Endpoint Bias in Large Tn10-Catalyzed Inversions in Salmonella typhimurium

Patrick J. Krug, Adam Z. Gileski, Robert J. Code, Anne Torjussen and Molly B. Schmid

Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544

Manuscript received August 23, 1993
Accepted for publication November 29, 1993

ABSTRACT
A genetic strategy identified Salmonella typhimurium strains carrying large (>40 kb) Tn10-catalyzed inversions; the inverted segments were characterized by XbaI digestion and pulsed field gel electrophoresis. Two size classes of large inversions were found. More than half of the inversions extended 40–80 kb either clockwise or counterclockwise of the original Tn10 site. The remaining inversions extended up to 1620 kb (33% of the genome), but the distal endpoints of these inversions were not randomly scattered throughout the chromosome. Rather, each Tn10 repeatedly yielded similar (though not identical) inversions. The biased endpoint selection may reflect the limited search for target DNA sequences by the Tn10 transposase, and the spatial proximity of the donor and target regions in the folded S. typhimurium nucleoid. Using this interpretation, the data suggest that DNA sequences 40–80 kb clockwise and counterclockwise of the insertion site are in spatial proximity with the insertion, perhaps reflecting the organization of DNA into ~120-kb nucleoid domains. In addition, the data predict the spatial proximity of several distant DNA regions, including DNA sequences equidistant from the origin of DNA replication.

The transposable element Tn10 can catalyze the inversion or deletion of DNA sequences adjacent to the insertion site (Ross et al. 1979; Kleckner et al. 1979; Kleckner 1989). These intramolecular transposition events require the interaction between the IS10-encoded transposase, the inside ends of the two IS10 elements, and a distant DNA target. Cleavage of the inside ends of the IS10 element and ligation with the target DNA result in loss of the tetracycline-resistance genes, and formation of an adjacent chromosomal deletion or inversion (see Figure 1). Previous work has shown that 90% of the inversions catalyzed by Tn10 are caused by exchanges at target sites less than ~45 kb from the site of the Tn10 insertion; the larger inversions have not been previously characterized (Kleckner et al. 1979; Kleckner 1989; Shen et al. 1987). While the size of a deletion is limited by the locations of essential genes, inversions are not subject to this size limitation.

The Tn10-catalyzed inversions and deletions have relatively simple enzymatic requirements that have been defined both in vivo and in vitro. For inversion or deletion formation, the IS10-encoded transposase performs all of the required cleavage and ligation reactions, using the inside IS10 ends. Host factors, such as IHF and HU proteins, are not required in vitro when the inside ends of IS10 are used, nor do mutations in the genes encoding these proteins affect the frequency of IS10-catalyzed inversions in vivo (Morisato and Kleckner 1987; Roberts et al. 1985). The activity of the IS10 ends, and transcription from the transposase promoter are both stimulated by hemi-methylated DNA, which will exist just after the replication fork passes the Tn10 site, and before the Dam-system can re-methylate the DNA (Campbell and Kleckner 1988, 1990; Morisato and Kleckner 1987).

The transposase enzyme is not freely diffusible in vivo. Synthesized from IS10-right, the transposase preferentially binds to nearby IS10 ends, and has difficulty complementing in "trans." As the IS10 ends are separated, transposition activity decreases about 40% per kilobase (Morisato et al. 1983). Other bacterial transposons, such as Tn5 and IS903, have similarly "cis-acting" transposases (Delong and Swanen 1991; Derbyshire et al. 1990). The chromosomal target site selected in Tn10-mediated inversions is also preferentially nearby. Most of the inversions generated from a hisG:Tn10 insertion were within ~45 kb of the insertion site (Kleckner et al. 1979). Selection of a target site for IS10 transposition lacks this preference for nearby DNA, perhaps resulting from excision of the IS10 transposase complex and diffusion of the complex to the chromosomal target (Shen et al. 1987).

The organization of the bacterial nucleoid will result in the juxtaposition of DNA sequences that are not linearly contiguous. No direct experiments have yet shown whether spatially neighboring DNA sequences provide "nearby" targets for the transposase. If the search for target sites is within a limited volume surrounding the insertion, then large Tn10-catalyzed rearrangements would be expected to reflect this limited search. If the folded bacterial nucleoid is sufficiently organized, then a limited search for distant target sites would be expected to produce a bias in the

1 Current address: Scripps Institute of Oceanography, University of California at San Diego, La Jolla, California 92093.
3 Current address: Biology Department, University of Rochester, Rochester, New York 14627.
4 To whom correspondence should be addressed.
endpoints of large transposase-catalyzed rearrangements. This bias could provide clues to the folding pattern of the in vivo nucleoid.

Large inversions formed by Tn10 may provide a genetic tool to assess in vivo nucleoid structure. The endpoints of large Tn10-catalyzed inversions will document the DNA target sequences most frequently able to physically interact with the IS10 inside ends during the time when the transposase is active. The temporal regulation of the Tn10 transposase may provide a technical advantage if the DNA folding pattern changes through the cell cycle. No evidence yet shows whether the organization of DNA in the bacterial nucleoid is random, fixed, or dynamic. If the DNA is randomly arranged in different cells, or if the DNA is sufficiently flexible, all Tn10-catalyzed inversion endpoints will be equally likely, whether or not there is a limited volume search for target sites by the transposase. However, we have found that the endpoints of large Tn10-catalyzed inversions are highly biased.

