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ABSTRACT 
A simulation study was carried out on a backcross  population in order to determine  the  effect of 

marker  spacing,  gene  effect  and  population size on the power of marker-quantitative  trait loci (QTL) 
linkage  experiments  and  on  the  standard error of maximum likelihood  estimates (MLE) of QTL gene 
effect  and map location. Power of detecting a QTL was virtually  the same for a marker spacing of 10 
cM as for an infinite number of markers  and was only slightly  decreased  for  marker  spacing of 20 or 
even  50 cM. The advantage of using  interval  mapping as compared to single-marker analysis was 
slight.  “Resolving  power” of a marker-QTL  linkage  experiment was defined as the 95% confidence 
interval  for  the QTL map location that would  be obtained when scoring an infinite  number of 
markers.  It was found that reducing marker spacing below the  resolving power did not add  appreciably 
to  narrowing  the  confidence  interval. Thus, the 95% confidence  interval with infinite markers sets 
the useful marker  spacing  for  estimating QTL map  location  for a given  population size and  estimated 
gene effect. 

S AX (1923) was the first tQ show that  quantitative 
trait loci (QTL) could  be associated with marker 

loci  in crosses between  inbred lines. For many years 
paucity of suitable  markers virtually limited these 
studies to Drosophila (e .g . ,  SPICKETT and THODAY 
1966).  However, the  advent of biochemical markers 
and  more recently of DNA-level markers has seen the 
extension of such studies to  other species (EDWARDS, 
STUBER and WENDEL 1987; KAHLER and WEHRHAHN 
1986; NIENHUIS et al.  1987; OSBORN,  ALEXANDER and 
FOBES 1987; PATERSON et al. 1988; WELLER 1987; 
WELLER, SOLLER and BRODY 1988). 

Detecting marker-QTL linkage can be  carried  out 
through t-tests based on single markers  (SOLLER, 
BRODY and  GENIZI  1976) or by means of likelihood 
ratio tests (LRT)  that involve the use of a  pair of 
markers  bracketing  a QTL, a procedure  termed “in- 
terval  mapping” (JENSEN 1989; KNAPP, BRIDGES and 
BIRKES 1990;  LANDER  and BOTSTEIN 1989;  VAN OOI- 
JEN 1992). Estimating QTL map  location,  however, 
will generally  require  application of methods  for max- 
imum likelihood estimation  (MLE)  (JENSEN 1989; 
KNAPP, BRIDGES and BIRKES 1990;  LANDER  and BOT- 
STEIN 1989; SIMPSON 1989;  VAN OOIJEN 1992; 
WELLER 1987), although  simpler  approaches are pos- 
sible (HALEY  and KNOTT 1992; THODAY 196 1 ; 
WELLER 1987). 

It should be noted  that  detecting  marker-QTL link- 
age by LRT  and estimating QTL map location by 
MLE are different  procedures and should  be treated 
as  such.  Although  both  can  be  carried out within the 
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same analysis, experimental  parameters such as pop- 
ulation size, QTL effect and  marker spacing may 
influence the two procedures  differently. 

Here, a  comprehensive  theoretical study is carried 
out in order  to  determine  the effect of marker spacing 
on the power of marker-QTL linkage experiments 
and  on  the  standard  error of maximum likelihood 
estimates of QTL gene effect and map location. The 
power of detecting  marker-QTL linkage is investi- 
gated using interval  mapping and  LRT as a  function 
of marker spacing and QTL location relative to the 
closest flanking marker, as compared  to  the power of 
a  multiple  single-marker analysis using a simple t-test 
in the same genetic  architecture. The standard  errors 
(SE) of the maximum likelihood estimates (MLE) of 
the mean and variance, and confidence  intervals  for 
the estimated  map location of the QTL  are also ob- 
tained  as  a  function of marker spacing. The power of 
marker-QTL linkage determination  and  the confi- 
dence  interval for  the  QTL estimated  map location, 
are  then  derived  for  the case where an infinite  number 
of markers are scored. The study is carried  out in a 
simulated backcross population. This experimental 
design was chosen because of its analytical simplicity 
and widespread use  in practice.  It is believed that  the 
general principles derived  from  the simulation study 
will be applicable to  other experimental designs as 
well. 

THEORY 

A backcross population, of  size N ,  was generated 
under  the following assumptions: 
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FIGURE 1.-Marker (bar) and QTL (inverted arrow) locations 
according to marker spacing: 50 cM (lines 1, 2, 3). 20 cM (lines 4, 
5 ,  6 )  and 10 cM (lines 7 ,  8, 9), and location of QTL relative to  the 
markers: at the  marker (lines 1 ,4 ,7 ) ,  '/4 of distance between markers 
(lines 2, 5, 8), and midway between the markers (lines 3, 6 ,  9). 

-The backcross population  originates  from  a cross 
between two inbred lines that  are homozygous at all 
differentiating  marker loci and  QTL. 

-One QTL is present in a  chromosome of length  100 
cM. 

-The trait value has a  normal  distribution with means 
p 1  and PZ for  the two QTL genotypes  present in the 
backcross population and equal  variance, a2, for  both 
genotypes. 

