Molecular Characterization of a Maize B Chromosome Centric Sequence

Mark R. Alfenito¹ and James A. Birchler²

The Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138

Manuscript received September 1, 1992
Accepted for publication June 14, 1993

ABSTRACT

Supernumerary chromosomes are widespread in the plant kingdom but little is known of their molecular nature or mechanism of origin. We report here the initial cloning of sequences from the maize B chromosome. Our analysis suggests that many sequences are highly repetitive and shared with the normal A chromosomes. However, all clones selected for B-specificity contain at least one copy of a particular repeat. Cytological mapping using B chromosome derivatives and in situ hybridization show that the B specific repeats are derived from the centric region of the chromosome. Sequence analysis of this repeat shows homology to motifs mapped to various plant and animal centromeres and to the maize neocentromere. A precise localization of these sequences among breakpoints within the B centromere and an homology to a facultative centromere, suggest a role for this sequence in centromere function.

SUPERNUMERARY B chromosomes have been documented in over a thousand plants and more than 260 animal species (for review, see JONES and REES 1982). Despite their frequency throughout the plant and animal kingdoms, they do not have any obvious genetic functions, yet are maintained in populations because they have acquired various accumulation mechanisms. Most species with B chromosomes only have them in some members of the population; therefore, supernumerary chromosomes are likely to be more widespread than cytological reports indicate. Moreover, because only those chromosomes that acquire accumulation mechanisms will be maintained, the process that leads to their formation must be even more common. Initially we were interested in analyzing, on the molecular level, the mechanisms that result in the inactivity of these chromosomes and that confer their unusual behavior during the life cycle. The selection for B-specific sequences resulted in the serendipitous cloning of material from the B chromosome centromere, the behavior of which is distinct from A chromosome centromeres.

The B chromosome of maize has been extensively characterized. It exerts an influence on the A chromosomes by increasing recombination frequencies (RHOADES 1968) and decreasing overall plant vigor at high copy number (RANDOLPH 1941). Despite the fact that B chromosomes appear to be genetically inert, they all increase their numbers via processes that maintain themselves in populations. For example, the maize B nondisjoins at the second pollen mitosis producing unequal partitioning of the replicated B’s into the two sperm involved in double fertilization. This is followed by a preferential fertilization of the egg by the sperm containing the B chromosomes. Translocation analysis indicates that the portion of the B chromosome predominantly responsible for this fertilization behavior is at or near the centromere (CARLSON 1986). The nondisjunction property requires the B centromere and the distal euchromatic tip of the long arm to be in the same nucleus although not necessarily on the same chromosome (ROMAN 1947). Because of their nondisjunction property, B chromosomes translocated with A segments have become indispensable genetic tools for mapping genes, studying chromosomal mechanics, and producing dosage series in maize.

B chromosomes are usually highly heterochromatic, which is often associated with an abundance of high copy DNAs. Despite this, renaturation and thermal denaturation kinetics of DNA from maize containing B chromosomes show no detectably altered DNA base composition from the A chromosomes (CHILTON and McCARTHY 1973). From the same study, analytical ultracentrifugation did not yield DNAs of different buoyant densities in corn with and without Bs. We have observed no detectable differences on ethidium stained gels in the discrete bands present between variously digested maize lines containing zero and multiple Bs, indicating the lack of highly repeated B-specific sequences. These observations suggest that the DNA composition of the B chromosome is, in general, similar to that of the A chromosomes.

Despite gross DNA similarities between A and B chromosomes, differences must exist, because of the distinct behavior of the B. The B chromosome has
unusual properties as described above and has never been observed to synapse with A chromosomes, indicating the likelihood of at least some specific or diverged sequences. On this assumption, we developed a cloning strategy based on a differential screen that would recover specific clones from the B.

