-Gly repeat is found in all species of the *melanogaster* subgroup (Peixoto et al. 1992), although the length of the motif differs between species. In other species, however, the Thr-Gly encoding repeat is very small, or a different repeat is present which also shows length variation, as in *D. pseudoobscura* (Colot et al. 1988, Costa et al. 1991; Peixoto et al. 1993; J. Nielsen, A. A. Peixoto, A. Piccin, R. Costa, C. P. Kyriacou and D. Chalmers, manuscript submitted for publication). Remarkably the Neurospora clock gene, frequency (*frq*) also has a small Thr-Gly repeat and some flanking similarities to *per* (McClung et al. 1989).

Wheeler et al. (1991) reported length variation in the *Thr-Gly* repeat region of *D. simulans*, together with a surprising amount of amino acid polymorphism immediately 3' to the *Thr-Gly* repeat. The interspecific amino acid differences in the 3' flanking region appeared to be responsible for the species-specific differences between *D. melanogaster* and *D. simulans* in the male lovesong cycle (Wheeler et al. 1991). Furthermore, in *D. melanogaster*, the removal of the uninterrupted *Thr-Gly* repeat resulted in a marked change in the period of the lovesong cycle (Yu et al. 1987) as well as in a loss of thermostability of the circadian locomotor activity phenotype (Ewer et al. 1990). Consequently this region of the *per* gene appears to be important both in determining features of species-specific mating behavior, and in affecting critical functional characteristics of the circadian locomotor activity cycle, with obvious evolutionary implications (Ashburner 1987; Petersen et al. 1988; Coyne 1992).

Given the interest in this part of the *per* gene, especially between the sibling species *D. simulans* and *D. melanogaster*, we have examined in detail the Thr-Gly and flanking regions in several natural populations of *D. simulans* from Europe and North Africa. We observe that there are two major haplotypes in each population which are homogeneously distributed across Europe and North Africa. The geographical pattern appears quite different from the clinal distribution observed in the length polymorphism of the Thr-Gly repeat in *D. melanogaster*. Moreover, our results indicate that the
pattern of nucleotide polymorphism in the region flanking the repeat does not correspond to the predictions of a neutral model of populations at equilibrium. We suggest that natural selection, perhaps in association with other factors, may have been important in determining the pattern of genetic variation at the per locus.

MATERIALS AND METHODS

Natural populations of D. simulans: D. simulans samples were collected from seven different localities within Europe plus one from Egypt. Samples from Andros (Greece) and Agios Nikolaos (Greece) were collected from the wild in September 1990. The samples from Peninsula (Spain) and Merano (Italy) were collected from the wild in October 1991. The flies were immediately frozen and DNA analysis performed on these individuals. In the case of the Patras (Greece) population, a random sample was taken from the F, progeny of more than 200 individuals collected from the wild in October 1991. Two individuals were also collected from Lyon (France) in October 1991. A number of isofemale lines were established immediately from a population collected in Antibes (France) in October 1991, and also from a population collected in Tanta, near Alexandria (Egypt) in October 1992. One male from each isofemale line from these two populations was crossed to females from a D. simulans attached-X chromosome line (XXyw/Y Stack No. 0251.17, Bowling Green Stock Center), and one male from the progeny of each attached-X line was studied. Finally, 16 females from a population taken from Gran Ferade in Bordeaux (France) in 1992, were used to set up isofemale lines, one male of each line being analyzed. Fifteen further males from the original wild population were immediately frozen and used for further analysis. In all, eight natural populations were studied, plus two individuals from Lyon.

Polymerase chain reaction (PCR) amplification, gel electrophoresis and DNA sequencing: Single fly DNA was used as a template in the PCR reactions and was prepared using the method of Gloor and Engels (1990). PCR amplification was carried out according to Jeffreys et al. (1988b) for 30 cycles (95° for 1 min, 65° for 1 min, and 70° for 1 min) either in a Perkin-Elmer Cetus or a MJ Research thermocycler. Double-stranded direct DNA sequencing was carried out using the Sequenase version 2.0 kit from U.S. Biochemical Corp. AmpliTaq polymerases from Perkin-Elmer Cetus or RepliTherm polymerase from Epicentro Technologies were used. The primers used for the PCR were the following: 5’ primers were 5’-CCCGTCCACGAGGGCGGCGGGCC-3’ (5006-5029) and 5’-ATACAGATGGAGCTTGTGAC-3’ (5066-5085); 3’ primers were 5’-CCCGCGACTCCCCGGGTCTTTTG-3’ (5365-5388) and 5’-TTTCCATCTCGTGGTTGTG-3’ (5386-5355).