-Starting at 0, there is a  marker every c cM along  the 
chromosome and,  marker locations are known on 
the basis  of prior information. 

-Crossing over  interference is not  present. 
-The simulation population was generated  for all 

combinations of p1 = 0; p z  = 0.25,  0.5; cr2 = 1; N = 
500, 1000; c = 0, 10, 20, 50 (c = 0 represents  the 
model with an  infinite number of markers) and  the 
QTL was always located at  the  central  interval with 
k = 0, l/4, '/2, where, k is the relative position of the 
QTL between its two flanking  markers  (Figure 1). 
In addition,  for  the  representative case  of c = 20 cM 
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and  the  QTL located at  the mid-point of the two 
central  markers (12 = Y 2 ) ,  additional simulations were 
also carried  out  for p2 = 0.25, 0.5,  0.75,  1 .O and  1.5 
with N = 100; and  for N = 100, 200 and  2000 with 

-For the simulations, 1000 replicates were generated 
pr, = 0.25. 

for each parameter  combination. 

The backcross population was generated as follows. 
(i) For each individual one chromosome was generated 
according  to  the given assumptions. (ii) The genotypes 
of the  markers  and  the QTL were sampled from  a 
binomial distribution  according  to the  proportions of 
recombination between markers  and  QTL. (iii) Ac- 
cording  to  the QTL genotype  sampled, the trait value 
was sampled from  a  normal  distribution with the 
corresponding  mean. 

Markers  spaced  at  intervals 
Single marker  analysis: At each marker  a t-test was 

carried  out  to  determine significance of the difference 
between the averages of the homozygous and  the 
heterozygous individuals for  that  marker. If a signifi- 
cant  difference was detected at any  marker it was 
considered as a QTL detected in that  simulation. Each 
individual t-test was carried  out  on  an individual 
marker.  Therefore, a  per-marker type I error was 
required,  defined in a way to control the per-chro- 
mosome type 1 error (ie., the probability that in a 
given chromosome  a QTL will be  detected when none 
is present).  Controlling the overall genome type I 
error is then simple since the chromosome tests are 
independent  (LANDER  and BOTSTEIN 1989). The crit- 
ical per-marker type I errors, for  an overall per- 
chromosome type I error of 0.05, were obtained  from 
three series of 10,000 replicate simulations, each in a 
population of N = 1000 with absence of a QTL;  one 
series of 10,000 replications was carried  out  for each 
of the  three values of marker spacings examined,  10, 
20 and  50 cM. 

Interval  mapping: The chromosome was analyzed 
by separately examining each of the available inter- 
vals.  At each interval,  defined by the two flanking 
markers,  a  maximum likelihood procedure was car- 
ried  out  as follows. 

Denote the two current flanking  markers M and N ,  
with subscript 1 or  2  indicating  parental  origin.  In  a 
backcross population  four  genotype  groups are pres- 
ent with respect to  the flanking  markers, namely: 
M I N l ,   M 2 N 2 ,   M 1 N 2  and M2N1 (denoted  marker  gen- 
otypes  1 to 4, respectively). On these  definitions, the 
likelihood function has the  form: 

4 N, 
L = n  n$j 

t = l  j = l  

where N ,  is the  number of individuals with the  ith 
marker  genotype and$, is the density function of the 
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j t h  individual with the  ith  marker  genotype. The 
density functions are computed as follows: 

f 4 j  = 
r2(1 - r l )  rl(1 - r2) 

R g2j  + R g1j 

where,  rl  and r2 are  the respective proportions of 
recombination  between the  QTL  and  the two  flanking 
markers, R is the  proportion of recombination be- 
tween the two flanking  markers themselves and glj 

and gzj are  the density functions of a  normal  distri- 
bution with means p1 and p2,  respectively, and vari- 
ance u2. Under  the assumption of absence of recom- 
bination  interference, r2 can be  express by rl and R 
as: 

R - r l  
1 - 2rl 

r2 = -. 

Since R is assumed to  be known a priori, the 
likelihood function is maximized with respect to four 
unknown  parameters, p1, p2, u2 and  rl.   The Newton- 
Raphson algorithm  (DIXON 1972) was chosen to max- 
imize the likelihood function because of its computa- 
tional efficiency and because it automatically  provides 
standard error estimates (SEE) of the MLE. The New- 
ton-Raphson  algorithm, as implemented here, maxi- 
mizes the likelihood function simultaneously with re- 
spect to all the  four unknown  parameters. Conse- 
quently,  for each marker  interval only one 
maximization is carried  out. The Newton-Raphson 
algorithm uses the first and second  partial derivatives 
of the likelihood function. These were  derived  ana- 
lytically. It also requires initial values for the param- 
eters.  These  were  obtained using the moments 
method of estimation (MOOD, GRAYBILL  and BOES 
1974). The SEE are obtained  from  the  covariance 
matrix  estimated by the  inverted  matrix of the second 
partial derivatives (MOOD, GRAYBILL and BOES 1974). 