MATERIALS AND METHODS

Library construction and screening: Genomic maize DNA was isolated (CHEN, GREENBLATT and DELLAPORTA 1987) from the maize High Loss line +15 Bs. A partial Sau3A1 digestion was performed. The DNA was fractionated on a 1.5–5 M NaCl gradient by centrifugation at 2.5 × 10^9 g for 3 hr. Aliquots that contained DNAs of greater than 10 kb were used for the ligations to λ phage EMBL3 BamHI arms. As a control, maize A DNA and A + B DNA was digested to completion with Sau3A1. Upon inspection of ethidium bromide stained agarose gels, no major detectable species were found to be greater than 10 kb. Therefore, few if any sequences should be selected against during library construction solely on the basis of their size. The bacterial host strain was KKH803. Based on the cytological lengths of the A and B chromosomes (CARLSON 1977), 28% of the nuclear DNA should be from the B chromosome in a plant containing fifteen Bs. Therefore, a high percentage of clones should contain insertions from the B chromosome. A Phage from the unamplified library were plated at a very low titre. Duplicate plaque lifts were performed (GRUNSTEIN and HOGNESS 1975). One set of filters was hybridized with oligolabeled (FEINBERG and VOGELSTEIN 1985) A DNA and the other set was hybridized with oligolabeled A + 15Bs DNA. Plaques that hybridized more strongly to the A + B probe were chosen as potential B clone candidates. This differential screen was carried out using two slightly different protocols. The first protocol involved denaturing and reannealing both total genomic probes to a C_d of greater than 10 for 3 days in an attempt to eliminate highly repetitive sequences (HAKE and WALBOT 1980) before they were oligolabeled. The second protocol omitted the reannealing step thereby avoiding a bias against repetitive DNAs.

Southern blot analyses: Three micrograms of maize genomic DNA were digested with a restriction enzyme as per the manufacturer’s recommendation (New England Biolabs) and then run on a 0.8% agarose gel in 1 X TAE (MANIATIS, FRITSCH and SAMBROOK 1982). All gels were viewed on a UV transilluminator in the presence of ethidium bromide to confirm the presence and complete digestion of the DNA samples. The gels were denatured and neutralized (MANIATIS, FRITSCH and SAMBROOK 1982) and blotted overnight to a nylon membrane. The DNA probes were oligolabeled (FEINBERG and VOGELSTEIN 1985). DNA hybridizations and washes were done essentially by the method of RAINBOW and BIRCHLEY (1989).

Chromosomal in situ analysis: Maize microsporocytes were harvested and fixed in 3 parts 95% ethanol to 1 part glacial acetic acid for 3 days. The samples were stored at ~20° until ready for use. The in situ hybridizations were done as described by PHILLIPS and WANG (1982).

Sequence analysis: Nested deletions of approximately 900 bp were made using the Bethesda Research Laboratories ExoIII and Mung Bean Nuclease Kit. All sequence analysis was done in the Bluescript (SK+) vector. T3 and T7 primers were used on double-stranded vectors using the Sequenase Version II Kit to generate sequence by the deoxyribonucleotide method (SANGER, NICKLEN and COULSON 1977). Samples were run in 6 M urea 6% polyacrylamide gels in 1 × TBE (MANIATIS, FRITSCH and SAMBROOK 1982) at 2000 V for greater than six hours. Gels were dried on a gel dryer and exposed at room temperature overnight.

Production of B-A aneuploids: The B chromosome nondisjoins at the second pollen mitosis, and the gamete that receives the B chromosome centromere preferentially fertilizes the egg. Therefore, with a translocation between an A and a B chromosome, it is possible to create a segmental aneuploid for the region brought into coupling with the B centromere. For example, the long arm of chromosome 10 has been translocated to the short arm of the B chromosome in *TB-10Lb*. In this construct, 10L carries a phenotypic marker, R-*scm3*, which allows the tracking of the B centric chromosome. Therefore, when the B nondisjoins, the duplicated segments of 10L will either fertilize the egg or the polar nuclei. Because the 10L-Bl chromosome carries the R-*scm3* marker, which may also fertilize the egg or be lost during meiosis, it is possible to follow this chromosome to either of these tissues in an r background. Kernels that showed the R-*scm3* marker only in the embryo were chosen as being hyperploid for the 10L-Bl chromosome. Conversely, kernels that showed R-*scm3* expression only in the endosperm, and no embryo color were chosen as 10L-Bl hypoploid embryos.

