Pairwise Comparisons of Mitochondrial DNA Sequences in Subdivided Populations and Implications for Early Human Evolution

Paul Marjoram and Peter Donnelly

School of Mathematical Sciences, Queen Mary and Westfield College, London E1 4NS, England

Manuscript received January 8, 1993
Accepted for publication September 30, 1993

ABSTRACT

We consider the effect on the distribution of pairwise differences between mitochondrial DNA sequences of the incorporation into the underlying population genetics model of two particular effects that seem realistic for human populations. The first is that the population size was roughly constant before growing to its current level. The second is that the population is geographically subdivided rather than panmictic. In each case these features tend to encourage multimodal distributions of pairwise differences, in contrast to existing, unimodal datasets. We argue that population genetics models currently used to analyze such data may thus fail to reflect important features of human mitochondrial DNA evolution. These may include selection on the mitochondrial genome, more realistic mutation mechanisms, or special population or migration dynamics. Particularly in view of the variability inherent in the single available human mitochondrial genealogy, it is argued that until these effects are better understood, inferences from such data should be rather cautious.

THERE are growing amounts of data on the variability exhibited at the molecular level within species. Correct interpretation of these data requires an understanding of the way in which aspects of the evolutionary process and of the populations under consideration affect DNA polymorphisms within and between populations.

Data typically consists of homologous sequences from a collection of individuals, and one commonly used measure of variability is the distribution of pairwise differences: for each pair of individuals in the sample one counts the number of differences between their sequences; a histogram of these numbers of pairwise differences is then plotted over all pairs in the sample (e.g., Avise, Ball and Arnold 1988; Di Rienzo and Wilson 1991).

There has been considerable recent interest in understanding the way in which these histograms of pairwise differences depend on the evolutionary history of the population, with a view to using data of this kind to provide insights into the underlying population genetics processes. Motivated by the patterns exhibited within various human populations in pairwise differences of mtDNA sequences (Di Rienzo and Wilson 1991), Slatkin and Hudson (1991) considered the effect on such histograms of a constant, or alternatively exponentially growing, population size. In a related study, Rogers and Harpending (1992) have investigated the way in which the distribution of the number of differences between a pair of individuals depends on specific aspects of the population process.

The purpose of this paper is to investigate the extent to which earlier conclusions remain true when more realistic features are incorporated into the population genetics models. In particular, we examine the case in which the population of interest was of approximately constant (small but nontrivial) size before commencing exponential growth, and also the effect of geographical subdivision during its evolution. (Existing work assumes panmixia.) Our primary motivation (as for earlier authors) is data from human mtDNA, and we focus attention on scenarios that might be realistic for human populations. The broad conclusion of this paper is that in most cases the incorporation of these more realistic features may lead to histograms of pairwise differences that are substantially different from those predicted by earlier studies. In particular, it seems difficult to explain the unimodal histograms of Di Rienzo and Wilson (1991) simply on the basis of exponential growth. We discuss several other possible causes of the patterns observed in data. Until these are better understood, we argue that inferences from existing datasets should be interpreted with caution.

BACKGROUND

It is now well established that there is an intimate relationship between the genealogical history of a population and its current genetic composition (Tavare 1984; Hudson 1990). In the neutral case, an understanding of the structure of the underlying
genealogical processes leads to predictions about patterns to be expected in observed data.

For particular beliefs about the way in which mutation is operating, a study of the underlying coalescent process allows calculation of the "theoretical" distribution of the number of differences observed between the sequences of a pair of individuals. SLATKIN and HUDSON (1991) (see also BALL, NEIGEL and AVISE 1990) make the crucial observation that even when the sample size is large, the observed histogram of pairwise differences will not mimic this theoretical distribution. This is because there are substantial (positive) correlations in the data induced by the fact that all of the individuals sampled share the same underlying genealogy. There are also positive correlations for the less subtle reason that the same individuals occur in many of the pairwise comparisons. If one were able to average the histograms obtained from many independent realizations of evolution, then this average would coincide with the theoretical distribution. However, as we only have one realization of evolution it is appropriate to ask what sort of patterns should be expected in observed histograms.