MLE of the  four unknown  parameters (pl, p2, uz 
and r l ) ,  the SEE of the MLE as  obtained  from  the 
covariance  matrix, and a LOD score value were ob- 
tained  for each interval analyzed. The LOD score is 
taken as the base-10 logarithm of the  ratio of the 
maximum likelihood values assuming linkage vs. no 
linkage. This is commonly used as a likelihood ratio 
statistic in linkage analyses (OTT  1985)  to  perform a 
LRT.  The  LRT was performed  on  the interval with 
the highest LOD score in that  chromosome. The  LRT 
was carried  out by defining  a  threshold value to  the 

LOD  score,  above which marker-QTL linkage is taken 
to be significant. Since the threshold  LOD  score  de- 
pends  on  the  marker spacing and  number of chro- 
mosomes tested  (LANDER and BOTSTEIN 1989),  the 
same simulations used to  determine  the per-marker 
type I error in the single-marker analysis, were used 
to  determine  the  threshold values for  the  LOD score 
in the  LRT.  The thresholds were taken, as in the 
single-marker analysis, to obtain  a  per-chromosome 
type I error of 0.05. 

The MLE and  their SEE were also taken  from  the 
interval with the highest LOD score. For all the MLE, 
empirical SE (the  standard deviation of the MLE) were 
also calculated using the individual MLE obtained in 
the  1000 replicate simulations. 

For QTL map  location, in addition to  the two SE 
estimates obtained as above  (average of the per-simu- 
lation SEE, and empirical SE), a 95% “symmetric”  con- 
fidence  interval was also obtained empirically from 
the individual QTL map locations as found in the 
1000 replicate simulations. A symmetric confidence 
interval was constructed since it is reasonable to as- 
sume that  there is no  preference of the estimate to 
either side of the  QTL.  Furthermore, in practice one 
would be  interested in the size  of the symmetric 
confidence  interval, since the location of a smaller 
unsymmetric confidence  interval, if it exists, would be 
unknown. 

Infinite number of markers 

Simulation  parameters and  the genetic assumptions 
were as above,  except that 1000 uniformly spaced 
markers (c = 0.1 cM) were examined in the 100-cM 
chromosome, with a QTL present at a distance of 50 
cM  of the  end of the chromosome. 

At each marker  a  LOD  score was calculated assum- 
ing  that  the QTL is located at  that  marker. The  QTL 
was considered to have been detected if the maximal 
LOD score of any of the markers in that chromosome 
exceeded the threshold  needed in order to  obtain  a 
per-chromosome  type I error of 0.05  for an infinite 
number of markers. This was taken  from  the  expres- 
sion developed by LANDER  and BOTSTEIN (1  989). The 
QTL map location was then  estimated by the  marker 
with the highest LOD score.  A 95% symmetric con- 
fidence  interval  for  map location was obtained  empir- 
ically from  the  1000  replicate simulations, this was 
defined as the “resolving  power” of the  experiment. 

The SE of the estimate of p1 for this case was the 
same  as  that  theoretically  obtained when the QTL 
genotype of each individual is known, in  which  case 
SE = (2/N)’”. 

NUMERICAL RESULTS 

Figure 2 presents  an illustrative example of one 
simulation with the  parameter values: p1 = 0 ,  p 2  = 
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FIGURE 2.-Illustrative interval  mapping  example  of  results of  a 
single  simulation, with parameter values f l I  = 0, p2 = 0.5, u = 1 ,  N 
= 1000, c = 20 cM and  the  QTL located in the  central  interval  at 
the mid-point  between the two flanking  markers.  Maximum  LOD 
scores within each interval  are shown  as horizontal  bars,  MLE of 
Q T L  location within each  interval shown as  an  open circle. Final 
estimate  of  map location of  QTL  (the  estimate in the  interval with 
the highest LOD  score) shown by an  inverted  arrow. 

TABLE 1 

LOD score thresholds and type I errors 

No. of markers 
Marker Per Per-marker LOD 
interval chromosome type I error threshold 

-0 -a2 0.0026a 1 .96a 
10 11 0.0084 1.53 
20 6 0.01 14 1.43 
50 3 0.0171 1.19 

Per-marker type I error,  for  the  single-marker analysis, and 
LOD score  threshold  for  the  interval  mapping analysis, as obtained 
from 10,000 replicate simulations, according  to  marker  interval (in 
cM) in order  to  obtain a 0.05 per-chromosome  type I error. 

a Obtained  from  the expression of LANDER and BOTSTEIN (1989) 
for  an  infinite  number of markers. 

0.5, u = 1 ,  N = 1000, c = 20 cM and  the  QTL located 
in the  central  interval, at  the mid-point between the 
two flanking  markers. The maximal LOD scores given 
by the various interval analyses are shown. On the 
basis  of these  LOD scores, the 40-60 CM interval was 
chosen to provide MLE  of parameter values. The 
MLE  of QTL location is shown by the  arrow. 