MATERIALS AND METHODS

Strains: All strains were derived from Salmonella typhimurium strain LT2, and were stored at -80°C in 0.8% dimethyl sulfoxide (DMSO). The parental strains for these experiments were made by transducing Tn10 insertions into the strain SE5017, which carries the leu-485 mutation. Table 1 lists the parental strains.

Media: Fusaric acid medium for selection of tetracycline-sensitive strains. Tn10 catalyzes rearrangements, Tn10-mediated rearrangements. Tn10 catalyzes deletion or inversion of adjacent chromosomal sequences, using the inside ends of the IS10 elements. In both of these events, the sequences between the IS10 elements are deleted. Thus, the Tn10-catalyzed inversions also delete the tetracycline-resistance genes, and are also known as "inversion/deletions" (Kleckner et al. 1979). For simplicity, these events are referred to as "inversions" in the text.

Selection of tetracycline-sensitive strains: Cells from frozen (-80°C) stocks of the parental Tn10-containing strains were streaked onto LB agar and incubated overnight. From these plates, ten colonies per strain were picked and cultured overnight in LB broth to create independent cultures. These cultures were diluted 100-fold, and aliquots were plated onto fusaric acid medium plates (Maloy and Nunn 1981), and incubated for 48 hr at 37°C. Putative tetracycline-sensitive colonies were purified once by streaking onto fusaric acid medium, then tested for tetracycline resistance or sensitivity. Overnight cultures of the tetracycline-sensitive derivatives were used in "spot transductions," which tested the frequency of transduction repair of the Tn10-induced auxotrophy. For these spot transductions, E plates supplemented with leucine were seeded with 0.1 ml of P22 HTint grown on a wild-type host (~10^9 pfu/ml), then spotted with 0.02 ml of overnight cultures, and incubated 36 hr at 37°C. The distinction between wild-type transduction frequencies and low transduction frequencies was generally very clear from the spot tests. Several infrequently transduced strains from each independent culture were retested by full-plate transduction crosses. From each independent culture, one strain with low transduction frequency (less than 10% of the wild-type number of transductants) was chosen and saved by storage in 0.8% DMSO at -80°C. The remaining strains were discarded. In all cases, transduction of other markers (such as the leu-485 mutation) occurred at wild-type frequencies.

Isolation of high molecular weight DNA: The protocol accompanying the New England BioLabs ImBed Kit (catalog no. 375) was slightly modified. Overnight cultures (3 ml) were grown at 37°C in LB broth, then spun down and resuspended in 0.5–1 ml "cell suspension solution" (10 mM Tris-HCl pH 7.2, 20 mM NaCl, 100 mM EDTA). Equal volumes (0.5 ml each) of resuspended cells and 1.6% molten low melting point agarose (NuSieve GT, FMC BioProducts) were mixed together, drawn into a 1-ml syringe, then allowed to harden 15–30 min at room temperature. The agarose cells were transferred to one well of a 6-well microtiter dish (Corning no. 25810-6), and cut into three pieces for easier handling. Lysozyme solution (4 ml of 1 mg/ml lysozyme in 10 mM Tris-HCl pH 7.2, 50 mM NaCl, 100 mM EDTA, 0.2% Na2-deoxycholate, 0.5% N-lauryl sarcosine-Na+) was added to each well, incubated 2 hr at 37°C, then aspirated from the wells. "Wash solution" (4 ml of 20 mM Tris-HCl, pH 8.0, 50 mM EDTA) was added, incubated 15 min at room temperature, and then removed by aspiration; this step was repeated once. Proteinase K solution (4 ml of 1 mg/ml proteinase K in 100 mM EDTA, 1% N-lauryl-sarcosine-}

<table>
<thead>
<tr>
<th>Parental strain</th>
<th>Insertion</th>
<th>Total WT</th>
<th>Novel</th>
<th>Del</th>
<th>Odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE7970 trp-1042::Tnl0</td>
<td>21</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SE7971 dco553::Tnl0</td>
<td>8</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SE8980 pyra2276::Tnl0</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SE8981 pyra2277::Tnl0</td>
<td>10</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>SE7968 purD877::Tnl0</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Columns 1 and 2: parental strain number and Tnl0 insertion. Each of these strains also carries the leu-485 mutation. Column 3: the total number of independently derived large rearrangements. Columns 4–8: number of strains with wild-type XbaI pattern (WT); novel XbaI pattern but wild type amount of DNA (Novel); XbaI pattern interpreted as an adjacent deletion (Del); or uninterpretable XbaI patterns (Odd). Strains with wild-type or novel XbaI patterns were shown to carry large inversions.

TABLE 1
Summary of XbaI digests

Parental strain Insertion	Total WT	Novel	Del	Odd
SE7970 trp-1042::Tnl0 | 21 | 16 | 5 | 0 | 0
SE7971 dco553::Tnl0 | 8 | 0 | 7 | 1 | 0
SE8980 pyra2276::Tnl0 | 10 | 8 | 2 | 0 | 0
SE8981 pyra2277::Tnl0 | 10 | 4 | 3 | 2 | 1
SE7968 purD877::Tnl0 | 7 | 1 | 5 | 1 | 0

Columns 1 and 2: parental strain number and Tnl0 insertion. Each of these strains also carries the leu-485 mutation. Column 3: the total number of independently derived large rearrangements. Columns 4–8: number of strains with wild-type XbaI pattern (WT); novel XbaI pattern but wild type amount of DNA (Novel); XbaI pattern interpreted as an adjacent deletion (Del); or uninterpretable XbaI patterns (Odd). Strains with wild-type or novel XbaI patterns were shown to carry large inversions.