For populations of constant size one would often expect to observe bimodal histograms (for example SLATKIN and HUDSON 1991). The reason for this is that for roughly half the time since its common ancestor the sample will have had exactly two ancestors. One part of the sample will have been descended from one of these ancestors, and the remainder from the other. If a mutation occurs along one of these two branches of the genealogy, then (barring recurrent mutation, or a parallel mutation on the other branch) it will appear throughout one of the groups but not in the other. Because of the relatively long time for which the genealogy has two branches, there are likely to be several such mutations. If two individuals from the same group are compared, they will not differ at these sites, while individuals from different groups will differ. Thus, all of the pairwise comparisons of individuals within either group will involve substantially fewer differences than all of the pairwise comparisons that involve one individual from each group, and a bimodal histogram will result. Figure 3 of SLATKIN and HUDSON (1991) illustrates this phenomenon. In connection with the point made in the previous paragraph, it is worth stressing here that in this case the theoretical distribution, being geometric and hence exponentially decreasing from a maximum at zero, is quite different from the (bimodal) patterns that would be expected in data as a consequence of correlation effects.

One central feature of the data in Figure 3 of DI RIENZO and WILSON 1991 is that with the possible exception of the Kung sample, the histograms are unimodal. This is inconsistent with a population of fixed size. SLATKIN and HUDSON (1991) [see also ROGERS and HARPENDING (1992)] show that it is consistent with a panmictic population that has been growing exponentially throughout its existence. (The effect of this sort of growth is to alter the timescaling in the coalescent so that the genealogy becomes effectively star shaped.) The same broad conclusion holds for a panmictic population that undergoes a sudden increase in size and for one that was subjected to a very severe bottleneck for a reasonable time, for much the same reason.

Our concern is that this analysis does not fully reflect two likely features of human evolution. Current beliefs about the size of the human population (WEISS 1984; SMITH, FALSET and DONELLY 1989; STRINGER 1990) point to a population of roughly constant size, say 10^3-10^5 breeding females, for a considerable period of time before it commenced growing to current levels. This contrasts with the assumption of SLATKIN and HUDSON (1991), for example, that the population had been growing exponentially throughout its existence. Second, the assumption of random mating seems unrealistic for human populations, and it is natural to ask whether the conclusions of earlier authors remain true for populations that are subdivided geographically.

MODELS AND SIMULATION TECHNIQUES

Our approach throughout is to simulate genealogies for various models of population structure, and then to superimpose the effect of mutation on the simulated genealogy. This generates realizations of data from which we can calculate the histogram of pairwise differences. As in SLATKIN and HUDSON (1991), we will assume no recombination and an infinite sites model: this last is in effect an assumption that each mutation on the genealogy of the sample will be to a different site and hence that all the mutations that have actually occurred since the most recent common ancestor of the sample will be reflected in the sample. We will consider samples of 50 individuals and assume a mutation rate of $\mu = 2 \times 10^{-5}$ per individual per generation. (This corresponds for example to a region 1000 nucleotides long with a neutral mutation rate of 2×10^{-6} per base per generation.) In models that incorporate population subdivision, the 50 sampled individuals will all be taken from the same subpopulation.

We now outline the general framework for simulating genealogy in neutral haploid populations of varying size with geographical subdivision. The situation is in general too complicated for an analytical treatment.

Label the current generation as 0, and measure time into the past so that we refer to the time t generations ago as "generation $t" or "time $t." We
denote the size of the total population at that time by \(CM(t) \). The population is assumed to be divided into \(C \) distinct colonies each containing \(M(t) \) individuals at time \(t \). We assume that within each colony mating is at random, according to a Wright-Fisher model and that generations are nonoverlapping. We denote by \(m \) the probability that a particular individual will migrate between generations. We assume an island model, so that individuals behave identically with respect to migration and that upon migration an individual chooses its destination uniformly at random from the remaining \(C - 1 \) colonies. [Except possibly for a rescaling of time, there is a considerable body of theory which indicates that the conclusions from such an analysis will hold for a wide range of models for reproduction with both overlapping and nonoverlapping generations. See, for example, KINGMAN (1982) and NOTOHARA (1990)].