A 3’ internal primer, 5’-GTCGCGGATTTGTCCATTT-3’ (5234-5253) was also used to check for length variation outside the uninterrupted Thr-Gly encoding repeat (see Figure 1). The primer positions (in parentheses) refer to the D. melanogaster sequence published by Citeri et al. (1987).

PCR amplified DNAs were electrophoresed through a 3.5% low melting point NuSieve (GTG) agarose gel. TBE buffer (0.045 M Tris borate, 0.001 M EDTA, pH 8.3) was used, and PCR-amplified DNAs from D. melanogaster stocks carrying 17, 20 or 23 uninterrupted pairs of Thr-Gly encoding repeats were used as markers (Costa et al. 1991).

Heteroduplex characterization of Thr-Gly length variation: First, each D. simulans Thr-Gly length variant was analyzed by agarose gel-electrophoresis after two independent PCR amplifications, one using a 3’ external, and the other using the 3’ internal primer (Figure 1).

Second, the length variants defined above were further characterized by co-amplification of each DNA, with a previously sequenced DNA from an isolength Thr-Gly allele. Co-amplification was made using a 1:1 ratio of the two DNAs. If a co-amplification produced a heteroduplex, this indicated a difference in the DNA sequence of the variant vs. the isolength standard. When this occurred, the new isolength variant was sequenced, and subsequently used as a standard for further co-amplifications against all the other isolength alleles. This procedure allowed us to validate whether our isolength sequences have the same or a different pattern in the Thr-Gly encoding ACN GGN codons.

RESULTS

PCR and DNA sequence analysis: We analyzed the Thr-Gly encoding repeat region of 212 single flies from the eight natural populations of D. simulans, plus 2 individuals from Lyon. The first approach, using the 5’ and the 3’ external primers (Figure 1) resulted in a grouping of all the length variants into two electrophoretic classes, the “(Thr-Gly) ,,-like” and “(Thr-Gly) 27-like” (Figure 2A). The only exceptions were two identical shorter variants from the Antibes population (see below).

Further PCR amplification using the 3’ internal primer revealed a more complex pattern, due to a deletion occurring downstream of the 3’ internal primer and, consequently, upstream of the 3’ external primers (see Figure 2B). The sequencing of these variants revealed that the polymorphism was due to the deletion of 12 nucleotides encoding a “Thr-Gly-Thr-Gly” motif, 6 amino acids downstream of the main uninterrupted Thr-Gly repeat (Figure 1). Length variation due to this deletion has been previously described in this region of the per gene of D. simulans (Wheeler et al. 1991; Peixoto et al. 1992). Our results show that this deletion is common in D. simulans (see Figures 3 and 4), whereas in D. melanogaster it is rarely observed (Costa et al. 1992).

The combined use of the 3’ internal and external primers led to a new classification of the length variation. All the variants initially classified as “(Thr-Gly) 27-like” are in fact, uninterrupted (Thr-Gly) 24 alleles with
a deletion of the downstream "Thr-Gly-Thr-Gly" motif (see Figures 3 and 4). DNA sequencing of a number of (Thr-Gly)$_{24}$ alleles (see below) revealed that two different DNA sequences are encoded by this repeat and that these differed in the pattern of the Thr-Gly encoding ACN GGN codons (see Figure 5). These two isoleth members could be distinguished by using the heteroduplex technique as illustrated in Figure 2C (see also MATERIALS AND METHODS). The variants initially classified as "(Thr-Gly)$_{24}$-like" are in fact either (Thr-Gly)$_{24}$ alleles maintaining the "Thr-Gly-Thr-Gly" motif downstream or (Thr-Gly)$_{25}$ alleles with a deletion of this motif. The sequencing of the two shorter variants observed in the Antibes population revealed two identical (Thr-Gly)$_{24}$ alleles with a deletion of the "Thr-Gly-Thr-Gly" downstream motif.

Three to six individuals were chosen from each population and sequenced in the region which includes the uninterrupted repeat, within the fragment amplified between the 5' and 3' external primers. These individuals were chosen at random with respect to the length of the repeat. Rather, they represented all the length variants found within each population but they were randomly chosen within each group of length variant. Exceptions were the samples from Peniscola (Spain) and Patras (Greece), 30 flies each, in which all the individuals were sequenced as well as the two individuals from Lyon which were also sequenced. Overall, 92 sequences were described in this way.