For *TB-10Sc*, the progeny were analyzed from a cross in which the marker stock y9 (10S) was crossed by males of *TB-10Sc* carrying y9. Hyperploids were selected on the basis of y9 endosperm (phenotypically light yellow). Seedlings were grown and hypoploids were selected on the basis of y9 seedling color (pale green).

RESULTS

Isolation of B chromosome specific sequences: Two slightly different procedures were used to select phage containing B-enriched sequences. The first protocol involved a long renaturation of the genomic DNA before radiolabelling to eliminate repetitive DNAs (see MATERIALS AND METHODS). Of roughly 1000 phage screened by this method, one phage was recovered that hybridized more strongly to the A + B DNA probe than to the A DNA alone. This phage is referred to as EMBL3-8Bb.

The second protocol minimized a bias against highly repetitive DNAs by eliminating the reannealing step. This screen yielded 7 phage of 4000 screened that hybridized either more strongly or exclusively to the A + B DNA. All of these phage were then used as probes onto Southerns containing digested genomic DNA of a maize line with and without B chromosomes (Figure 1). Note that all of the phage share a portion of the hybridization pattern in common indicating that all eight phage likely share some sequence. Because phage EMBL3-8Bb was isolated first, the majority of the characterizations have been done on this clone. Similarities among the other phage will be discussed later.

Since EMBL3-8Bb yielded stronger hybridization to the maize line containing B chromosomes, this clone was considered to contain either sequences unique to or highly enriched on the B relative to the A chromosomes. Accordingly, portions of EMBL3-
Maize B Sequence

8Bb were subcloned to find the sequence(s) responsible for the stronger B hybridization. The B-specific subclone that was characterized in the greatest detail, is referred to as pZmBs (Zea mays, B-specific) and contains a ~1.1-kb BamHI-Acc1 fragment (Figure 2). When used to probe a Southern of maize DNA with and without B chromosomes, in two distinct genetic backgrounds (High Loss and Black Mexican Sweet), hybridization is detected only in the +B lanes, even after long exposures of the autoradiogram, indicating that pZmBs represents a sequence specific to the B.

Restriction mapping revealed that EMBL3-8Bb contains a tandem repeat of the B-specific sequence (Figure 2). Southern analysis revealed two other small restriction fragments homologous to this 1.1-kb sequence within the phage but that did not represent a complete 1.1-kb unit. The two members of the tandem repeat are not perfectly conserved resulting in loss or displacement of restriction sites. The remaining portions of EMBL3-8Bb are distinct from the B-specific repeat. When DNA fragments from the remaining regions (pbARI2.6, pbR1S4.0, and pbSS1.0) are used as probes onto Southerns containing A and A+B DNAs, hybridization indicative of highly repetitive sequences is observed in both the -B and +B lanes (not shown). This result suggests that these sequences are highly repetitive on the A chromosomes and have at least one or more copies on the B.

The maize High Loss line +B's, from which the library was constructed, has been maintained separately from the -B line (RHOADES and DEMPSEY 1973). Therefore, it was tested whether the sequences contained within pZmBs might represent some polymorphism that has been fixed and amplified in the separate lines over subsequent generations. Southern analysis was performed on samples in which the B DNA content was varied while maintaining a uniform background (Figure 3). To do this, we used the B-A reciprocal translocation, TB-10L18, that has a breakpoint within the diminutive short arm of the B chromosome and in the proximal region of the long arm of chromosome 10 (1OL) (LIN 1979) on which a genetic marker (R-scm3) resides (Figure 4). Because of the B chromosome's ability to nondisjoin in the second pollen mitosis, it is possible to create individuals with or without virtually the entire B chromosome using TB-10L18, and classify them in a segregating F1 population by means of a genetic marker (see MATERIALS AND METHODS). If pZmBs is from the B chromosome, we would predict that it should hybridize only to the individuals that inherit the B chromosome. The results of this test are shown in Figure 3. We can rule out the possibility that pZmBs is an amplified polymorphism because specific hybridization to pZmBs is noted only in the samples containing
B chromosomes. Also, pZmBs does not hybridize to sequences on 10L because the same results are observed when other B-A translocations involving other chromosome arms, such as 10S, are used (see below). The hybridization pattern for TB-10L18 hyperploid (Figure 3) matches the hybridization pattern observed for the normal B chromosome (Figure 3).