Consider a sample of \(n \) individuals taken from a single colony in the current generation. For each time \(t \) in the past we need to keep track of the number of individuals in each colony who are ancestors of members of the sample. Specifically, denote by \(A_i,t \), \(i = 1, 2, \ldots, C \) the number of individuals in colony \(i \) who were ancestors, \(t \) generations ago, of members of the sample, and denote by \(A_i \) the collection of these ancestral numbers:

\[
A_i = (A_{i1}, A_{i2}, \ldots, A_{iC}).
\]

Consider the changes which could occur to \(A_1 \) in going back one generation, to time \(t + 1 \):

1. With probability \(m \) a particular ancestor in, say, colony \(i \) will have been a migrant; and with probability \((C - 1)^{-1} \) this ancestor will have migrated from colony \(j \). The effect of this will be to decrease by one the number of ancestors in colony \(i \) and to increase by one the number of ancestors in colony \(j \).

2. With probability approximately \(M(t)^{-1}(1 - 2m) \) two ancestors in a particular colony will share a parent in the previous generation. Such an event would cause the number of ancestors in that colony to decrease by one.

Thus, ignoring terms of order \(M(t)^{-2} \), \(m^2 \) and \(mM(t)^{-1} \) (as is usual),

\[
P(A_{i+1} = (A_{i1}, \ldots, A_{i,t} - 1, \ldots, A_{ij} + 1, \ldots, A_{iC}) | A_i = (A_{i1}, \ldots, A_{iC})) = \frac{m A_{i,t}}{C - 1}
\]

\[
P(A_{i+1} = (A_{i1}, \ldots, A_{i,t} - 1, \ldots, A_{iC}) | A_i = (A_{i1}, \ldots, A_{iC})) = \left(A_{i1}/2 \right) / M(t).
\]

The simulation proceeds from generation to generation into the past according to the probabilities above, until the sample is descended from a single common ancestor in some colony. In fact, it is also necessary to keep track of which (or at least how many) individuals in the sample are descended from each of the ancestors in each generation. In addition, independently of all other events, there will be a mutation on a particular lineage in a given generation with probability \(\mu \).

RESULTS

For reference purposes we begin by using the method described above to simulate the evolution of a randomly mating population. We assume the current population size to be \(1 \times 10^9 \), decreasing exponentially to reach 5,000 individuals 50,000 years ago (50 Kyr b.p.), prior to which the exponential decay continues. (We assume a 20-year generation gap.) We continue the simulation until we reach the most recent common ancestor (MRCA) of the original sample and then plot the frequency of pairwise differences between the individuals in the sample. Figure 1 illustrates typical outcomes of this process.

