Direct Measurement of in Vivo Flux Differences Between Electrophoretic Variants of G6PD from Drosophila melanogaster

Joanne Labate and Walter F. Eanes

Department of Ecology and Evolution, State University of New York, Stony Brook, New York 11794

Manuscript received March 4, 1992
Accepted for publication July 30, 1992

ABSTRACT

Demonstrating that naturally occurring enzyme polymorphisms significantly impact metabolic pathway flux is a fundamental step in examining the possible adaptive significance of such polymorphisms. In earlier studies of the glucose-6-phosphate dehydrogenase (G6PD) polymorphism in Drosophila melanogaster, we used two different methods, exploiting both genotype-dependent interactions with the G6pd locus, and conventional steady-state kinetics to examine activity differences between the two common allozymes. In this report we use 1-14C- and 6-14C-labeled glucose to estimate directly genotype-dependent flux differences through the pentose shunt. Our results show the G6pdA genotype possesses statistically lower pentose shunt flux than G6pdB at 25°C. We estimate this to be about a 32% reduction, which is consistent with the two former studies. These results reflect a significant responsiveness of pentose shunt flux to activity variation at the G6PD-catalyzed step, and predict that the G6PD allozymes generate a polymorphism for pentose shunt flux.

The enzyme and polymorphism for glucose-6-phosphate dehydrogenase (G6PD; EC 1.1.1.49) in Drosophila melanogaster have been a focus of study in a number of investigations (Young, Porter and Childs 1964). This laboratory has examined the polymorphism in natural populations, focusing on the geographic variation (Oakeshott et al. 1983; Eanes and Hey 1986), the potential to respond to targeted selection (Eanes et al. 1985), assessing potential differences in in vivo (Eanes 1984; Eanes and Hey 1986) and in vitro function (Eanes, Katona and Longtine 1990), and restriction map variation in the G6pd locus region (Eanes et al. 1989). Recently, the locus has been cloned, sequenced and shown to have 65% amino acid sequence homology with the human enzyme (Ganguly, Ganguly and Manning 1985; Hori et al. 1985; Fouts et al. 1988).

G6PD catalyzes the first step in the oxidative pentose phosphate cycle, or pentose shunt. The pathway's role is involved in synthesis of NADPH for lipid synthesis and detoxification, pentose phosphate for nucleic acid synthesis, and triose phosphate for glycogen synthesis. Using radiolabelled glucose and adult D. melanogaster deficient for G6PD activity, Geer, Bowman and Simmons (1974) confirmed that the pentose shunt is blocked. Subsequent studies by Geer, Lindel and Lindel (1979) estimated that about 40% of reduced NADP is contributed by this pathway, and the rate of lipidogenesis is tightly correlated with pentose shunt enzymatic activities, which can be induced under varying carbohydrate and lipid conditions. Geer et al. (1981) have reviewed the extensive nutritional studies on the pentose shunt that have been carried out in D. melanogaster.

We have used two different methods to examine the hypothesis that activity differences exist between the two polymorphic allozyme variants of G6PD. Studies by other investigators suggested that the fast and slow electrophoretic alleles, designated here as A and B, possess different in vitro activities (Steene, Young and Childs 1968; Bijlsma and van der Meulen-Brujinns 1979; Hori and Tanda 1980, 1981; Williamson and Bentley 1983). This was supported by Eanes (1984) where dramatic differences were seen in the ability of the G6pdA and G6pdB genotypes to suppress the lethality associated with a 6-phosphogluconate dehydrogenase (6PGD) mutation low in activity, designated 6Pgd[−]. In a G6pd^B background this mutation has low viability, while it is nearly normal in the G6pd^A background. This difference probably reflects a lower in vivo activity associated with the G6pd^B genotype, resulting in a reduced accumulation of 6-phosphogluconate, a potent inhibitor of glycolysis. This observation was repeated in Eanes and Hey (1986) for a series of rare G6pd variants. We proposed that allele-specific differences in suppression reflected two clusters of in vivo activity, depending on whether the rare variant was derived from the A or B common allele. Finally, we have examined, by steady-state kinetics, the in vitro activity of the highly purified G6PD variants (Eanes, Katona and Longtine 1990). Our results predict that at 25°C the G6pd^A genotype possesses about 40% lower activity than G6pd^B. While these studies both supported the hypothesis of activity differences, neither directly measured flux.
CAVENER and CLEGG (1981) compared the relative fluxes between the putative high and low activity diolose aldehyde genotypes at the G6pd and 6Pgd loci in D. melanogaster using the method of Wood, Katz and Landau (1963). This method was originally proposed for assessing the apportionment of carbohydrate metabolism between the Embden-Meyerhof and pentose shunt pathways. It is based on the rationale that the first carbon of glucose (1-C) is lost as CO2 as it passes through the pentose cycle, while the number six carbon (6-C) is returned to the EM pathway. By using D-[1-14C]glucose and D-[6-14C]glucose separately as substrates in parallel experiments, increasing pentose shunt activity is measured by 1-C/6-C derived 14C count ratios that are less than one. They observed statistically significantly greater pentose shunt flux associated with the proposed higher activity G6pd\(^a\)- 6Pgd\(^a\) diolose genotype, but the experiment was not specifically designed to partition the contribution of the genotypes at the G6pd and 6Pgd loci separately. In this report we extend the study of functional differences to this third independent method and focus on the G6pd genotypes. We estimate that the low activity G6pd\(^a\) allele possesses about 32% lower pentose shunt flux than the G6pd\(^b\) allele.