Analysis of other clones: The other seven phage were all subsequently shown by Southern analysis to contain sequences homologous to pZmBs, which accounts for their similar hybridization patterns (above). When used for Southern analysis to genomic DNA from A and A+B stocks, it can be seen in Figure 1 that all seven phage also contain varying amounts of A/B shared repetitive DNA's, especially in EMBL3-8Bb, EMBL3-H3, and EMBL3-M4. These genomic blots also demonstrate the similar hybridization patterns observed when the phage are compared. Assuming that all DNAs from the B chromosome are equally clonable, and considering that 8/8 phage contain a representative of the same sequence, it is reasonable to conclude that pZmBs contains representatives of a major repetitive B-specific sequence.

B-Specific cluster maps to the centric region of the B: Using several B-A translocations with breakpoints along the length of the B (TB-10L18, TB-10Sc, TB-1La, TB-10L19, TB-4Lb and TB-9Sd) (BECKETT 1991), it was determined by comparison of hypoploids and hyperploids, that EMBL3-8Bb was most likely derived from the B centric region. As mentioned above, there is no hybridization to TB-10L18 hypoploids, which have the tip of the B short arm present on chromosome 10. Of the others listed above, the most proximally broken B long arm translocation is TB-10Sc (Figures 3 and 4C). It divides the centric knob, placing the majority of the long arm of the B onto chromosome 10. The reciprocal chromosome contains the B short arm, the B centromere, part of the centric knob, and a portion of 10S. Hybridization with the B-specific probe was detected in Southern only in the lane containing the B-centric fragment (TB-10Sc hyperploid) and not in the lane containing the B fragment from the middle of the centric knob to the end of the long arm (TB-10Sc hypoploid) (Figure 3). However, the B-centric chromosome of TB-10Sc carries not only the B centromere but also the proximal half of the centric knob.

Therefore, to resolve if the B-specific cluster indeed maps to the centromere or is contained within the centric knob, three derivatives involving "misdivision of the centromere" were examined. The molecular basis of "misdivision" is not known, but the work of DARLINGTON (1939) on Fritillaria and SEARS (1952) on wheat suggests that it results from breakage of univalent chromosomes within the centromere due to attachment of the meiotic spindle from both poles. This results in the two different replicated arms of a chromosome going to opposite poles. The fact that the different arms have been observed migrating to opposite poles during misdivision indicates that the centromere has been divided during the process and that both subdivisions can function. If the two broken
ends join, an isochromosome is produced, but if they do not, telocentrics result.

CARLSON and CHOU (1981) described a pseudoisochromosomal region of the B-9 chromosome of TB-9Sb. This new chromosome has the normal B-9S arm on one side of the centromere but a partially deleted arm, in particular missing the centric knob and part of the proximal euchromatin, on the other side (Figure 4). This original isochromosome often undergoes misdivision of the centromere yielding each of the respective arms as telocentric chromosomes. The fact that both arms of the pseudoisochromosome can be recovered is consistent with misdivision involving a break within the centromere to produce two functional chromosomes. TB-9Sb-1852 is one such telocentric that is derived from the arm missing the centric knob (CARLSON and CHOU 1981; CARLSON and ROSEMAN 1992) (Figure 4). As alluded to above, this chromosome was derived by the following sequence of events. First there was a misdivision that caused an elimination of the B short arm. One of the two long arms suffered a partial deletion before joining with the other to form the original isochromosome. This was followed by a break within the centromere to produce a telocentric chromosome that was consequently deleted for both the short arm and the centric knob. The B-specific probe, pZmBs, hybridizes to DNA prepared from plants carrying this chromosome (Figure 3). This result, when combined with that of TB-10Sc, can eliminate all of the sequences from a point within the centromere to the tip of the long arm as possible sites for the localization of the B-specific cluster.