Table 1 shows the  per-marker type I error  for  the 
single marker analysis, and  the  LOD score  thresholds 
used  in the interval  mapping analysis, for  the various 
marker spacings. As expected,  per-marker type I er- 

Marker interval 

500 t-test 0.66 0.61  0.64  0.68  0.58  0.58 0.71 0.50  0.47 
(0.64) LRT 0.68  0.63  0.66  0.70 0.62 0.62 0.74 0.57 0.55 

1000 t-test 0.94  0.94 0.91 0.95 0.90 0.88 0.95 0.83  0.75 
(0.93) LRT 0.94  0.94 0.91 0.96 0.92 0.90  0.94 0.87  0.81 

Power of detecting a Q T L  with a standardized  gene  substitution 
effect  of d = 0.25 in a  100-cM chromosome  and with an overall 
per-chromosome  type I error of 0.05, according  to:  marker interval 
(in  cM); the relative  location  of the Q T L  in the interval: 0, at  the 
marker; %, half-way between the  interval mid-point and  the  nearest 
marker; %, at  the  interval mid-point; N, the  sample size; t-test, 
single-marker analysis using a t-test; LRT,  interval  mapping using 
a  likelihood-ratio test.  In  parentheses  under  column  headed “N,” 
power with an  infinite  number  of  markers. 

a The  relative location of the Q T L  in the  marker interval. 

rors were lower, and  LOD  thresholds were higher  for 
the  narrower  marker spacings. 

Table 2  presents the power of  detecting  a  QTL 
having standardized allele substitution effect d = 0.25 
in a 100 cM chromosome, with a  per-chromosome 
type I error of 0.05 (although  included in the simu- 
lation, values are  not given for  a  gene effect of d = 
0.50 and N = 500,  1000, since in this case power was 
always close to 1.0). The power of the  LRT  for 
detecting  a QTL was the same for a spacing of IO cM 
as for  infinite number of markers. Power was barely 
influenced by marker spacing in the  range of 10 to 
20 cM; e.g. ,  for N = 500,  the maximum difference in 
power  between the 10 and 20 cM spacings, obtained 
when the  QTL was midway between the two flanking 
markers (the worst case), was only 0.04. A somewhat 
greater difference was obtained when a 50 cM spacing 
was considered. In this case a maximum difference in 
power of 0.1 1 between 10- and 50-cM intervals was 
found;  again, when the QTL was at  the mid-point of 
the interval. The difference in power according to 
marker spacing decreased when the QTL was at a 
distance of ’/4 of the interval  length from the  nearest 
flanking marker. 

The effect of using interval  mapping with LRT as 
compared  to  single-marker analysis  with a t-test was 
barely noticeable at marker spacings of 10 and 20 cM. 
For  an  interval of 50 cM and  the QTL located at  the 
mid-point  between the flanking  markers, maximum 
power  advantage of the LRT was found. Even then, 
it was only 0.08 and 0.06 for  population sizes of 500 
and  1000, respectively. 

When  a QTL is in complete linkage with a  marker, 
the mode of analysis, LRT  or t-test, and  the  marker 
spacing should  not  influence the power (LANDER  and 
BOTSTEIN 1989),  and  indeed,  for k = 0 (the QTL is 
located at  the  marker), power is more or less the same 
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at all marker spacings. This is strictly correct when a 
single test is carried  out,  either  LRT or t-test. How- 
ever, when several markers are tested,  the specific 
number of markers  included will influence the per- 
chromosome  LOD  score  threshold,  and  hence  the 
per-marker type I error  and power as well (Table 1). 
Consequently, when the QTL is in absolute linkage 
to a marker,  the power increases as fewer  markers or 
intervals are scored.  It is for this reason that when the 
QTL was at  the  marker (k = 0), the  50 cM spacing 
showed a  higher  power  than the 10- or 20-cM spacing. 
Similarly, the  LRT showed higher  power  than  the t- 
test, because in the simulation the  number of single 
markers was always one  greater  than  the  number of 
intervals (see Figure 1). This characteristic of com- 
plete  marker-QTL linkage is mainly a simulation de- 
pendent  artifact, since normally, in a marker-QTL 
linkage mapping  exercise, there is a low probability 
that a QTL will be in absolute linkage to a  scored 
marker.  Some  further aspects of this simulation be- 
havior will be  considered in the DISCUSSION. 

In  order  to estimate the influence of allele substi- 
tution  effect, d ,  and sample size, N, on the power of 
t-test and  LRT  for  detecting a QTL, simulations with 
extended values of d (0.25,  0.5,  0.75, 1 .O, 1.5)  and N 
(100, 200, 500, 1000, 2000) were  carried  out  for  the 
representative case of marker  intervals of 20 cM and 
the QTL located at  the mid-point (k = I/z) of the 
central  marker  interval.  It was found  that  for all  cases 
the  difference in power between the two tests is small, 
with a  common  difference of 0.02  for most cases, and 
a maximal difference of 0.04. 

The parameter estimates are expected  to  be asymp- 
totically unbiased since they are MLE. Indeed all the 
parameter estimates were as expected  for simulations 
based on 1000 replicates; bias was not  found.  There- 
fore,  the  standard  errors of the  parameter estimates 
are  presented,  rather  than  the estimates themselves. 
Although it was noted, when examining the individual 
simulations that  interval  mapping  had a slight tend- 
ency to locate the  QTL exactly at a  scored marker, 
this did  not cause a significant bias  in the estimate of 
the QTL map location. 