We see that we obtain unimodal distributions. As discussed above this is because the exponential growth (in real time) of the population size forces most coalescences of ancestors to occur within a relatively short period. Thus, we obtain a star-like phylogeny, the mutation process for each individual is nearly independent, and we get a nearly Poisson number of pairwise differences between each pair of individuals.
To study the robustness of this behavior under more general beliefs about the geographical structure of the population, we consider further simulations. First, a population with the same sizes as in the previous case is simulated, but now we suppose the population is divided (according to a finite-island model) into four colonies. Figure 2 illustrates typical distributions for the frequencies of pairwise differences observed between members of the sample when the migration probability is 0.01. Figure 3 gives the same frequencies for an identical population but with migration probability of 0.001. From these results we see that the amount of migration plays a crucial role in the behavior of the sample genealogy. For a high migration probability (greater than 0.01, say), the distribution of pairwise differences is very close to that for a randomly mating population (with the same total sizes). But for smaller migration probabilities we may observe multimodal distributions. Note that if the migration probability is too small, there are unlikely to be any migrations before the sample has a common ancestor. In this case the sample will behave as if it were drawn from a randomly mating population (whose sizes are the same as that of the appropriate colony). In the current situation in which these are assumed to grow exponentially, one would again expect unimodal distributions of pairwise differences. Hence, we see that migration probabilities that are high or very low will both lead to unimodal distributions, whereas for an intermediate range of migration probabilities we may see multimodal distributions. One might hope to distinguish between the two situations leading to unimodal distributions by considering the location of the mode: since a sample from a population with a very low migration probability coalesces more quickly (because the population size, being that of only one of the colonies, is smaller), its mode will typically be at a lower value than a sample drawn from a corresponding population with high migration rates. Comparisons of sequences between subpopulations should also distinguish between high and low migration situations. (Some care is needed in applying this to actual data because the important population structure is that which has applied through most of evolutionary history. This will in general not be known and may well differ from any current structure. Possible substantial recent increases in gene flow between certain human populations will further complicate the issue.) Next we consider panmictic populations, which were of a constant size CM until 50,000 years ago, at which point they commenced exponential growth to reach a current value of 1×10^3. Figure 4 shows typical histograms of pairwise differences in the case of a randomly mating population with this growth
Pairwise Comparisons of mtDNA

Figure 4.—Frequency distributions of pairwise differences for four replicate simulations of a sample of size 50 from a panmictic population that was of constant size until 50,000 years ago, when it grew exponentially to a current size of 1×10^9. (a) Population of size 5,000 before growth; (b) population of size 500 before growth.

The time chosen for the onset of growth and the manner of growth are somewhat arbitrary. There is reasonable evidence (Rogers and Harpending 1992; P. Marjoram and P. J. Donnelly, unpublished data) that the exact choices here have little effect on histograms of pairwise differences. Much the same patterns as those obtained for exponential growth over the past 50,000 years would be expected for a very rapid increase in population size, and a fairly wide range of times for growth, for example. For a given size of population before growth and a particular manner of growth, the more recent the onset of growth the more likely it is that histograms of pairwise differences will be multimodal. It may be argued that a time substantially more recent than 50,000 years ago for the onset of major growth in the human population is appropriate. It seems unlikely to have been much earlier.

We now consider the effect of geographical subdivision on populations that are initially constant in size before commencing exponential growth about 50,000 years ago. Figure 5 shows typical histograms for a symmetric island model with four colonies (hence $C = 4$), migration probability 0.001, and varying values of M ($CM = 5,000$ in Figure 5a, and $CM = 500$ in Figure 5b). We also consider a population with $CM = 500$ but with a migration probability of 0.0001 (Figure 5c).

Once again we see that the introduction of population structure encourages multimodality. However as the size of the population during its constant-size period decreases we need lower migration probabilities to obtain the same effect (compare Figure 5, b and c).

One can also consider the situation in which there has been a population bottleneck. We model this by supposing that the population was of constant size before growth and the time of onset of growth. If the population sizes since the onset of growth are (relatively) large, then the sample will still have more than two ancestors at the time of onset of growth. In this case it will take an additional time for it to reach a MRCA of the order of CM generations and unless M is small the histogram may be bimodal, for just the same reasons as in the constant population size case. If the population before growth was small, then, in view of the assumption of exponential growth, the genealogy, and hence histogram of pairwise differences, will tend to resemble that of a population that has always been growing exponentially. An intermediate behavior is also possible for a small range of parameters. In this case there will be some realizations that display the first type of genealogy and some that display the second, so that both types of histogram are possible. As the time of growth is moved further into the past a larger value of the size before growth is needed to guarantee the first type of behavior.

pattern in the two cases $CM = 5,000$ (Figure 4a) and $CM = 500$ (Figure 4b).