Isolation of high molecular weight DNA: The protocol accompanying the New England BioLabs ImBed Kit (catalog no. 375) was slightly modified. Overnight cultures (3 ml) were grown at 37°C in LB broth, then spun down and resuspended in 0.5–1 ml "cell suspension solution" (10 mM Tris-HCl pH 7.2, 20 mM NaCl, 100 mM EDTA). Equal volumes (0.5 ml each) of resuspended cells and 1.6% molten low melting point agarose (NuSieve GT, FMC BioProducts) were mixed together, drawn into a 1-ml syringe, then allowed to harden 15–30 min at room temperature. The agarose cells were transferred to one well of a 6-well microtiter dish (Corning no. 25810-6), and cut into three pieces for easier handling. Lysozyme solution (4 ml of 1 mg/ml lysozyme in 10 mM Tris-HCl pH 7.2, 50 mM NaCl, 100 mM EDTA, 0.2% Na2-deoxycholate, 0.5% N-lauryl saronosine-Na+) was added to each well, incubated 2 hr at 37°C, then aspirated from the wells. "Wash solution" (4 ml of 20 mM Tris-HCl, pH 8.0, 50 mM EDTA) was added, incubated 15 min at room temperature, and then removed by aspiration; this step was repeated once. Proteinase K solution (4 ml of 1 mg/ml proteinase K in 100 mM EDTA, 1% N-lauryl-saronosine-
Na*, 0.2% Na-deoxycholate) was added, incubated 18 hr at 50°, then removed by aspiration. The plugs were washed with 4 ml wash solution (30 min at room temperature), then with wash solution with added phenylmethylsulfonyl fluoride (PMSF) (4 ml wash solution + 40 μl 0.1 mM PMSF; 1 hr at room temperature in a fume hood). Following this, three additional 4-ml incubations in wash solution (30 min each at room temperature), and two incubations (4 ml, 30 min at room temperature) in "storage solution" (2 mM Tris-HCl, pH 8.0, 5 mM EDTA), were performed. The DNA-agarose plugs were then stored in 5 ml storage solution at 4°. The microtiter box was sealed with parafilm, and DNA in the plugs was found to be stable for (at least) several months.

Restriction digestion: A ~0.5-mm (~10 μl) slice of the DNA-agarose plug was cut with a sterile scalpel blade, then transferred into 15 μl restriction enzyme buffer mix (total volume, ~25 μl). The DNA-agarose slice was pre-equilibrated on ice 15–30 min. The gel slice was removed with a spatula and transferred to a 50-μl reaction mix (total volume, 60 μl). The agarose was melted in a heat block for 10 min at 70°. (This step mixed the buffer and DNA and also inactivated endogenous nucleases still remaining in the plug. While we took precautions to minimize shearing in all steps, in our hands, this melting step was necessary to get good digestion without degradation of the DNA. Such melting resulted in no obvious DNA degradation in our hands.) Restriction enzyme was added: XbaI (New England BioLabs), 3 μl (20 units/μl); BlnI (Takara Biochemicals), 1 μl (8 units/μl). Digestion was at 37° for 4 hr. The plugs were again melted at 70° for 5 min just before loading. Pipetting was done carefully with "pipetman"-style pipetors, with the plastic tips cut to decrease shearing during pipetting. The wells were loaded (25 μl/well), then sealed with a drop of 1.6% low melting point agarose. Restricted DNA was found to be stable for at least 2 weeks when stored at 4°.

In the course of these experiments, we found that LT2-derived strains and leu-485-derived strains had single XbaI and BlnI band differences. The BlnA "B" band of LT2 (900 kb, Wong and McClelland 1992) was 850 kb in strains derived from a leu-485 background, while the XbaI "H" band is 230 kb in LT2 strains and 240 kb in leu-485 strains. This is consistent with at least one genetic difference (the leu-485 background has a glpR constitutive phenotype) that we have noted between these two strain backgrounds (Springer 1993). Potentially, the GlpR phenotypic change and the XbaI band change arise from the same mutation. In addition, we found that strains carrying a dam mutation have several additional XbaI cleavages. The XbaI site (TCTAGA) could overlap some of the dam methylation sequences (GATC), preventing cleavage at all the XbaI sites in wild-type strains.

Pulsed field gel electrophoresis: Agarose gels (1%, Sigma no. A-6013) were made with 0.5-cm wells, with 0.5 × TBE buffer (Sambrook et al. 1989). The gels were run at 14°C according to recommended pulse times/run times from one of the Chef-Mapper apparatus (Bio-Rad). Both ChefMapper apparatus and Bio-Rad Cheffil apparatus were used. Gels were stained with ethidium bromide (30 min), then destained and photographed.

Probability of distal inversion endpoint selection: Each inversion was treated as an independent Bernoulli trial, with all chromosomal sites equally likely to serve as an inversion endpoint. With five very large trp inversions, the probability of three or more endpoints landing within one 80-kb segment was calculated as a conditional probability: i.e., given the first endpoint (P = 1.0) what is the probability that two (or more) of the four remaining inversion endpoints will end within the same 80-kb interval?