Figure 3 shows the nucleotide sequences of the 5' and 3' regions flanking the uninterrupted repeat for the 92 individuals. No nucleotide substitutions were observed in the 5' region (84 bp). On the contrary, a total of six nucleotide substitutions (three synonymous, three replacement) were observed in the 3' region (69 bp; Figure 3). These substitutions were distributed in only three different combinations which are associated, in complete linkage disequilibrium, to specific Thr-Gly length variants. These combinations defined three main haplotypes (I, II and III). Haplotype I and II are associated, respectively, with the (Thr-Gly)$_{23}$ and (Thr-Gly)$_{25}$ length variants. Haplotype III is associated with two different (Thr-Gly)$_{24}$ alleles, which differ in the interspersed pattern of the ACN-GGN codons, and also with the rare (Thr-Gly)$_{21}$ length variant which was detected only in the Antibes sample. These haplotype III subtypes are called, respectively, IIIa, IIIb and IIIc.

Figure 4 shows the alignment of the putative Per protein in the Thr-Gly region encoded by these 92 sequences. The amino acids are numbered according to their relative position in the alignment. No amino acid substitutions between the haplotypes were observed upstream of the Thr-Gly repeat, but the C terminal region shows a Ser → Thr (S → T) replacement at position 91 in haplotype III compared to haplotypes I and II. Two further substitutions, Thr → Ala (T → A) at position 98 and Ile → Val (I → V) at position 100, were observed in
Figure 3.—DNA sequences from 92 individuals of *D. simulans* in the regions flanking the uninterrupted Thr-Gly repeat. The dots indicate conserved positions, the dashes indicate deletions. PE = Peniscosa (Spain), PA = Patras (Greece), ME = Merano (Italy), LY = Lyon (France), AG = Agios Nikolaos (Greece), An = Andros (Greece), AT = Antibes (France), TA = Tanta (Egypt), GF = Grand Ferade (France).
FIGURE 4.—The amino acid sequences of the Thr-Gly region for 92 individuals of *D. simulans*. Dots represent invariant amino acid positions, asterisks represent conserved amino acid substitutions, dashes represent deletions. The numbers at the bottom are used to label each amino acid position. PE = Peniscola (Spain), PA = Patras (Greece), ME = Merano (Italy), LY = Lyon (France), AG = Agios Nikolaos (Greece), An = Anderos (Greece), AT = Antibes (France), TA = Tanta (Egypt), GF = Grand Ferade (France).
FIGURE 5. DNA sequences of the uninterrupted Thr-Gly repeats. Five different alleles corresponding to 21, 23, 24 (a and b) and 25 Thr-Gly pairs were characterized. No point mutations were observed within the sequences for each length variant in the 82 D. simulans individuals sequenced. Different symbols are used to show the distribution pattern of different Thr-Gly encoding repeats. Asterisks indicate possible point mutations affecting a codon (see also Paxxory et al. 1993).
haptotypes II and III (compared with haplotype I). All the amino acid changes between the different haplotypes are conservative changes, for example, both Ser and Thr have -OH groups and both Ile and Val have alkyl side groups.

Figure 5 illustrates the DNA sequences of the uninterrupted Thr-Gly encoding repeat. These sequences differ not only in the number of the ACN-GGN codons encoding the Thr-Gly motif, but also in the interspersion pattern of these codons, as highlighted by arrows. These changes are caused by silent substitutions and slippage-like events, and have been studied in detail within D. melanogaster and the melanogaster subgroup of species (COSTA et al. 1991; PEIXOTO et al. 1992). Figure 6 shows two possible alignments of the two (Thr-Gly)$_{24}$ variants. In Figure 6A, 19 point mutations must be invoked in order to derive one sequence from the other. Figure 6B shows how it is possible to relate the two variants to each other more parsimoniously by postulating one deletion, one duplication plus two point mutations.

Analysis of diversity among populations: Table 1 reports the frequencies of the different Thr-Gly alleles in the eight natural populations of D. simulans as derived from the heteroduplex analysis. As we observed a complete linkage disequilibrium between the different uninterrupted Thr-Gly sequences and the 3'-polymorphic sites (Figures 3 and 4), the estimate of the frequency of each Thr-Gly length variant can also be considered indirectly as a good estimate of the frequency of the corresponding 3' sequences (see below).