Figures 4a and 4b show that even in an unstructured population the distribution of pairwise differences is not necessarily unimodal. Informally, the shape of the distribution is largely determined by the time at which the MRCA is reached. If this happens recently enough to be within the period of exponential growth (cf. Figure 4b) we expect to obtain a single mode. Conversely, if the MRCA occurs sufficiently long ago to be within the period of constant population size (cf. some of Figure 4a), we expect to obtain a multimodal distribution (unless the population size before growth is so small that all remaining coalescences will occur rapidly). In fact, there are three possible types of behavior here, depending on the size of the population.
FIGURE 5.—Frequency distributions of pairwise differences for four replicate simulations of a sample of size 50 from a population, subdivided into four colonies according to an island model, which was of constant size until 50,000 years ago, when it grew exponentially to a current size of 1×10^6. (a) Population of size 5,000 before growth, migration probability 0.001 per individual per generation; (b) population of size 500 before growth, migration probability 0.001 per individual per generation; (c) population of size 500 before growth, migration probability 0.0001 per individual per generation.

FIGURE 6.—Frequency distributions of pairwise differences for four replicate simulations of a sample of size 50 from a panmictic population that was of constant size 5,000 until it underwent a bottleneck 50,000 years ago. (a) Bottleneck of size 500; (b) bottleneck of size 50.

5,000 until 50,000 years ago, at which time there was a population bottleneck consisting of a generation in which there were M_0 individuals. Thereafter, the population immediately undergoes exponential growth that continues until the present day whereupon there are 1×10^6 individuals. (This model for a bottleneck seems natural. In any case its effect is much the same as an assumption that the population remains of size M_0 for several generations before increasing in size either immediately or gradually.) Figures 6a and 6b
FIGURE 7.—Frequency distributions of pairwise differences for four replicate simulations of a sample of size 50 from a population, subdivided into four colonies according to an island model that was of constant size 5,000 until it underwent a bottleneck 50,000 years ago. (a) Bottleneck of size 500, migration probability 0.001 per individual per generation; (b) bottleneck of size 50, migration probability 0.001 per individual per generation; (c) bottleneck of size 50, migration probability 0.0001 per individual per generation.

Pairwise Comparisons of mtDNA

Under the (infinite sites) model for mutation considered here, histograms of pairwise differences will tend to be multimodal if for a reasonable amount of the time since the most recent common ancestor of the sample it has had only two (or a small number) of ancestors. This is the case for neutral haploid populations of (large) constant size—it is an elementary property of the coalescent that on average there will be exactly two ancestors for half the time since the sample’s MRCA. It is not true if the population has been growing exponentially for an indefinite time—in this case most of the coalescences in the genealogy happen over a short period of time when the population size is small.

If the population is assumed to have grown exponentially for a fixed period of time prior to which it was roughly constant, then unless the size prior to growth is small, or the period of growth extremely long, there will be more than one ancestor at the onset of growth. (Because of the assumption of exponential growth to current levels, a smaller population size at the onset of growth means that population sizes in all subsequent generations will be smaller.) In this case the MRCA will occur a substantial period of time before the onset of growth, with this part of the genealogy resembling that of a constant-sized population. This will lead in general to multimodal distributions of pairwise differences. The extent to which
the addition of a population bottleneck to these dynamics will lead to unimodal distributions of pairwise differences depends on the severity of the bottleneck.

For populations that are geographically subdivided, behavior depends on the migration rate. If this is large (or very small), then the population will effectively behave as if it were panmictic. Otherwise, there will be migrations in the genealogy and the time to the MRCA will depend on the time until two ancestors in different subpopulations can be traced to the same subpopulation. (Coalescences can only occur between ancestors in the same subpopulation.) This will vary as the inverse of the migration rate, regardless of the population size. For a symmetric island model with C colonies for example, its mean is $(m/C)^{-1}$ generations, where m is the migration rate. If m/C is small (as is likely for realistic populations) and the population subdivision persists into the past, the time for which there are two ancestors of the sample is likely to be large, so that even with exponentially growing populations there may be bimodal distributions of pairwise differences. (The simulations in the previous section assumed an island model with $C = 4$. For larger values of C the effects described will be more marked.)