Table 3  presents two estimates for  the SE of the 
estimate of pI: (i) the empirical SE obtained  from  the 
1000 replicate simulations for  each parameter com- 
bination, (ii) the  average of the SEE obtained  from  the 
covariance  matrix at each individual simulation. Con- 
sideration of Table 3 shows that when using 10- or 
20-CM spacings, the  entire information on p,  con- 
tained in the sample appears  to  be  exploited, since the 
SE values obtained in the simulation are very close to 
the SE for  the given population sizes for infinite  num- 
ber of markers  (equal  to  0.063  and  0.045  for N = 500 
and 1000, respectively). For 50-cM spacing SE values 
increased slightly, to approximately  0.075 and  0.05 1 ,  

respectively. The SEE obtained  from  the covariance 
matrix were unbiased estimators of the empirical SE 

for  the 10- and 20-cM intervals. However, as com- 
pared  to  the empirical values, a slight bias upward (an 
average of 0.006)  appeared  at  the 50-cM spacing. For 
q2, the empirical SE and  the SEE obtained  from  the 
covariance  matrix for  the MLE were both very small 
at all marker spacings (data  not shown) so that this 
parameter was estimated with great accuracy at all 
marker spacings. 

Table 4  presents the  95% confidence intervals for 
the  QTL map location. The confidence  interval was 
estimated in three  different ways: (i) as an empirical 
95% confidence  interval  obtained  from  the 1000 rep- 
licate simulations, (ii) as four times the empirical SE of 
the  map location obtained  from  the 1000 replicate 
simulations, (iii) as four times the  average,  over  the 
1000 replicate simulations, of the SEE obtained  from 
the covariance matrices. The first estimate is thought 
to be the most correct. The rationale  for  the last two 
estimates is that MLE are expected to be asymptoti- 
cally normally distributed.  Consequently, 4 X SE 
would represent  approximately the length of a 95% 
confidence  interval.  For the analysis based on an 
infinite number of markers, only empirical confidence 
intervals are presented.  When  required,  the confi- 
dence  interval calculated as 4 X SE or 4 X SEE was 
truncated  at  the chromosome  length, 100 cM. The 
results  summarized in Table 4 will now be  considered 
in detail. 

The influence of gene effect and  population  size 
on the  empirical confidence interval for QTL  loca- 
tion, with infinite number of markers: Even  with an 
infinite number of markers,  the  confidence  interval is 
strongly  affected by population size and  gene effect. 
Thus, with a population size  of 500  and  gene effect 
of 0.25,  the empirical confidence interval  for QTL 
location with an  infinite number of markers, was 90 
cM. That is, the MLE placed the QTL at  more or less 
any location along  the  chromosome. In  the  parameter 
conditions  studied,  confidence  interval,  for  infinite 
number  of markers was inversely proportional  to pop- 
ulation size and  to  the square of gene  effect. Thus, 
for  larger population sizes and/or  greater  gene effects, 
confidence  interval with infinite  markers  decreased 
markedly,  reaching, for example, 11 cM for  a popu- 
lation size of 1000 and  gene effect of 0.50. The 
dependence of confidence  interval on population size 
and  gene effect,  even at infinite  number of markers, 
shows that  there is a limit confidence  interval  for map 
location. That is, increasing the  number of markers 
can reduce  the  confidence  interval only up  to  a given 
limit, which is determined by the size of the population 
and  gene effect. 

The influence of marker  spacing on empirical 
confidence interval for QTL  location,  according to 



948 A. Darvasi et al. 

TABLE 3 

Standard error of estimating QTL genotype mean 

Marker interval 

10 20 50 

N d TY Pe 0 ‘A 1% 0 ‘/4 ’/2 0 ‘/4 %a 

500 0.25 E 0.065 0.065 0.065 0.067 0.065 0.070 0.070 0.076 0.078 
(0.063) A 0.065 0.065 0.065 0.069 0.068 0.068 0.085 0.081 0.081 

0.50 E 0.064 0.062 0.064 0.064 0.067 0.066 0.070 0.075 0.077 
A 0.065  0.065  0.065  0.067  0.067 0.067 0.083 0.078  0.077 

1000 0.25 E 0.043 0.044  0.044  0.046  0.046  0.046  0.051  0.051 0.052 
(0.045) A 0.046 0.046 0.046 0.048 0.048 0.048 0.061 0.057 0.056 

0.50 E 0.045 0.045 0.047 0.047 0.047 0.048 0.051 0.051 0.053 
A 0.046 0.046 0.046 0.047 0.047 0.047 0.058 0.055 0.054 

Standard errors of estimate of the mean of one of the QTL genotypes according to standardized gene effect, d, and type of standard 
error: empirical SE (E), or average of the per simulation SEE estimated from the covariance matrix (A) (see text for details). Other headings 
as  in Table 2. In parentheses, under column headed “N,” SE with an infinite number of markers. 

a The relative location of the  QTL in the  marker interval. 