Thr-Gly allele frequencies in the eight populations were compared by G tests. Two criteria were used for defining the repeat arrays; following EXCOFFIER et al. (1992) they will be referred to as the "phenetic" and "evolutionary." Under the phenetic criterion, alleles were considered different if their Thr-Gly repeats differed in length; in this way, haptotypes IIIa and IIIb, both encoding 24 repeats, were pooled. Conversely, under the evolutionary criterion, haptotypes IIIa and IIIb were treated as distinct entities, because their DNA sequence, albeit equal in length, were different.

Allele frequencies appeared homogeneous across localities under the phenetic ($G = 11.62$, 14 d.f., $0.5 < P < 0.9$) as well as under the evolutionary criterion ($G = 31.4$, 21 d.f., $0.05 < P < 0.1$). The Thr-Gly alleles encoding 23 and 24 repeats are the most common, and are represented in almost equal frequencies in all populations.

Tests of neutrality: The HKA (HUDSON et al. 1987) and the TAJIMA (1989a) tests of neutrality were initially applied to the two populations (Peniscola and Patras) in which sequences had been obtained for the complete fly samples. The results of the HKA tests are shown in Table 2, while the results of Tajima's tests are shown in Tables 3 and 4. We applied these tests only to the sequences flanking the perfect Thr-Gly repeats, excluding also the downstream deletion. The slippage-like events that have presumably occurred in the repeat region (COSTA et al. 1991), contradict the assumptions of the infinite-site model on which the tests are based (WATTERSON 1975; DOVER 1987).

The HKA (HUDSON et al. 1987) test compares within-species polymorphism and between-species divergence in two regions of the genome. The underlying hypoth-
period Gene Polymorphism

TABLE 2
Results of the HKA tests of neutrality

<table>
<thead>
<tr>
<th>Population</th>
<th>Compared locus/region</th>
<th>per (upstream region)</th>
<th>rosy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peniscola (Spain)</td>
<td>0.942</td>
<td>0.403</td>
<td></td>
</tr>
<tr>
<td>Patras (Greece)</td>
<td>0.942</td>
<td>0.403</td>
<td></td>
</tr>
</tbody>
</table>

The data obtained for the sequences flanking the Thr-Gly repeats of the D. simulans per gene was compared to two different loci/gene regions. One of the comparisons is with the data of KLIMAN and HEY (1993) from a fragment of the per gene which lies upstream of the Thr-Gly region and includes exons 2, 3, 4 and part of 5 (see Table 1 of their article). Only the exon sequences were used in this case. The second comparison is with the data of AQUADRO et al. (1988) from the rosy locus (see Table 7 of BEGUN and AQUADRO 1991). The published sequence of the D. melanogaster per gene (CITRI et al. 1987) was used for the calculation of the between-species divergence in the Thr-Gly region. None of the values is significant. The degrees of freedom are equal to one in all cases.

TABLE 3
Results of the Tajima tests of neutrality

<table>
<thead>
<tr>
<th>Population</th>
<th>Tajima's D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peniscola (Spain)</td>
<td>2.630**</td>
</tr>
<tr>
<td>Patras (Greece)</td>
<td>2.905**</td>
</tr>
</tbody>
</table>

Results of the Tajima tests of neutrality for the two populations where the complete sample of flies was sequenced. ** P < 0.01.

TABLE 4
Results of the Tajima tests of neutrality

| Population | Tajima's D
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of undetected singletons</td>
<td></td>
</tr>
<tr>
<td>Merano (Italy)</td>
<td>2.809**</td>
</tr>
<tr>
<td>Agios Nikolaos (Greece)</td>
<td>1.054</td>
</tr>
<tr>
<td>Androtos (Greece)</td>
<td>2.669**</td>
</tr>
<tr>
<td>Antibes (France)</td>
<td>2.629**</td>
</tr>
<tr>
<td>Tanta (Egypt)</td>
<td>2.819**</td>
</tr>
<tr>
<td>Grand Ferade (France)</td>
<td>2.957**</td>
</tr>
</tbody>
</table>

Results of the Tajima tests of neutrality for the populations where the frequencies of the different haplotypes were predicted from the Tajima D statistic shown in the last two columns assumes, respectively, one and two undetected singletons in each population (see Table 5).

* P < 0.05; ** P < 0.01.