This is given as:

\[\sum_{k=2}^{4} \binom{4}{k} p^k (1-p)^{4-k} \]

(Larsen and Marx 1986). For these calculations, we have conservatively assumed that 50% of the chromosome (~2400 kb) is "permissive" for inversion formation (Segall et al. 1988), thus, P = 80 kb/2400 kb, and the likelihood that the trp inversion endpoints occurred at random is \(6 \times 10^{-3} \). If a larger percentage of the chromosome is permissive for inversion formation, the inversion endpoint bias becomes more extreme, and the observed inversion endpoint distribution is less likely to have occurred at random.

RESULTS

Isolation of strains carrying Tn10-induced large chromosomal rearrangements: Isogenic parental strains were constructed, each with a different well-characterized Tn10 insertion, conferring both tetracycline resistance and a nutritional auxotrophy (see Table 1). Tetracycline-sensitive derivatives were isolated from each parental strain by selection on fusaric acid medium, upon which tetracycline-resistant strains cannot grow (Bochner et al. 1980; Maloy and Nunn 1981). The tetracycline-sensitive derivatives occurred spontaneously at a frequency of approximately \(10^{-4} \), consistent with previous measurements (Kleckner et al. 1979).

Tetracycline-sensitive strains harboring large chromosomal rearrangements (either deletions or inversions) were distinguished from other tetracycline-sensitive strains (point mutations, excisions, small inversions or small deletions) by a generalized transduction assay (see Figure 2). In these experiments "large" deletions or inversions were defined by the size of the P22 transduced fragment, approximately 45 kb. Strains carrying deletions or inversions larger than the size of a single transduced fragment will yield few Trp' transductants, since they require two transduced fragments for repair, a relatively infrequent event with sufficiently dilute transducing lysate (Schmid and Roth 1983a, b). Roughly 10% of the tetracycline-sensitive strains became much more difficult to transduce to prototrophy, suggesting that they had acquired large Tn10-induced chromosome rearrangements when they lost tetracycline resistance. Independently derived strains showing reduced transduction to prototrophy were saved for further analysis.

Analysis of inversion restriction patterns: The nature and size of the chromosomal rearrangements were documented by XbaI or BlnI digestion and pulsed field gel electrophoresis. Both the XbaI and BlnI restriction maps of S. typhimurium have been determined (Liu and Sanderson 1992; Wong and McClelland 1992).

Because the Tn10 element has a single XbaI site, a comparison of the XbaI pattern from a wild-type strain and the pattern from the parental Tn10-containing strain determined the precise physical location of each Tn10 insertion. For example, the trp-1042::Tn10 inser-
Figure 2.—(A) Method for identification of large rearrangements generated by trp::Tn10. (B) Either deletions or inversions larger than the size of a P22 transduced fragment (~45 kb) will be infrequently repaired by generalized transduction. (C) Trp lies within the Xbal "D" band. The Xbal site within Tn10 is lost, and BlnI sites within each IS10 element remain, after deletion or inversion. In the first inversion example, the inverted segment (shaded region) lies within the "D" band and yields a wild-type Xbal pattern, but a novel BlnI pattern, since IS10 elements bracket the inverted segment. In the second inversion example, an inversion between the trp site and a site in the Xbal "A" band yields a novel Xbal fragment pattern.

Figure 3.—Xbal digestion and pulsed field gel electrophoresis of strains derived from trp-1042::Tn10. Lanes 1 and 2, λ ladder (Bio-Rad) and Saccharomyces cerevisiae chromosomes (Bio-Rad); lane 3, SE7970 (trp-1042::Tn10); lane 4, SE5017 (leu-485); lanes 5–8, inversion strains SE8870, SE8868, SE8874, SE8872. Electrophoretic conditions: Bio-Rad Chef-Mapper, ramped pulse time: 24–79 sec; run time: 38 hr; 14".

DNA is not lost or gained in strains carrying large Tn10-induced inversions: Approximately 60% of the strains satisfying the genetic criteria for large inversions or deletions had wild-type Xbal patterns, a result that was
TABLE 2