The second derivative of the B chromosome formed by a misdivision event is an isochromosome containing two long arms (see Figure 4). This chromosome was found by R. W. STAUB and L. E. HILL and kindly made available to us. This chromosome is presumed to have been formed by a break within the centromere followed by the two broken, replicated, long arms joining to form the isochromosome. The resulting chromosome is deleted for a region from a point within the centromere to the tip of the short arm. The B-specific probe hybridizes to DNA from plants carrying this chromosome (Figure 3). This result can eliminate all of the sequences from a point within the centromere to the tip of the short arm as possible sites for the localization of the B-specific cluster.

The results of the cytological localization can be summarized as follows. The analysis of hypoploids of TB-10L18 and of TB-10Sc indicate that there are no copies of the B-specific sequence in the chromosomal regions that extend from the respective translocation breakpoints to the tips of the short and long arms. In contrast, the B-specific sequences are represented in the TB-9Sb-1852 chromosome. This derivative has resulted from two misdivisions of the centromere. Misdivision must occur within the functional region of the centromere because both products are recoverable. This fact also suggests that the centromere is a repetitive structure. The two misdivisions have eliminated the short arm and a portion of the long arm beyond the breakpoint in TB-10Sc. The presence of the B-specific sequence in the TB-9Sb-1852 chromosome but absent in the hypoploids of TB-10L18 and TB-10Sc suggests, by a process of elimination, that these sequences are a component of the centromere.

Further misdivision of the centromere in the telocentrics described above can occasionally produce new isochromosomes. TB-9Sb-2820 (see Figure 4) is an isochromosome derived from a knobless telocentric, TB-9Sb-1854 (CARLSON and CHOU 1981) of similar structure to TB-9Sb-1852. The metacentric nature of this chromosome permits better spreading of the region surrounding the centromere, which allows a more definitive test for any remaining euchromatin. There appears to be none in this chromosome, which is consistent with its derivation (W. CARLSON, personal communication). Figure 5 shows a Southern hybridization with the B-specific probe comparing TB-9Sb-2820 and TB-9Sb-1852, illustrating the presence of these sequences in both chromosomes.

In addition to the above localization of the B clone, chromosomal in situ hybridization using a tritiated B-specific probe, pZmBs, was performed by the method of PHILLIPS and WANG (1982). Chromosomes from two genetic stocks, High Loss +B's and TB-10L18 hyperploid for the B centromere and the long arm, were used as substrates for the hybridization. The large arrowhead in Figure 6A points to the hybridization over the acrocentric centromere region of the B chromosome. In many cells, there is possibly a minor silver grain deposition at the junction of the distal euchromatin and distal euchromatin. The nature of this deposition is uncertain because, on the basis of...
M. R. Alfenito and J. A. Birchler

FIGURE 6.—In situ analysis of chromosomes in pachynema. Large arrows mark silver grain deposition over centromeres. Small arrows mark possible minor hybridization sites. In all figures, the probe is pZmBs. (A) Bivalent of a B chromosome (1500X). (B) The compound BL-1OL chromosome of TB-1OL18 is shown with hybridization over the center of the chromosome. The pycnotic B long arm is on the left with the euchromatic 1OL on the right. Again, a minor region of hybridization is possible at the distal tip of the B (1500X). (C) TB-1OL18 showing the “bracket” hybridization to the stretched centromere (1500X).

Southern hybridizations, no homology was detected in this region of the chromosome when separated from the centromere region in the TB-1OLc translocation (Figure 3). The potentially reduced stringency of the in situ procedure might permit hybridization between this region of the chromosome and some sequence within the probe that is not detectable by Southernns. (Note that the hybridization conditions for the Southerns and the in situ were distinct.)

TB-1OL18 was also hybridized to the B-specific sequence (Figure 6B). In this genetic construct, hybridization appears over the centromere of the chromosome containing 10L on one arm and the long arm of the B (BL) on the other. The relatively long BL-10L chromosome sometimes stretches during the smear process. In some of these cells, brackets of hybridization can be seen at the centromere (Figure 6C) suggesting that the B-specific sequence may not be continuous through the region or that the density of DNA in this region is below the level of detectable hybridization. Alternatively, the centromere might have been stretched during preparation and the brackets are an artifact of the smear procedure.