The hypothesis is that, in the absence of selection, similar levels of genetic diversity should be detected in the comparisons, both within and between species. The sequences flanking the Thr-Gly repeat were compared to the data of KLIMAN and HEY (1993) for another region of per lying upstream of the Thr-Gly region and to the data of AQUADRO et al. (1988) from the rosy locus (see also BEGUN and AQUADRO 1991). No significant departures from neutral expectations were obtained in either of the two comparisons (see Table 2 for details).

In the Tajima test the number of segregating sites is compared to the average number of nucleotide differences between pairs of sequences (TAJIMA 1989a). Under
themselves.

As a consequence, a deficiency of rare haplotypes is also observed.

Note that because a complete linkage disequilibrium exists between the Thr-Gly length variants and the DNA sequences at these 3' polymorphic sites in the 92 individuals assayed, the DNA sequence for the samples from the other populations could be, in principle, inferred by examining the length of the Thr-Gly repeat. The error associated with this procedure is smaller than that of the other populations examined (Table 4), Agios Nikolaos (Greece) being the only exception. Therefore, even if we accept the highly conservative view that we missed the maximum number of singletons consistent with our sample sizes, it is highly unlikely that we had more than one false significant D value in the Tajima tests.

Thus our conclusions with the Tajima D statistic rest firmly with the results based on the complete data sets from Patras and Peniscola. Our further tests with the six incompletely sequenced populations add further weight to our conclusion but are tempered by the assumptions underlying the analysis.

DISCUSSION

Both *D. melanogaster* and *D. simulans* show length variation in the Thr-Gly encoding repeat of the *per* gene (Costa et al. 1991, 1992; Peixoto et al. 1992). However, a major difference between the species exists downstream of the repeat where in *D. melanogaster*, we have yet to detect any amino acid variation in the two common European variants, the (Thr-Gly)$_7$ and the (Thr-Gly)$_{20}$ alleles (Peixoto and Rosato, unpublished observations), whereas six nucleotide substitutions, only three of which are silent, have been observed in *D. simulans*. Such an intraspecific level of variability in the 3' flanking region is of the same order of magnitude as the variability between the two species (Wheeler et al. 1991; Peixoto et al. 1992). However, this apparently higher level of variability is not significantly different from that observed in other loci (see below). A further difference between *D. simulans* and *D. melanogaster* lies in the geographical pattern of variation within this region of...
the *per* locus. *D. melanogaster* shows a cline that is strongly correlated with latitude (COSTA et al. 1992), whereas the G-tests performed in this study reveal that the frequencies of the different haplotypes do not differ significantly among populations of *D. simulans*.

Tables 3 and 4 show that for both populations where the complete fly samples were sequenced, Peniscola and Patras, as well as for 5 out of 6 other populations where the haplotype frequencies were inferred from the Thr-Gly length variation, the Tajima D statistic was positive and highly significant. This was due to an excess of haplotypes I and III which differ in many substitutions and are observed in intermediate frequencies, each representing roughly 40% of all haplotypes examined. In addition, the departures from the expected haplotype frequencies are parallel in the seven populations of interest.

In general, deviations from a model of populations at equilibrium suggest that evolution has not occurred through a process of differentiation occurring at a constant rate through time (EXCOFFIER 1990). Accordingly, it seems necessary to identify one or more evolutionary factors that may have contributed to determining such deviations. In principle, these factors include balancing selection, incomplete admixture, and other demographic phenomena such as recent population bottleneck. Admixture and bottlenecks affect individual populations. It is hard to imagine that they can have occurred independently, and yet have had the same effect on populations distributed over a large region of Europe. On the contrary, our results require an explanation for the concordant departures from equilibrium expectations at different localities. Furthermore, bottlenecks amplify random allele-frequency fluctuations and should lead local populations to diverge. However, we observe only insignificant differences between them. Therefore, although bottlenecks and partial admixture may well have occurred in individual populations and may have played a relevant evolutionary role at the local level, other factors must be invoked to explain the continental pattern described here.

The sibling species *D. melanogaster* and *D. simulans* have a cosmopolitan distribution; average nucleotide heterozygosity in the latter appears to be three to sixfold as high as in the former, which could reflect differences in effective population sizes between the two species (KREITMAN 1991; AQUADRO 1992; KLIMAN and HEY 1993; HEY and KLIMAN 1993). However, large population sizes imply large opportunities for mutation to generate new variants (KIMURA 1983). In *D. melanogaster*, rare length alleles for the Thr-Gly region were found in most of the populations (COSTA et al. 1991). In *D. simulans*, on the contrary, only in the Antibes sample were rare length alleles detected, and in seven of our eight samples Tajima tests showed a significant deficiency of rare haplotypes. As a consequence, effects of population sizes cannot, by themselves, explain the findings of this study.