Characteristics of individual inversions

<table>
<thead>
<tr>
<th>Strain</th>
<th>Parental Tn10</th>
<th>Missing WT XbaI bands</th>
<th>Novel XbaI bands (kb)</th>
<th>Inversion size (kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SE8859</td>
<td>trp-1042::Tn10</td>
<td>None</td>
<td>None</td>
<td>85 (CCW)</td>
</tr>
<tr>
<td>SE8868</td>
<td>trp-1042::Tn10</td>
<td>A, D</td>
<td>440, 825</td>
<td>510</td>
</tr>
<tr>
<td>SE8869</td>
<td>trp-1042::Tn10</td>
<td>A, D</td>
<td>480, 775</td>
<td>555</td>
</tr>
<tr>
<td>SE8870</td>
<td>trp-1042::Tn10</td>
<td>None</td>
<td>None</td>
<td>50 (CCW)</td>
</tr>
<tr>
<td>SE8871</td>
<td>trp-1042::Tn10</td>
<td>None</td>
<td>None</td>
<td>60 (CCW)</td>
</tr>
<tr>
<td>SE8872</td>
<td>trp-1042::Tn10</td>
<td>A, D</td>
<td>380, 880</td>
<td>953</td>
</tr>
<tr>
<td>SE8873</td>
<td>trp-1042::Tn10</td>
<td>None</td>
<td>None</td>
<td>35 (CCW)</td>
</tr>
<tr>
<td>SE8874</td>
<td>trp-1042::Tn10</td>
<td>A, D</td>
<td>400, 860</td>
<td>473</td>
</tr>
<tr>
<td>SE8875</td>
<td>trp-1042::Tn10</td>
<td>A, D</td>
<td>570, 130</td>
<td>355</td>
</tr>
<tr>
<td>SE8860</td>
<td>aroD553::Tn10</td>
<td>A, Q</td>
<td>70, 770</td>
<td>76</td>
</tr>
<tr>
<td>SE8861</td>
<td>aroD553::Tn10</td>
<td>C, Q</td>
<td>60, 650</td>
<td>1448</td>
</tr>
<tr>
<td>SE8862</td>
<td>aroD553::Tn10</td>
<td>G, Q</td>
<td>55, [240]</td>
<td>59</td>
</tr>
<tr>
<td>SE8863</td>
<td>aroD553::Tn10</td>
<td>A, Q</td>
<td>44, 810</td>
<td>43</td>
</tr>
<tr>
<td>SE8864</td>
<td>aroD553::Tn10</td>
<td>C, Q</td>
<td>140, 570</td>
<td>1528</td>
</tr>
<tr>
<td>SE8865</td>
<td>aroD553::Tn10</td>
<td>G, Q</td>
<td>45, 250</td>
<td>45</td>
</tr>
<tr>
<td>SE8866</td>
<td>aroD553::Tn10</td>
<td>G, Q</td>
<td>57, 235</td>
<td>59</td>
</tr>
<tr>
<td>SE9010</td>
<td>pyrA2276::Tn10</td>
<td>A, B</td>
<td>640, 850</td>
<td>1057</td>
</tr>
<tr>
<td>SE9011</td>
<td>pyrA2276::Tn10</td>
<td>A, B</td>
<td>600, 340</td>
<td>847</td>
</tr>
<tr>
<td>SE9013</td>
<td>pyrA2276::Tn10</td>
<td>None</td>
<td>None</td>
<td>60 (CCW)</td>
</tr>
<tr>
<td>SE9014</td>
<td>pyrA2276::Tn10</td>
<td>None</td>
<td>None</td>
<td>45 (CCW)</td>
</tr>
<tr>
<td>SE9015</td>
<td>pyrA2276::Tn10</td>
<td>None</td>
<td>None</td>
<td>45 (CCW)</td>
</tr>
<tr>
<td>SE9053</td>
<td>pyrA2276::Tn10</td>
<td>None</td>
<td>None</td>
<td>40 (CCW or CCW)</td>
</tr>
<tr>
<td>SE9018</td>
<td>pyrA2277::Tn10</td>
<td>E, B</td>
<td>58, 470</td>
<td>184</td>
</tr>
<tr>
<td>SE9019</td>
<td>pyrA2277::Tn10</td>
<td>A, B</td>
<td>1060, 430</td>
<td>847</td>
</tr>
<tr>
<td>SE9022</td>
<td>pyrA2277::Tn10</td>
<td>None</td>
<td>None</td>
<td>60 (CCW)</td>
</tr>
<tr>
<td>SE9025</td>
<td>pyrA2277::Tn10</td>
<td>G, B</td>
<td>840, 540</td>
<td>1618</td>
</tr>
<tr>
<td>SE9024</td>
<td>pyrA2277::Tn10</td>
<td>None</td>
<td>None</td>
<td>120 (CCW)</td>
</tr>
<tr>
<td>SE9025</td>
<td>pyrA2277::Tn10</td>
<td>A, B</td>
<td>500, 980</td>
<td>922</td>
</tr>
<tr>
<td>SE9054</td>
<td>pyrA2277::Tn10</td>
<td>None</td>
<td>None</td>
<td>50 (CCW)</td>
</tr>
<tr>
<td>SE9055</td>
<td>purD877::Tn10</td>
<td>E, F</td>
<td>95, 550</td>
<td>315</td>
</tr>
<tr>
<td>SE8894</td>
<td>purD877::Tn10</td>
<td>E, F</td>
<td>107, 550</td>
<td>297</td>
</tr>
<tr>
<td>SE8895</td>
<td>purD877::Tn10</td>
<td>E, F</td>
<td>112, 530</td>
<td>304</td>
</tr>
<tr>
<td>SE8896</td>
<td>purD877::Tn10</td>
<td>E, F</td>
<td>350, 300</td>
<td>60 (or 110)</td>
</tr>
<tr>
<td>SE8899</td>
<td>purD877::Tn10</td>
<td>E, F</td>
<td>112, 550</td>
<td>304</td>
</tr>
</tbody>
</table>

Columns 1 and 2: strain number of the inversion, and Tn10 insertion in the parent strain. The alphabetic name of the missing wild type bands (Liu and Sanderson 1992), and sizes of the novel bands are given for each strain. All other bands appeared identical to wild type. The calculated size of the inversion, based on the XbaI data, is given in the last column.

*Strain SE8862 had only one novel XbaI band. Another band of 240 kb was expected, but not definitively observed within the cluster of four wild-type XbaI bands in the 243–294 kb size range.

*Ambiguity remains regarding the size of this inversion.

predicted for inversions that lay entirely within the XbaI band of the parental Tn10 (see Figure 2). One strain with a wild-type XbaI pattern, derived from trp-1042::Tn10, is shown in Figure 3, lane 5. This inversion can extend from the trp site either clockwise (less than 340 kb) or counterclockwise (less than 120 kb), yet remain entirely within the XbaI “D” band. Such inversions will satisfy the genetic "transduction test," because the inversions are larger than 45 kb. There was no evidence of DNA loss or gain in any of these strains (other than the loss of the tetracycline resistance genes), since in all cases, the XbaI patterns were identical to wild type. BlnI digestion confirmed that many of these strains carried large inversions, and allowed determination of the endpoint locations of many of the trp::Tn10-induced and pyrA::Tn10-induced inversions that had wild-type XbaI fragment patterns (see below).