Sequence analysis: The clone pZmBs was sequenced (Figure 7). A feature of one part is that it contains the nucleotides CCCTAAA or some variant (e.g., CCCTAA or CTAAA) spaced at approximately every 15 bp. Using the DNA sequence program of MOUNT and CONRAD (1986), we determined that the longest open reading frame contains 35 codons. However, since CCCTAAA does not consistently fall into frame, it most likely does not represent a coding sequence. The other distinct B-specific sequence of pZmBs is roughly 71% A/T rich.

The FASTA program (PEARSON and LIPMAN 1988) was used to compare pZmBs in both orientations to sequences held at GenBank. It was determined that the longest open reading frame contains 35 codons. However, since CCCTAAA does not consistently fall into frame, it most likely does not represent a coding sequence. The other distinct B-specific sequence of pZmBs is roughly 71% A/T rich.

The FASTA program (PEARSON and LIPMAN 1988) was used to compare pZmBs in both orientations to sequences held at GenBank. It was determined that the CCCTAAA regions of pZmBs were similar to: *Plasmodium falciparum* telomere (55% over nucleotides (nt) 13–1029), *Arabidopsis thaliana* telomere (69% over nt 27–251), *Plasmodium berghei* telomere (54% over nt 27–1046), and *Homo sapiens* telomere (59% over nt 19–362). Southern analysis indicates
that the Arabidopsis telomere probe hybridizes with maize (Richards and Ausubel 1988) suggesting a
similar telomere sequence. Despite such homologies, the B-specific sequence differs from that of telomeres
in several ways. All telomeres sequenced to date consist of short, tandem, nearly identical repeats as a
result of the mechanism of action of telomerase (Blackburn 1991). While the sequence CCCTAAA appears
frequently in pZmBs, the B sequence is neither tandem nor identical. Moreover, the clone
pZmBs hybridizes to the centromere region and not the telomeres.

While it is unlikely that a chromosome would have its own unique telomere on only one of its arms, we
tested whether the sequences are associated with the tip of the short arm, which is difficult to observe
cytologically as a distinct entity from the centromere. As noted above, we probed a B isochromosome (R.
W. Staub and L. E. Hill, personal communication) that is a derivative deleted for the B short arm and
duplicated for the entire long arm (Figure 4), and have observed a hybridization pattern indistinguishable
from that of normal Bs (Figure 4A). Similarly, TB10L-18 is broken in the short arm of the B, and
hybridization is only detected in plants euploid and hypoploid for the B centromere. Hypoploids, that
contain only the translocated copy of the B short arm, show no hybridization to pZmBs. Therefore, we con-
clude that the sequence does not represent the telomere or subtelomeric region of the short arm of the
B.

Another significant homology involves the maize knob (Peacock et al. 1981), a 180-bp tandem repeat
found in most maize lines, that showed a 72% fit over a 90-bp stretch corresponding to nt 195–284 (Figure
7). Normally, knobs are an apparently inert sequence that have little effect on the maize genome. However,
in the presence of an unusually large block of heterochromatin on the long arm of chromosome 10 (K10),
all knobs throughout the genome are used preferentially as spindle attachment sites during meiosis
(Rhoades 1952), i.e., they become neocentromeres. This neocentromere formation leads to the preferen-
tially recovery of knobbed chromosomes during meiosis and meiosis. It is not unreasonable that neocentrom-
eres would have similar sequence motifs to normal centromeres since they can act as a facultative substi-
tute. The sequence homology between the knob and the B-specific repeat, coupled with its cytological
location, might suggest a centromeric role for the B repeat sequence.

DISCUSSION

Using two distinct differential screen protocols, we have cloned eight phage containing DNAs from the
B chromosome of maize. Based on the cytological
criteria from B-A translocations, misdivision deriv-
atives, and in situ hybridization, the B-specific cluster appears to be derived from the centromere region.