TABLE 4 

Confidence  intervals for QTL  map location 

Marker interval 

10 20 50 

N d Type  50  47.5 45 40 45  50  50 37.5 25* 
0 vi Yz 0 Y4 Yz 0 Y4 Y2Q 

500  0.25 I 87 87 90 80 90 95 61 81 85 
(90) E 67 73 73 66 77 81 65 89 100 

A 29 30 28 88 49 54 100 100 100 
0.50 I 14 22 25 17 31 37 36 60 50 
(25) E 18 24 29 21 34 32 36 54 55 

A 12 12 12 17 17 16 45 29 29 

1000  0.25 1 49 55 63 40 55 59 45 65 73 
(54) E 40 47 53 43 48 54 47 71 80 

A 18 17 18 39 27 40 80 70 76 
0.50 1 8 12 17 13 21 23 25 48 29 
(11) E 10 12 15 12 19 21 24 42 32 

A 8 8 8 11 12 12 27 18 17 

The 95% empirical symmetric confidence interval for QTL map 
location (in  cM) obtained from 1000 replicate simulations for each 
parameter combination, (I) bold; and confidence intervals estimated 
as 4 X SE according to type of standard error: empirical SE, (E), or 
average of the per-simulation SEE obtained from the covariance 
matrix, (A). Other headings as in Tables 2 and 3. In parentheses in 
column headed “d” are 95% empirical SE obtained from 1000 
replicate simulations for the case of infinite number of markers. 

The relative location of the  QTL in the  marker interval. 
Distance of QTL from end of chromosome. 

population  size  and  gene  effect: We first  consider 
the effect of marker spacing on  confidence  interval 
for QTL location, relative to confidence  interval  for 
infinite  number of markers,  for QTL located at K = 
‘/.I (the  average distance of a QTL from its nearest 
flanking  marker). The effect of QTL location relative 
to  the flanking markers will be  considered in the  next 
section. Careful  examination of Table 4 shows an 
interesting series of relationships. 

For N = 500, d = 0.25, with a  confidence  interval 

of 90 cM for  an  infinite  number of markers,  confi- 
dence  intervals  for  marker spacing of 50, 20 and 10 
cM were similar. 

For N = 1000, d = 0.25, with a  confidence  interval 
of 54 cM for  an  infinite  number of markers, confi- 
dence  intervals  for  marker spacing of 50, 20 and 10 
cM were again similar. 

For N = 500, d = 0.5, with a  confidence  interval of 
25 cM for  an  infinite number of markers, confidence 
intervals for marker spacing of 20 and 10 cM were 
less than  for  a  marker spacing of 50 cM. 

For N = 1000, d = 0.50, with a confidence interval 
of 11 cM for  an  infinite  number of markers,  the 
confidence  interval  for  a  marker spacing of 10 cM 
was markedly less than those for  marker spacing of 
20 or 50 cM. 

The  general impression from  these results is that 
reducing  marker spacing below the  95% confidence 
interval  obtained with infinite  markers  did  not add 
appreciably to narrowing the empirical confidence 
interval. This  important  result suggests that in prac- 
tice, accuracy of estimation of QTL location will not 
be  increased by decreasing  marker spacing much be- 
yond that equivalent  to the 95% confidence  interval 
obtained  for  an  infinite  number of markers. Now, as 
shown above, the confidence  interval  for  an  infinite 
number of markers is determined by the size  of ex- 
periment  and gene  effect. Thus, these results suggest 
that  the empirical 95% confidence  interval  appropri- 
ate  to a given experimental design and estimated  gene 
effect with infinite  markers will give a  rough estimate 
of the minimum useful marker spacing that can be 
expected  to yield increments in the accuracy of esti- 
mation of QTL map  location. This  95% confidence 
interval is obtained  from  the simulation results. 

The  effect of QTL location  relative to the  flanking 
markers: Generally, the closer the  QTL  to a marker 
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( i e . ,  k = 0 as  compared to k = V4; or, k = '14 as 
compared  to k = I/z) the  narrower  the confidence 
interval.  For  example, for N = 1000 and d = 0.5,  the 
confidence  interval  decreased  from  17 cM at k = '12, 

to 8 cM at k = 0. However, this general  tendency was 
subject to a number of exceptions.  In  particular the 
confidence  interval is influenced by the distance of 
the  QTL  from  the  end of the  chromosome.  Thus, 
confidence  intervals, at  the 50-cM marker  spacing, 
were generally narrower  for k = '/z than  for k = '14. 
This is due to  the fact that  the distance  from the QTL 
to  the  end of the  chromosome  differs  according  to 
QTL location relative to  the  markers (see heading of 
Table 4). This, in turn, places an  upper limit on MLE 
error in the direction of the nearest  chromosome end. 
For  example, when the  QTL is located 25 cM from 
the  end of the  chromosome, error in the distal direc- 
tion is restricted to a maximum of 25 cM. Conse- 
quently,  the confidence  interval will be decreased 
relative to  the situation  where the  QTL is located 
more centrally  on the chromosome. 

An additional simulation artifact  relates to the ap- 
parent  tendency of the interval  mapping  mode of 
analysis to locate the  QTL  at a  marker.  Consequently, 
for  the  interval  mapping analysis, the confidence in- 
terval  obtained, when the QTL is assumed to be 
located at a marker, may be  narrower  than  obtained 
when the simulation is based on  an infinite number of 
markers! For  example,  at  a  50 cM marker  interval 
with N = 500 and d = 0.25,  a value of 61 cM  was 
obtained  for  the  confidence  interval with interval 
mapping. In this case only three  markers  are  scored, 
two of which are  at  the  chromosome  extremes. Con- 
sequently, the estimated  map location tends  to  be 
assigned to  the  central  marker  where  the QTL is 
located. This dramatically  reduces the confidence in- 
terval. 