The results of the Tajima tests (Table 3 and 4) show significant departures from a strictly neutral model of molecular evolution. On the other hand, the HKA test (Table 2) failed to show any significant excess of diversity at the sequences flanking the Thr-Gly repeats in *D. simulans*, relative to the expectations of the neutral theory derived from comparison to an independent locus, *rosy* (AQUADRO et al. 1988, 1993), and to another region of *per* (KLIMAN and HEY 1993). This is not the first time that different results have been obtained between these two tests in comparisons with these species (KREITMAN and HUDSON 1991; BEGUN and AQUADRO 1991). Both tests compare the data to neutral expectations, but they differ in their meaning of neutrality. The HKA test examines whether the number of polymorphic sites is significantly different from an expected value which is based on the comparison of the amount of polymorphism within *D. simulans* at two loci, and the divergence at these loci between *D. simulans* and its sibling species *D. melanogaster*. The Tajima test asks whether the average number of pairwise nucleotide differences is consistent with the observed number of segregating sites.

The most trivial explanation for the different results between the two tests is that the rejection of the null hypothesis in the Tajima test may be due to a type I error. Perhaps the eight independent populations represent the descendants of just one well mixed population which relatively recently expanded into Europe, as with *D. melanogaster* (DAVID and CAPF 1988).

Alternatively, the HKA test has several assumptions which may have been violated with our populations. For example one of these is that there should be no ancestral polymorphism segregating between the two species (FORD et al. 1994). In fact PEIXOTO and co-workers (1992) have examined the evolution of the Thr-Gly repeat and flanking region in the *D. melanogaster* subgroup of species and suggested that the major variants seen in *D. simulans* probably derive from an ancient polymorphism which could have been present in the common ancestor of *D. simulans* and its sibling species. Similar conclusions were reached by KLIMAN and HEY (1993) based on a polymorphic 1.9-kb fragment of *per* which lies upstream of the Thr-Gly repeat. Secondly the assumption that there should be free recombination between loci is also violated in the comparison of our *per* sequences with those from KLIMAN and HEY (1993), thereby making the HKA test more conservative. Finally the upstream sequences of *per* and *rosy*, that we used were taken from different worldwide localities and this may have artificially inflated the variation in these sequences. Again this would have had the effect of making the HKA test more stringent (BEGUN and AQUADRO 1991).

Both the Tajima and the HKA test assume a constant population size at equilibrium and infinite sites model of mutation. This means that the number of nucleotide
Figure 7.—The polymorphic sites in the D. simulans haplotypes compared with the same region in D. melanogaster (CITRI et al. 1987).

Figure 8.—A parsimony tree of the D. simulans variants rooted with the melanogaster sequence.

differences between haplotypes should be proportional to the time elapsed since their common ancestry. Figure 7 shows the sequences for each haplotype compared to that of D. melanogaster, and we have constructed the most parsimonious phylogenetic tree for these data (Figure 8). Note that the number of base changes in each branch of the D. simulans lineage are the same suggesting that the two major haplotypes are ancient. Figure 9 shows the repetitive Thr-Gly sequences for the same haplotypes and again, we have generated a parsimonious phylogeny which incorporates the putative deletion-insertion events by which we can derive the different variants. The tree in Figure 10 looks extremely similar to that shown in Figure 8 based on the downstream non-repetitive sequences, supporting the view that the numbers of differences between the different haplotypes are proportional to the time since their common ancestry. Thus the infinite sites assumption underlying our statistical tests appears to be supported. However we must add that a number of different phylogenies are possible when comparing the repetitive sequences and even though they all give similar topologies, the number of insertion-deletion events is not always similar on the branches that descend from each side of the root. It is extremely difficult to choose between the different trees as there is no sensible criterion on which to judge whether the different insertion-deletion events are all equally probable. In other words this approach using the repetitive sequence cannot give an unambiguous answer to the question of whether the infinite sites model of mutation can apply.