IMPLICATIONS FOR HUMAN EVOLUTION

The relevance of particular simulation results to human evolution depends on the values of various demographic parameters that would be appropriate in this context. These are of course unknown. In asking about reasonable scenarios for early human populations, care is needed to avoid circularity. Some of our current beliefs, and most estimates of population parameters, are based on inferences (often from mitochondrial DNA data) using models that may be misleading, either because they ignore effects like population growth or structure, or because they make assumptions (like neutrality and independent identical mutation processes at each site) which we go on to suggest may be inappropriate for human mitochondrial DNA. Further, most studies that do attempt to estimate such parameters only report point estimates. Aside from serious concerns about the models on which they are based, the estimators concerned may be quite variable, even if the model were true, because they are based on data that are positively correlated, for example, because of genealogical effects. A better understanding of the range of values of parameters that are consistent with particular data sets, and of possible shortcomings of the underlying models, would seem sensible before too much weight is placed on specific estimates.

Nonetheless, the scenario of a human population of roughly constant size (excluding possible bottlenecks) enjoying some degree of population structure for a considerable period of time before growing, gradually or suddenly, to current levels, is not implausible. We are inclined to the belief that of the range of possible parameter values, a population of 5,000 breeding females before its growth 50,000 years ago, structured as an island model with four colonies, is toward one end of a spectrum, in the sense that the actual population size is unlikely to have been much smaller [the fossil record suggests a wide geographical spread of the human population, say, 50,000 years ago—for example, Aiello (1993)—so that the actual number of individuals is unlikely to be too small, and although the strong caveats of the previous paragraph apply, Takahata (1991, 1993) reports effective population sizes consistent with the figure of 5,000], the time of growth may well have been substantially later than 50,000 years ago, for example, associated with the agricultural revolution, and with perhaps the most plausible scenarios being relatively small groups of hunter-gatherers spread or scattered across wide regions of at least Africa and perhaps much of the Old World (e.g., Aiello 1993). The actual degree of population subdivision seems unlikely to involve less structure than an island model with four colonies. On the other hand, it seems extremely difficult to assess the level of migration appropriate to early human populations. Most existing estimates, based on genetic data, appear particularly susceptible to the concerns expressed in the preceding paragraph.

In studying mitochondrial data (or nuclear DNA in a region in which recombination can be ignored), it is important to remember that it contains only limited information about underlying population structure. The actual data are a function of the underlying genealogy of the sampled individuals and the random effects of mutation (and possibly selection). In practice it is difficult to reconstruct the genealogy with confidence, although we may learn of some general features of its shape. (For example, one explanation for unimodal distributions of pairwise differences is a relatively star-shaped genealogy.) However, suppose for the moment that we were actually able to observe the genealogy itself. We would then have observed a realization of a random genealogical tree whose distribution depends in a complicated way on underlying population parameters, details of population structure, levels of gene flow, and in the nonneutral case, selective pressures. While the observed tree would not be totally uninformative about these “parameters,” it is still only a sample of size one from the underlying, complicated distribution. Inferences based on this single realization should then necessarily be rather tentative. In actuality, we have much less information at our disposal, not only because we observe current sequences rather than their genealogical tree, but in the current context further information is lost in studying pairwise difference data rather than the se-
quences themselves. (It is worth noting in this context that conditional on population parameters, unlinked regions of the nuclear genome will have effectively independent genealogies. Data from several such regions then carries information about independent replications of the underlying genealogies.)