Two novel XbaI bands were expected in strains carrying sufficiently large inversions. Five strains derived from trp-1042::Tn10 had novel XbaI fragments. In four of these strains, the wild-type XbaI “A” and “D” bands were missing, and two new bands appeared. No other bands differed from wild type. The sum of the new band sizes was 1260 kb, identical to the sum of the wild-type XbaI “A” (800 kb) and “D” (457 kb) band sizes (see Figure 3, lanes 5–8). These patterns were expected of inversions between the trp::Tn10 site (in XbaI band “D”), and sites within the XbaI “A” band. Within experimental measurement, the sum of the novel band sizes was equal to the sum of the missing wild-type band sizes in all of the trp::Tn10-induced inversion strains as well as those derived from pyrA2276::Tn10, pyrA2277::Tn10, aroD553::Tn10, and purD877::Tn10 (see Table 2). Thus, the Tn10-catalyzed inversions that were characterized in this study showed no evidence of additional chromosome rearrangements, nor gross deletion or addition of DNA.

Distal endpoints of large inversion strains: The novel XbaI fragment patterns allowed more precise localiza-
tion of the distal inversion endpoints. The XbaI fragment patterns of three trp::Tn10-derived inversions are shown in Figure 3, lanes 6–8. The physical location of the trp::Tn10, and the sizes of the two novel bands were sufficient to calculate the location of the distal inversion endpoint with a twofold ambiguity. This twofold ambiguity occurred in the analysis of many of the inversions. In the trp inversions, for example, the ambiguity arose because the data did not distinguish whether band D gained 20 kb to become the novel 480-kb band, or whether band D gained 320 kb to become the novel 780-kb band. Either of two methods was used to resolve the ambiguity. Very often, the combined data from the pattern of XbaI digestion and the pattern of BlnI digestion were sufficient to determine which one of the two possibilities was correct. Alternatively, a Tn10 insertion was introduced into the inversion strains to provide a new XbaI site. The location of the Tn10 was chosen so that XbaI would cleave one of the two novel inversion XbaI fragments. In some cases, the sizes of the fragments and location of the parental Tn10 insertion allowed unambiguous determination of the inversion endpoint, and in a few cases, the ambiguity was not resolved.

In general, only the endpoints of the large inversions with novel XbaI patterns were determined, overall, about 40% of the large rearrangement strains. However, the percentage varied with each chromosomal site, depending on the size of the parental XbaI band, and the location of the Tn10 insertion within the XbaI band. The inversions generated by aroD553::Tn10 provided a unique case in which no wild-type XbaI patterns were expected. The aroD553::Tn10 insertion resides in the middle of the 49-kb XbaI “Q” band, which made it unlikely that an inversion internal to the “Q” band would satisfy the genetic criterion of non-transducibility. Of the eight aroD rearrangements analyzed, all had patterns different from wild type. Seven were interpreted as inversions, because two wild-type bands were missing, and two novel bands were detected. One strain was interpreted as a deletion, since the wild-type “Q” band was missing, but no other band changes were detected. Five of the aroD::Tn10-catalyzed inversions were relatively small–two extended counterclockwise 40–80 kb, while three extend clockwise 40–60 kb. Two other aroD::Tn10-catalyzed inversions (in strains SE8861 and SE8864) extended approximately 1450–1530 kb clockwise of aroD, ending within the XbaI “C” band. Remarkably, the distal endpoints of these large inversions were within 80 kb of one another, but were clearly not at the same site, as was obvious from the difference in novel band sizes (see Table 2).

The distal endpoints of the remaining large inversions were determined and suggested that each transposon had a small number of preferred distant target regions. Four of five purD877::Tn10-derived inversions extended 297–313 kb from the purD location (XbaI “F” band), into the neighboring XbaI “E” band. Three of five trp::Tn10-derived inversions extended 475–555 kb from the trp site (XbaI “D” band) into the XbaI “A” band. Three of five pyrA::Tn10-derived inversions extended 847–1057 kb into the XbaI “A” band. The pyrA::Tn10-derived large inversions originated from two pyrA::Tn10 insertions, known to have different sites of insertion. This suggests that the chromosomal location of the Tn10, rather than the specific insertion site, determined the preferred endpoint region. These results are listed in Table 2, and summarized graphically in Figure 4. Since the genetic criteria demanded only that the distal inversion endpoint lay more than ~45 kb from the site of insertion, the bias in distal endpoint location was surprising. The possible causes of this bias are explored further in the DISCUSSION.

Strains with wild-type XbaI patterns have altered BlnI patterns: Almost 60% of the Tn10-induced rearrangement strains had XbaI digestion patterns that were identical to wild type. To verify that these strains carried large inversions, the BlnI fragment patterns of several strains with wild-type XbaI patterns were determined. The enzyme BlnI cleaves within both IS10 elements. Thus, the BlnI pattern observed in the parental Tn10-containing strain should lack one wild-type fragment, and should have two novel fragments generated by BlnI cleavage at the site of the Tn10. (The ~8-kb Tn10 fragment between the IS10 insertions will not be seen in these gels.) In strains carrying a Tn10-mediated inversion, IS10 elements will bracket the inverted segment (see Figure 1), resulting in loss of at least one parental BlnI band, and the gain of two new BlnI fragments. The combined data from the XbaI digestion, and BlnI digestion were often sufficient to unambiguously determine the size of the inverted segment.