While the B chromosome behaves normally throughout the sporophyte (Alfenito and Birchler 1990), it functions uniquely in the second pollen mi-
tosis of the gametophyte, leading to the expectation that the B chromosome might contain distinct se-
quen. This unique mitotic behavior is, at least in part, determined by the centromere. In all B-A trans-
locations induced to date, the B centromere-containing portion undergoes nondisjunction. The cytologi-
cally defined centromere is most precisely located between the short arm breakpoint of TB-10L18 and
the long arm breakpoint of TB-10Sc, which breaks in the middle of the centric knob. In addition to the
centromere, also required in the same nucleus for full nondisjunction levels are the adjacent centric knob,
the distal euchromatic tip and some lesser sites (Roman 1947; Carlsson and Chou 1981; Carlsson 1988).
For example, when the proximal heterochromatin (centric knob) is deleted, the chromosome disjoins
properly at the second microspore division (Carlson and Chou 1981). This observation could perhaps
argue, that, in fact, it is the knob adjacent to the centromere, that is responsible for nondisjunction.
However, with TB-10Sc, which divides the knob, the
B centromere-containing chromosome nondisjoins but the reciprocal chromosome does not (Beckett
1975). Therefore, it appears that the centromere, as well as other sequences, are required for the nondis-
junction property. It is interesting to note in this regard that the B centromeric region, which behaves
differently from the A centromeres, coincidently con-
tains a major B-specific sequence cluster.

The sequence analysis indicates there is homology
to telomeres in many plant and animal systems but
the sequences in the B chromosome are not arranged
in a pattern typical of telomeres. Telomere-degenera-
ate sequences have been found at the centromeres in
many vertebrate species by in situ analysis (Meyne
et al. 1990) and in A. thaliana by genetic mapping (Rich-
ards, Goodman, and Ausubel 1991). Thus, in such
diverse organisms as vertebrates, dicots and monocots,
there appears to be a related sequence present at the
centromeres.

There is also homology over a portion of the se-
quence to the maize neocentromere (knob). Because
the knob can facultatively function as a centromere,
sequence homology or similar structural motifs to
bonafide centromeres might be expected, suggesting
a role of the B-specific repeat in centromere functions.
Spaced 3' to the region of homology, there is present
in both, a consensus helix-loop-helix binding site
(CANNTG), that is a requisite component of yeast
centromeres (Cai and Davis 1990). Eighteen individ-
ual repeats of the knob repeat have been sequenced from maize, teosinte, and Tripsacum (Dennis and Peacock 1984). The invariant nucleotides among the eighteen sequences surround the helix-loop-helix consensus site as well as some of the regions of homology to the B-specific repeat. This conservation implies a functional constraint on the evolution of these portions of the nucleotide sequence. Other than the above mentioned feature, we found no significant homology with centromere sequences from yeast (for review see Clarke 1990; Clarke et al. 1986). We note, however, that Grady et al. (1992) found that an oligonucleotide patterned after yeast centromere sequences was present at the centromeres of humans. This oligonucleotide also hybridizes to maize DNA.

The juxtaposition of a normal centromere and a knob on the B chromosome is an unusual arrangement in maize. The neocentromere sequence isolated from the A chromosomes shows weak labeling to the B knob but not to centromeres of A or B chromosomes (Peacock et al. 1981). Likewise, the B-specific repeat only labels the B chromosome centromere in situ hybridizations (and Southern transfers), showing no labeling of A centromeres or neocentromeres, despite the partial homology to the latter detected by sequence comparisons. The neocentromere organization is a tandem repeat of 180 bp without interspersion of CCCTAA motifs, which appears to be typical of normal centromere regions in several organisms.

We hypothesize that the B-specific cluster is at least one of the functional components of the maize B chromosome centromere, based on its cytological localization and its homology to a facultative centromere. Among higher eukaryotes, the maize neocentromere repeat was the first cloned sequence for which centromere function is known. The neocentromere is composed of a tandem array of a 180-bp sequence, the alpha satellite, is located at centromere function is known. The neocentromere is considered to be a tandem repeat of 180-bp sequences and other types of centromeric repeats as well as the general organization of the centromere.

We would like to thank Marcus Rhode and Ellen Dempsey for supplying us with the High Loss line, Rick Staub for the iso-B chromosome, and Wayne Carlson for TB-958-1952 and TB-958-2820. The in situ analysis would not have been possible without the expert assistance, time and facilities of Ron Phillips and Suzanne Livingston. We thank Jiehua Ye for technical assistance. Mike Cummings is gratefully acknowledged for his patient assistance with the computer analysis.

LITERATURE CITED