It thus seems difficult to be definitive about underlying population structure and demography on the basis of pairwise differences from mitochondrial DNA sequences. Observed patterns will be rather more likely under some scenarios than others, but they will be impossible under very few. Nonetheless, in the absence of bottlenecks, under the neutral infinite sites assumption, we would argue that multimodal histograms of pairwise differences may occur under a wide range of realistic beliefs about human population sizes and structure. Our simulation study has concentrated on one class of models and we have seen that for these models, unless the human population has grown from a very small value (say 500 or fewer breeding females) and been panmictic or structured with high levels of gene flow, multimodal histograms of pairwise differences may well occur. One cause of multimodal histograms (under the neutral infinite sites assumption) is an underlying genealogy in which the time taken for the last few coalescences is substantial relative to that for all other coalescences. Broadly speaking, genealogical theory predicts that within the context of traditional models for population subdivision, increasing the degree of structuring, reducing the level of gene flow, or increasing the size of the population before growth, will tend to increase the time for the last few coalescences in the genealogy. In the case of a sample from a single colony, the first two effects will also tend to decrease the time needed for early coalescences. On this basis we would expect that multimodal histograms may well occur for a much wider range of models than those actually simulated. (We suggested above that our simulations were from one extreme of a range of models, so the genealogical theory suggests that multimodal distributions should be more likely for many of the other models.) In particular, the demographic conditions needed to guarantee unimodal histograms of pairwise differences may be more restrictive than those suggested by earlier studies. Further, we would argue that such conditions seem, a priori, unlikely for the ancestral human population.

One potential explanation for the observed unimodal histograms is a bottleneck of the (female) human population, or founder effects. Founder effects, in this case the phenomenon whereby modern humans initially evolved in a small group that was isolated for a considerable period, seem plausible. (Of course there is a tradeoff between the size of the group and the duration of isolation, but for our model the simulations suggest that the number of breeding females in the group should not be much larger than 50 to ensure unimodal histograms. These are possible, but not certain, with larger groups.) Of the competing anthropological theories for the evolution of modern humans [see Aiello (1993) for a recent review] such a scenario is possible under the "African origin" hypothesis, but not under the "multiregional" hypothesis. Note, however, that Takahata (1993) argues that existing levels of HLA polymorphism are inconsistent with there having been a bottleneck in human evolutionary history over about the past 1 million years. [While Takahata (1993) claims that the "shallowness" of the mtDNA genealogy in Horai (1991) can be explained simply by an appropriate effective population size, without invoking a bottleneck or founder effects, the shape of the estimated tree and the induced patterns of pairwise differences are difficult to reconcile with neutral, panmictic, models, without invoking substantial changes in population size, as discussed above. Contrary to the argument of Takahata (1991), patterns of sequence differences caused by a severe bottleneck would be likely to be different from those resulting from beliefs consistent with the multiregional hypothesis.]

The size of the bottleneck is the total number of breeding females in the human population. Other than founder effects, a bottleneck of size 50 (or even of several hundred) of the entire population of breeding females together with high levels of gene flow does not seem to us especially plausible, particularly in the light of the presumed spatial spread of the population. While a bottleneck during the migration out of Africa (under the African origin hypothesis) is plausible and consistent with the unimodal histograms of pairwise differences for the non-African data in Di Rienzo and Wilson (1991), it fails to explain the African data. The claim in Di Rienzo and Wilson (1991) that their data indicate a nearly constant size for the African population seems questionable. Even if such a population were effectively panmictic it would tend to have a deep genealogy. This in itself would strongly encourage multimodality of histograms for pairwise differences. In conjunction with an assumed bottleneck for the non-African ancestral populations, we would also expect considerably more pairwise differences in the African than in the non-African populations. Most forms of population structure within the ancestral African population would tend to increase these effects.

In view of the fact that multimodal histograms of pairwise differences may occur in existing models with most plausible beliefs about human population sizes and structure, it seems sensible to consider other factors that may account for the fact that data seem to consist almost exclusively of unimodal histograms.
We would suggest that three areas warrant further investigation.