Confidence  intervals  based on empirical SE of 
QTL  location  and on SEE of the MLE of QTL  loca- 
tion: 95% confidence  intervals  estimated as four times 
the empirical SE (+2 SE) of QTL location,  were  gen- 
erally quite close to  the empirical confidence  interval 
itself. This  supports  the  expected  normal distribution 
of the MLE, since the  factor +2 SE determines  a 95% 
confidence  interval for a  normal  curve. 

When the empirical confidence  intervals  were  nar- 
row (1 0- 15 cM), the SEE estimates given by the covar- 
iance matrices of each simulation were close to  the 
empirical confidence  interval. They also did  not  differ 
much within each 1000-replicate simulation (data  not 
shown). Thus, in this situation, utilization of Newton- 
Raphson procedure  for MLE can provide useful SEE 

from the covariance  matrix, for real  experiments 
where only one replicate is available. When  empirical 
confidence  intervals  were  larger  than this, however, 
the confidence interval  estimated from  the SEE often 

diverged significantly from  the empirical values, show- 
ing small confidence intervals. In this case they were 
also found  to  differ within each  1000-replicate simu- 
lation (data  not  shown). Thus, for such situations SEE 
obtained  from  the  covariance  matrices  are  not useful 
guides to  the actual SE and confidence intervals. The 
small confidence  intervals  obtained from  the SEE may 
derive  from  the fact that  the profile likelihood for  the 
map location is not  smooth  but increases within inter- 
vals and  drops  at  the markers. The SEE considers the 
curve around  the maximum which may be fairly 
peaked,  but  ignores  the fact that  outside  the interval 
the surface may peak again. 

DISCUSSION 

Effect of population  size, gene effect and  marker 
spacing on power, SE of estimate of gene effects and 
confidence interval of QTL  location: Increase in 
population size provided  comparable gains in  all three 
parameters of statistical importance:  power, SE of  es- 
timate of gene  effect, and confidence interval of QTL 
location. Similarly, increase in gene effect provided 
comparable gains in  all three of the above  parameters. 
Furthermore, additional increase in population size 
or gene effect provided  continuous  additional im- 
provement in these statistical parameters.  In  contrast, 
the  three statistical parameters  were  not uniformly 
affected by a  reduction in marker spacing, and reduc- 
tion in marker spacing did  not have a  continuous 
effect. In  particular, with respect to power or SE of 
estimate of gene  effect,  marker spacing narrower  than 
10 or 20 cM did  not  provide  additional gains, regard- 
less of the population size and  gene effect. With 
respect to confidence  interval of QTL location, how- 
ever,  the  marker spacing that  provided  information 
close to  the resolving power of the  experiment  de- 
pended  on  the resolving power itself, as determined 
by gene effect and population size. Consequently,  for 
mapping  accuracy,  50-, 20-, 10-cM or even narrower 
marker spacing might  be useful. 

Confidence  intervals for QTL  map  location: The 
results of theses simulations show that 95% confidence 
intervals  for QTL map location can be rather  broad, 
in some cases essentially covering the  entire chromo- 
some. In  effect, a QTL with gene effect d = 0.25 in 
an experimental  population of size 500 cannot be 
located with confidence to any particular  region of 
the chromosome.  For  genes of large  effect, however, 
or  for  experiments of greater size, confidence  inter- 
vals can be considerably less, reaching, e.g., 11 cM for 
N = 1000 and d = 0.50. Thus,  the resolving power of 
the  experiment with respect to QTL map location is 
primarily determined by the size of the  experiment 
and  the effect of the  QTL.  The simulation studies 
showed that  marker spacing narrower  than  the resolv- 
ing  power of the  experiment  did  not  contribute  to 
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increased accuracy of QTL mapping within a given 
experiment.  Therefore, a priori it would appear  rea- 
sonable to estimate the map  resolution  potential  that 
a given experimental structure provides, and decide 
accordingly on the  appropriate  marker spacing to use. 
T o  estimate this requires knowing the size of  the 
experimental  population and  gene effect at  the  QTL, 
and  then  performing  the  corresponding simulation as 
previously described. The size  of the  experimental 
population is determined by experimental goals, facil- 
ities and  resources. The gene effect at  the  QTL can 
be set according to a priori assumptions as to  the 
magnitude of QTL effect which  it is desired to  char- 
acterize; or can be estimated with relative accuracy by 
a preliminary experiment using a few  widely spaced 
markers (see e.g., Table 3, 50-cM spacing). In practice 
extensive simulations are  required in order  to obtain 
the resolving power of the  experiment.  Consequently, 
for practical use, comprehensive tables showing con- 
fidence  interval of QTL in the infinite number of 
markers case, as a  function of population size and 
gene effect for BC and F2 populations are in prepa- 
ration and will be published elsewhere. 