Another assumption of both tests is a constant population size at equilibrium. If the population size for D. simulans has recently decreased, rare variants may have been lost, and the number of polymorphic sites may have been reduced. However the average number of pairwise differences would be affected less than the number of polymorphic sites (TAJIMA 1993b). The implications are that the HKA test would give a nonsignificant result because it would not take into account average pairwise differences, but a significant D value in the Tajima test would still be obtained. However this explanations seems unlikely because KLI MAN and HEY (1993) did not report significant D values for un upstream region of per as well as for sequences within the zest e and the yp2 genes, and a reduction in population size would be expected to affect all loci equally.

Perhaps the different portions of the genome we are considering did not evolve at the same rate. Selective effects may have reduced variation at one site, while leaving other sites unaffected. Figure 8 shows that both the major haplotypes, I and III, look old. However, the trees in Figure 8 show that the two (Thr-Gly)24 variants, a and b, which we classify as haplotype III, do not connect to the same depth in the tree. In fact the (Thr-Gly)24 variant appears to be more recent than the (Thr-Gly)24. Interestingly the (Thr-Gly)24 allele is also the most frequent variant and, in the contrast to the (Thr-Gly)24, has been found in all the localities examined. Perhaps a selective substitution is in progress involving the (Thr-Gly)24 variant. In evolutionary processes, when the frequency of an allele does not reflect its age it suggests that the frequency may not be determined by drift and selection might come into play. Note that because the two (Thr-Gly)24 variants have the same amino acid sequence in the Thr-Gly region, we might speculate that any selection could be acting on a nearby linked site. Examining the rhythmic behavior of these two variants might
reveal differences between them which could be visible to selection.

If natural selection has acted to change the effective population size of this portion of genome we have studied the positive value for \(D\) could reflect the effects of balancing selection. The variants involved would remain in the population for a longer period of time than expected by the action of drift, thereby accumulating excess polymorphism. The extent of the extra polymorphism will depend on the mutation rate, effective population size and recombination rate (Hudson and Kaplan 1988). As the number of extra polymorphic sites will depend on time, these will not be expected to be numerous if the balanced polymorphism is a new phenomenon, for example if it was a feature of a relatively recent colonization of Europe. However if the haplotypes are in high frequencies, as in our case, the contribution to the average pairwise differences even of a small number of polymorphic sites would be relatively large giving the positive value for \(D\). In contrast, the HKA test has relatively little power to detect departures from neutrality given a small number of extra polymorphic sites, and the use of the \(\chi^2\) distribution to assess the test’s significance assumes that measures of variation are approximately normally distributed which is more likely when the number of polymorphic sites is large (H. Hilton, R. Kliman and J. Hey, manuscript submitted for publication).

In addition to the results of Tajima’s test there is further evidence in favor of selection as a factor determining genetic homogeneity among populations at the per locus. The insignificant \(G\) test for heterogeneity calculated under the phenetic criterion indicates that variants of equal length occur at the same frequency across localities. However, the processes whereby these variants accumulated may have been different in certain populations, as shown by the fact that the \(G\) test, calculated under the evolutionary criterion, is much closer to significance. In other words, what is constant across localities is the frequency of length phenotypes, and perhaps not the particular DNA sequences encoding them; different alleles of equal length have reached the same pooled frequency in each population. Thus the excess of haplotypes I and III may result from some form of balancing selection. In Wright’s terms the coexistence of two length variants at higher-than-expected frequencies may represent an adaptive peak, which all populations, except perhaps for Agios Nikolaos, have climbed.

Whatever the interpretation of the population homogeneity observed in \(D.\) simulans, it is interesting to note that once again, different pattern of polymorphism are observed in \(D.\) melanogaster and \(D.\) simulans (Anderson and Oakeshott 1984; Aquadro 1992). Why does the same gene show such a radically different pattern of geographical variation in \(D.\) melanogaster, where a robust latitudinal cline is observed in Thr-Gly length (Costa et al. 1992) compared to \(D.\) simulans with its apparent spatial homogeneity? This is puzzling but seems to conform to Dobzhansky’s (1962) distinction between what he called "rigid" and "flexible" polymorphisms. An analogous situation exists where "temporal fluctuation" takes the place of "geographical variation" in inversion frequencies of the sibling species \(D.\) pseudoobscura and Drosophila persimilis. Inversion frequencies fluctuate significantly less in \(D.\) persimilis than in \(D.\) pseudoobscura both between seasons and between years (Coyne et al. 1992).