Traditional models for migration and gene flow in subdivided populations (including those of this paper) typically assume that the population is divided into relatively large stable colonies of approximately fixed size, with gene flow through migration of individuals between colonies. Not only may this be unrealistic for human (and some other) populations, but it is possible that such differences could have crucial effects on induced genealogies, and hence, for example, on patterns of pairwise differences. Little is known of the actual spatial dynamics of early human populations. It is plausible that they lived in very small, transient, groups and the effects of such structure together with the possible splitting and coalescence of groups (so-called “fusion-fission”) possibly of related individuals, needs further investigation. In addition, possible female exogamy, the phenomenon whereby it is the females rather than the males who leave the group on maturity, could have profound effects on levels of mitochondrial gene flow. We note also that any migratory behavior unique to one sex could result in different patterns between samples of nuclear and mitochondrial DNA.

Our analysis and that of SLATKIN and HUDSON (1991) and ROGERS and HARPENDING (1992) assume an infinite sites model for mutation. This ignores recurrent mutation, possibly different rates for transitions and transversions, and variation in mutation rates between different sites. LUNDSTROM, TAVARE and WARD (1992) have considered the possibility that some sites may be hypervariable. They argue that in this context the distribution of the number of pairwise differences between a pair of individuals may be unimodal. In contrast, ROGERS (1992) shows that under certain plausible beliefs about the variation in mutation rates the mean of this latter distribution shows little relative change from its value with constant rates across sites. We would argue that neither of these papers bears directly on the issue here. It is well established that because of correlation effects the distribution of the number of differences between a particular pair of individuals may bear no resemblance to the histogram obtained by plotting all of the pairwise differences in a sample of sequences. Thus, information about the way in which the former depends on various modeling assumptions does not necessary tell us anything about how to interpret actual data.

The effects on observed histograms of incorporating more realistic features of the mutation process seem best assessed by a direct (simulation) study.

As DI RIENZO and WILSON (1991) note, another possible explanation for the observed unimodal histograms is that a selectively advantageous (mitochondrial) gene swept through the population over a relatively short period of time in its past. There would be a range of possible times at which this could have happened—broadly, it must have occurred recently enough for there to have been few coalescences between the selective event and the present. It should be remembered that in geographically subdivided populations (as seems likely for early human populations) even a strongly selected gene will sweep through the population more slowly than in a panmictic population, with the rate depending heavily on the level of gene flow between colonies (Takahata 1991). The literature seems divided on how plausible this level of selection is for human mtDNA. For example, Di RIENZO and WILSON (1991) cite evidence against selective effects, while Excoffier (1990) argues against neutrality. Note that selection on a maternally inherited trait could have the same effect as direct selection on the mitochondrial genome.

Until the effects of these or other possible departures from conventional models are better understood, it seems dangerous to invoke patterns in histograms of pairwise differences as an argument for or against hypotheses concerning the evolution of modern humans. One possible explanation, that of founder effects, is inconsistent with the multiregional hypothesis, unless the time of such an event can be placed around, or over, 1 million years ago. [We have concentrated here on patterns in histograms of pairwise differences. Associating times with various events on the basis of such data is altogether more troublesome, see for example Templeton (1993).] However, founder effects may be difficult to reconcile with patterns in samples from nuclear DNA. A selective sweep would also be much more difficult in the context of the geographical spread of populations envisaged under the multiregional hypothesis.

This paper suggests that traditional, neutral, population genetics models, with or without population subdivision, may fail to capture some important features in human evolution. Further, the whole human mitochondrial genealogy should be thought of as a sample of size one from a distribution that depends in a complicated and as yet unclear way on a whole range of population parameters. In our view the resulting variability of data, such as histograms of pairwise differences, which depends in a random way on that single underlying genealogy, together with the possible inappropriateness of current models, severely threatens attempts to make quantitative inferences about evolutionary parameters on the basis of mtDNA data. Until these various effects are better understood, it would seem wise to interpret the results of such studies with a degree of caution.

This research was supported in part by the Science and Engineering Research Council of the United Kingdom, through grants GR/F 32561, GR/G 11101, GR/H 22880, and an Advanced Fellowship, B/AF 1255, to P.D.
LITERATURE CITED

Communicating editor: M. SLATKIN