The BlnI patterns of several trp::Tn10-derived and pyrA::Tn10-derived inversions with wild-type XbaI patterns were determined, and the sizes of novel BlnI bands are given in Table 3. Most of the pyrA::Tn10-derived inversions were relatively short; four extended 40–60 kb counterclockwise of pyrA, and four extended 45, 45, 120 and 280 kb clockwise of pyrA. Likewise, four of the trp::Tn10-derived inversions with wild-type XbaI patterns were found to extend 35–85 kb, although all of these extended counterclockwise of the trp locus.

The BlnI patterns of the larger trp::Tn10-derived inversions (Table 3B) and aroD553::Tn10-derived inversions (data not shown) were determined. In all cases, these results were consistent with our interpretation of the inversion size based on the XbaI fragment patterns.

Additional IS10 transposition accompanies many large inversions: The BlnI digestion patterns of 6 of 16 inversion strains showed an extra BlnI cleavage site, in addition to those caused by the IS10 elements bracketing the inversion (see Table 3). The loss of a BlnI band
FIGURE 4.—Maps showing inversion endpoints. The arcs outside the Xbal chromosomal restriction maps indicate the inverted segments. Also shown (lower left) is a closeup view of the inversion endpoints within the Xbal "A" and "C" bands. A composite view (lower right) shows the relationship of the inversion endpoints to the origin and terminus of DNA replication. The position of aroD553::Tn10 differs from the position that would be inferred from the most recent S. typhimurium genetic map (SANDERSON and ROTH 1988), but is consistent with the map position of aroD determined by BENSON and GOLDMAN (1992). The positions of all parental insertions were confirmed by the Xbal digestion pattern of the parental strains.

unlinked to either the parental Tn10 insertion, or the inverted segment, and the appearance of two new bands whose sizes summed to the size of the lost band, suggested that these strains carried an additional IS10 element. Previous experiments documented that an additional IS10 transposition accompanied about 15% of Tn10-induced chromosome rearrangements (RALEIGH and KLECKNER 1984). We found that almost 40% (6/16) of the trp-1042 and pyrA::Tn10-derived large inversions had an extra BlnI cleavage site unlinked to either the initial Tn10 site or the distal inversion endpoint. The BlnI bands disrupted by the putative IS10 insertions are listed in Table 3.

Probability of the observed bias: The endpoints of very large inversions appeared clustered into preferred regions. We estimated the likelihood that the clustered inversion endpoints arose randomly (see MATERIALS AND METHODS). Three of the five very large inversions catalyzed by the trp-1042::Tn10 insertion lay in the Xbal "A" fragment within 80 kb of one another. If the endpoints were chosen at random, and if at least half of the chromosomal sites can give a viable inversion (see DISCUSSION), then the probability that three endpoints would occur within an 80-kb interval is less than 5×10^{-5}. Using similar assumptions, the likelihood that the very long inversion endpoints of aroD, purD and pyrA occurred by random selection, ranges from 2×10^{-2} to 1×10^{-6}.

DISCUSSION

In previous studies, large bacterial inversions were generated by recombination between homologous sequences engineered into different chromosomal sites (REBOLLO et al. 1988; SEGALL et al. 1988). In these experiments, some, but not all, pairs of chromosomal sites yielded inversions, and these results defined "permissive" and "non-permissive" inversion intervals (see also SEGALL and ROTH 1989; MAHAN and ROTH 1991). These intervals occurred as large contiguous blocks. When the
his operon was tested, 55% of the chromosome was included in a contiguous permissive arc, while 40% of the chromosome was in a contiguous non-permissive arc (Segall and Roth 1989).

All of the Tn10-generated inversions described here lay within "permissive" inversion intervals that were established by Segall et al. (1988). The natural inversion that distinguishes the order of genes in the terminus regions of Escherichia coli and S. typhimurium made comparison with the data of Rebollo et al. (1988) more difficult. However, the 40–60-kb aroD::Tn10 inversions, and the very large (~500 kb) trp::Tn10 inversions are similar to inversions that caused deleterious growth in E. coli (Rebollo et al. 1988). We did not observe any severe growth defect in the strains carrying these inversions, and we saw no evidence in the XbaI digestion patterns that the strains accumulated secondary rearrangements. The cause of these differences between S. typhimurium and E. coli is not obvious.

Thirty-four large inversions originating from five different Tn10s at four chromosomal locations were characterized in these studies. These inversions fell into two general size classes. Because of the genetic criterion in the isolation of these strains, the inversions were expected to be larger than ~45 kb. Of the characterized inversions, 16/34 (47%) were 35–85 kb in size. These relatively small inversions were expected based on the preference of Tn10 transposase for acting on "nearby" DNA. Among these relatively short inversions, there was no preference for the clockwise (6/12) or counterclockwise (6/12) direction in the aroD::Tn10 and pyrA::Tn10 inversions, although the trp::Tn10 inversions were all (4/4) counterclockwise of the trp insertion site.

The very large inversions document a bias in transposase selection of distant inversion endpoints. These endpoints were not chosen at random, which would have resulted in a scattering of distant endpoint locations. Rather, each insertion had a preferred inversion distant endpoint region (of ~100–200 kb) that was selected at least twice as often as all other distant locations combined. These results are consistent with the transposase search in a limited volume for a distant target, and an organized, relatively inflexible folded bacterial nucleoid in vivo.