Single-marker analysis as compared to interval 
mapping: In accord with results  presented by HALEY 
and KNOTT (1  992),  the difference in power  between 
interval  mapping using a LRT  and single-marker 
analysis using a t-test was found  to be small. When 
intervals of up to 20 cM are used, there will be little 
difference in the results obtained using the two meth- 
ods. This differs  from the conclusions of a  previous 
study (LANDER  and BOTSTEIN 1989) which suggested 
that power of detecting  marker-QTL linkage could 
be markedly increased by utilizing interval  mapping 
with LRT as compared  to single markers with  t-tests. 
This is probably due  to  the fact that  the comparison 
previously investigated did not  take  into  consideration 
that when a pair of flanking  markers is available, both 
will be individually examined in the  corresponding 
single-marker analysis. Statistical significance with re- 
spect to  either will result in marker-QTL linkage 
identification,  hence  increasing the power of the sin- 
gle-marker analysis. Also, only the case where the 
QTL is located at  the mid-point with respect to  the 
flanking  markers was investigated. This is the worst 
case for  single-marker QTL linkage determination 
relative to  interval  mapping.  Consequently, the in- 
crease in power given by interval  mapping in relation 
to single-marker analysis  which was found, was biased 
in favor of interval  mapping. 

Furthermore, as indicated  above, in an initial 
screening of the  genome  for QTL detection,  a  rather 
wide marker spacing will be  optimal. In practice, this 
means that  the  number of markers  scored  per  chro- 
mosome will be one  to  three. In the case where  one 
marker  per  chromosome is analyzed, it is obvious that 

single-marker analysis should  be used. When two 
markers  are used they will be chosen to maximize 
power with respect to all  possible QTL locations in 
the chromosome, ie., at a distance somewhat less than 
'14 from each chromosome end. Interval  mapping can 
then be applied only to  the single interval  present, 
leaving the  extremes  unscreened.  Therefore, in this 
case a  single-marker analysis would be  carried  out in 
any event. Testing  the single interval using interval 
mapping, in addition to the single-marker analysis, 
will cause a slight increase in the per-chromosome 
type I error. Alternatively,  for  the same per-chromo- 
some type I error, power will slightly decrease. This 
will close the  gap  between  the two methods and might 
even increase the power of the single-marker analysis 
as compared to interval  mapping. T o  a lesser extent, 
similar considerations will apply when three markers 
are scored on a  chromosome. 

The advantage of using single-marker analysis, as 
compared  to interval mapping with LRT, lies  in its 
simplicity. Single-marker analysis can be readily ap- 
plied to any experimental  design,  and can be utilized 
for  detection of several unlinked QTL using standard 
software packages for multiple regression (SAS, 
1985), where QTL effects and  their  interaction can 
be simultaneously estimated. Also, when trait value is 
not normally distributed  and its distribution is not 
known, the power of the LRT will decrease because 
the model in  use is not  an  appropriate  one.  In  contrast, 
by the  Central Limit Theorem (MOOD, GRAYBILL  and 
BOES 1974)  the single-marker analysis will not be 
influenced by trait  distribution  for  populations sizes 
generally studied ( N  > 100). In addition, single- 
marker analysis can be  applied to  unmapped  markers, 
whereas, in interval  mapping the markers must have 
been previously mapped, or sufficient markers and 
individuals should  be  scored to  map  the new markers 
as part of the same  experiment. 

The importance of interval  mapping is in the second 
stage of the analysis, where an estimate of QTL loca- 
tion is desired. In many cases the two stages will be 
implemented in different  experimental  populations, 
since detecting  a QTL will require less effort  than 
obtaining  even  an  approximate  gene location. There- 
fore, interval  mapping will be essential only in exper- 
iments  that are able to provide  a fairly accurate  gene 
location. 

Fine mapping of QTL Highly accurate  estimates 
of the  QTL  map location, within 1 to 2 cM, are 
required  for application of molecular procedures with 
the goal of  physically mapping and cloning of  the 
QTL.  The result of these simulations shows that even 
for  QTL of large  effect, in experiments with large 
numbers,  and using an  infinite  number of markers, 
confidence  intervals  for QTL map location remain in 
the  order of 10 cM. Thus, linkage mapping  experi- 
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ments  alone,  even  employing  an “infinite number of 
markers”  cannot  bring Q T L  mapping accuracy much 
beyond this point,  for Q T L  of moderate effect and 
experiments of acceptable size. One may conclude 
that fine  mapping of Q T L  will require  other  ap- 
proaches, such as the use of near isogenic lines (BEN- 
TOLILA et al. 1991),  recombinant  congenic  strains 
(DEMANT and HART 1986),  substitution  mapping (PA- 
TERSON et al. 1990) or backcross inbred lines (BECK- 
MANN and SOLLER 1989), all of which are based on 
definition of the chromosomal  segment  carrying  a 
given QTL that is common to a number of individuals 
or lines. Such approaches  appear  to  hold  the  promise 
of providing effective means of utilizing the  abun- 
dance  of DNA-level markers  for  fine  mapping of 
QTL. 

Selective genotyping (DARVASI and SOLLER 1992; 
LANDER and BOTSTEIN 1989; LEBOWITZ,  SOLLER and 
BECKMANN 1987) was suggested  as  a design that can 
reduce  the  number of individuals genotyped  for given 
power of detecting QTL,  by genotyping only the most 
informative individuals in the  experimental popula- 
tion. The influence of selective genotyping on Q T L  
mapping accuracy remains to be investigated. 
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