The evidence obtained so far does not allow us to define the relative roles of the Thr-Gly repeat, and of the flanking regions, in the interplay with any external factors which might conceivably be determining levels and patterns of genetic variation. At this present time one view might be that different selective regimes maintain the cline in \(D.\) melanogaster and the geographically homogeneous distribution of haplotype frequencies in \(D.\) simulans. Similar conclusions with regard to \(D.\) simulans have been made by Aquadro and co-workers with their American populations (C. Aquadro, personal communication). In these selection regimes, an important role could have been played by differences in the effective population size between the two species. In a larger population, such as \(D.\) simulans, genetic drift is less important as an evolutionary factor, but selection against slightly deleterious mutants is more efficient. This hypothesis has been proposed as an explanation for the lower allozyme variation in \(D.\) simulans than in \(D.\) melanogaster (Aquadro et al. 1988). It could account for the lower genetic variance observed for some adaptive characters (David and Bouquet 1975; Hoffmann and Parsons 1993) and in our case for the deficiency of rare variants in the Thr-Gly region of per in \(D.\) simulans. Thus, although both species were genetically versatile enough to colonize temperate regions, the greater "potentially adaptive" genetic variation in \(D.\) melanogaster may have permitted a spatial differentiation in Europe in contrast to \(D.\) simulans. Perhaps this is why \(D.\) melanogaster shows clines for many more characters than \(D.\) simulans (David and Bouquet 1975; Anderson and Oakeshott 1984; Hoffmann and Parsons 1993; Aquadro 1992).

However, it may be that a linkage disequilibrium exists between this region and another site in \(D.\) simulans causing the different spatial patterns. In \(D.\) melanogaster the (Thr-Gly)\(_{17}\) and (Thr-Gly)\(_{20}\) variants differ by one deletion/insertion event involving three Thr-Gly pairs (Costa et al. 1991). Repetitive DNA can mutate at extremely high rates (Jeffreys et al. 1988a, 1990) and it is therefore conceivable that the (Thr-Gly)\(_{17}\) allele may be "flipping" to the (Thr-Gly)\(_{20}\) variant and vice versa at high frequencies. This would effectively destroy any strong linkage disequilibrium because flanking markers
will continuously be exchanged between the two variants. In *D. simulans*, on the other hand, it is difficult to see how the (Thr-Gly)$_{25}$ (haplotype I) and (Thr-Gly)$_{24}$ (haplotype III) variants can be derived from each other without invoking a number of overlapping deletion/insertion events, as well as point substitutions. Thus the mutation rate of the (Thr-Gly)$_{25}$ ↔ (Thr-Gly)$_{24}$ will be relatively slow and linkage disequilibrium could become a significant factor to explain the different pattern we observe between the species. Clearly the (Thr-Gly)$_{25}$ and (Thr-Gly)$_{24}$ *D. simulans* variants represent an ancient polymorphism (Peixoto *et al.*, 1992), and the regions adjacent but further from the Thr-Gly region may retain many ancestral differences. An interesting possibility is that the linkage disequilibrium between the Thr-Gly repeats and the downstream sequences observed in *D. simulans* might result from the type of epistatic selection that has been recently observed for other loci (BERRY and KREITMAN 1992; SCHEEFFER and MILLER 1993; MIYASHITA *et al.*, 1993).

To choose between the competing hypotheses which may explain these observations, there is a need for the different Thr-Gly haplotypes in each species to be investigated with respect to their behavioral phenotypes. This approach has generated considerable insight in understanding the clinal pattern observed in *D. melanogaster* (L. Sawyer, A. A. Peixoto, R. Costa, and C. P. Kyriacou, unpublished observations) Furthermore, the construction of *D. simulans* hybrid genes where the Thr-Gly repeat length and the downstream 3′ haplotypes are "mixed and matched," followed by transformation experiments may reveal subtle changes in rhythmic behavior. Such changes in circadian and ultradian cycles may have implications for fitness, so a thorough examination of these behavioral phenotypes may contribute to our understanding of the mechanisms which maintain these polymorphisms.

We wish to acknowledge a Science and Engineering Research Council grant to C.P.K., a Commission of the European Communities grant to C.P.K and R.C., a Brazilian CNPq scholarship to A.A.P., and an ERASMUS studentship to E.R. We also thank the British Council/MURST award for Anglo-Italian cooperation. We thank Charles Aquadro for allowing us to examine his unpublished results, Jooy Hye and an anonymous reviewer for their helpful comments.

LITERATURE CITED

period Gene Polymorphism

Communicating editor: W.-H. LI