The remaining inversions endpoints which lay in non-preferred regions may reflect a hierarchy of preference for the remaining chromosomal regions, or may show a random scatter of the non-preferred endpoints. Distinguishing between these possibilities must await more data. There was some preference for the inversion endpoints to end within the XbaI "A" and "C" bands. However, since some insertions did not yield these inversion endpoints (e.g., the parD877::Tn10-derived inversions ended within the XbaI "E" band), and since the pyrA, trp and aroD inversions targeted different locations within the XbaI "A"
and "C" bands (see Figure 4), we believe the apparent preference for these two regions is coincidental.

The large inversions had a high incidence of additional IS10 transposition events. These new IS10 insertions document additional target sites for the transposase. However, since the IS10-transposase complex may have a "free" intermediate state (Benjamin and Kleckner 1992), Tn10-mediated inversion and IS10 transposition may have different constraints. Tn10-mediated inversion must result in the ligation of linearly distant chromosomal sequences, an event which requires these chromosomal DNAs to at least temporarily be in extremely close physical proximity.

The data presented here and the extensive knowledge of Tn10 transposase reactions combined to eliminate some potential explanations for preferred distant inversion endpoint regions. First, although the distant inversion endpoints clustered, the inversions were not identical, since the novel bands differed in size. Thus, while the IS10 transposase is known to prefer certain "hotspot" sequences, which can be influenced by the sequence context (Bender and Kleckner 1992; Noel and Ames 1978; Kleckner et al. 1979), the preferred inversion endpoint regions are a different phenomenon.

The distant target region preferred by one Tn10 insertion is not preferred by all insertions. Because of this, the correct explanation must require a proper "match" between the donor and target sites. Thus, explanations for the preferred target regions that are based on the amounts of bound HU, IHF, or H-NS proteins, or on the level of DNA supercoiling, would require the unique combination of their amounts at the donor and target regions to explain the data. Similarly, we find the relatively infrequent transposition of Tn10 into transcriptionally active regions (Casadesus and Roth 1989) to be an unlikely explanation. Transcriptionally quiet chromosomal regions have not been identified in E. coli (Chuang et al. 1993). Nor is there currently any evidence of transient transcriptional inactivity of chromosomal regions during the replication cycle of E. coli or S. typhimurium.

What hypotheses can be entertained to explain these data? Three general conditions must exist in order to recover strains carrying the products of an illegitimate recombination. The DNA sequences must interact, the enzymological events must occur, and the resulting strains must be viable. In the case of Tn10-mediated inversions, the enzymological events are relatively well defined and provide no clues to the source of the preferred inversion targets. The viability of strains carrying a wide variety of large inversions has been shown (Rebollo et al. 1988; Segall et al. 1988). To initiate the illegitimate exchanges, the transposase-bound IS10 sequences must physically contact the distant target sequence in such a manner that productive enzymatic events occur. The very large inversions generated by Tn10 may sample the most frequent DNA-DNA interactions that have the correct spatial orientation and position, during the short time window when the transposase is active.

The spatial proximity of non-contiguous DNA sequences can be affected by the DNA's topology. The probability of DNA strand-strand interaction is increased about 60-fold by plectonemical interwinding of DNA (Klenin et al. 1991; Rybenkov et al. 1993). The 5 Mbp S. typhimurium or E. coli DNA genome is thought to be organized into about 40 nucleoid domains, which would make the average domain size ~120 kb (Snedden and Pettijohn 1981; Worcel and Burgi 1972). Plectonemical interwinding might be a predominant feature of a single nucleoid domain, which could lead to the preference for transposase interaction 40–80 kb on either side of the insertion site. In addition, the two double strands of the plectonemically interwound DNA will have oppositely oriented helix axes, which might provide the proper spatial orientation for inversion. Catenation of circular DNA molecules can also increase the likelihood that sites present on different circular molecules will contact one another. Analogously, nucleoid structure might constrain the configuration of different DNA domains, causing certain distant DNA donor and target regions to have more frequent interactions.

Using this interpretation, the data provide a point-by-point assessment of which DNAs are spatial neighbors of one another in the bacterial nucleoid. Several of these inversions predict spatial proximity of DNAs that are equidistant from the origin of DNA replication. The preferred distant target region of trp::Tn10-catalyzed inversions was centered around Ter, while one of the very large pyrA inversions was centered around OriC (see Figure 4). Since the transposase is active just after DNA replication of the insertion has occurred, these data suggest that the oppositely directed replication forks, proceeding at similar speeds, are spatially near one another in the cell.

With the limited available data, additional spatial associations are predicted, but the underlying pattern is not yet apparent. The current data may indicate that different chromosomal locations have different flexibilities within the folded structure. While insertions in the purD locus preferentially chose one relatively small chromosomal region as an inversion target, insertions in the pyrA locus target several distant chromosomal locations.

The results show a highly non-random pattern of Tn10-catalyzed large inversions, that is best explained by the preferential action of the Tn10 transposase within a local three-dimensional realm. These results may provide an in vivo method for determining the folding pattern of DNA in the bacterial nucleoid.

We thank Shirley Tilghman and David Koos for help with pulsed field gel electrophoresis. Kelvin Lee, Eric Sullivan, Dawn Bishop and Nicole D'Avirro contributed during the Summer Undergraduate Program at Princeton University. These students and several authors
LITERATURE CITED

Communicating editor: D. E. Berg