MATERIALS AND METHODS

Wild-type experimental lines: To generate lines that were either G6pd\(^a\) or G6pd\(^b\), fixed for 6Pgd genotype, and randomized for the wild autosomal background, isofemale lines were collected from Davis Peach Farm, Mt. Sinai, New York, in 1989, full-sib mated and electrophoresed to determine mated genotypes at the G5pd and 6Pgd loci. Ten independent lines homozygous for G6pd\(^a\)-6Pgd\(^a\) and 23 homozygous lines for G6pd\(^b\)-6Pgd\(^b\) were isolated and pooled within genotype. Adults from these experimental composite populations provided the larvae for the flux experiments.

Flux studies: Larvae were raised in axenic culture at 25\(^\circ\)C for the duration of each experiment. All axenic stage transfers were carried out in a laminar flow hood. Adults from the mass lines were allowed to lay eggs for four hours on standard corn meal media covered with a dead yeast paste. Batches of several hundred eggs were collected from the surface by rinsing the eggs into a 20-ml beaker, and dechorionated by two washes in 10 ml of 2.5% sodium hypochlorite, with 0.1% Triton X-100. Next, eggs were transferred into a plastic syringe, where they were surface sterilized with 0.1% benzylmethyle-n-hexadecylammonium chloride (ROBERTS 1986), followed by 80% ethanol, and final rinses with sterile water and sterile 0.7% NaCl. Dechorionated sterile eggs were transferred to the surface of 2% agar plates. Newly hatched larvae (less than 20-22 hr old) were transferred into eight dram vials (50 larvae each) containing 5 ml of axenic Sang's medium C (see AMBERNHEIM 1989) and 2900 nM sucrose to induce pentose shunt activity (CAVENER and CLEGG 1981). After 84 hr, samples of 10 larvae were transferred with wooden applicator sticks to 2-ml vials with 1.5 ml of identical medium, and 1 uCi of either D-[1-14C]glucose or D-[6-14C]glucose (Amersham). After 48 hr larvae were collected with forceps and ground in samples of 10 larvae each in 300 liters of 0.05 m phosphate buffer (pH 7.4). Lipid and protein were extracted separately as described in GEER and DOWNING (1972), and scintillation counts were carried out using ScintiVerse II (Fisher) in a Wallac 1410 Scintillation Counter (Pharmacia). Protein assays were done using the BRADFORD (1976) protein assay and bovine serum albumin as a standard.

It was recognized from our initial variance estimates and the data of CAVENER and CLEGG (1981) that for each individual experiment only a very large difference in flux would be statistically detectable with any reasonable type II error. Thus, testing the null hypothesis of genotype-dependent flux requires an experimental design where genotypic differences can be examined across experiments treated as random blocks. Because of the labor intensive nature of axenic culture, extraction of lipids and protein, assay of soluble protein, and scintillation counting, four separate experiments (treated statistically as random blocks) were carried out. Each consisted of five replicates of G6pd\(^a\) and G6pd\(^b\) genotypes reared separately on either D-[1-14C]glucose or D-[6-14C]glucose (a total of 20 vials per experiment).

Statistical analysis: Raw counts from total lipid and protein were first regressed (within each experiment) against total soluble protein as a covariate and then transformed to residuals from the fitted linear regression. A mixed model ANOVA was assumed, with counts as variates, genotype, and label-type (D-[1-14C]glucose or D-[6-14C]glucose) handled as fixed treatment effects and experiments as random effects in a general linear model (GLM) using SAS and pooling appropriate sums of squares when lower levels are nonsignificant. An approximate F statistic and degrees of freedom, as suggested by SATTERTHWAITE (1946), were used to test label-type. Outliers were initially identified by SAS and tested for significance using the method of DIXON (1950) at a 1% significance level (one highly significant outlier, more than ten standard deviations from its group mean, was removed from the subsequent analysis).

RESULTS

In Figure 1, the results are presented as ratios of 1-14C- and 6-14C-derived counts with standard errors for each of the four independent experiments. The factorial ANOVA using 14C derived counts as variates is presented in Table 1. The first-order G X E interaction and second-order (G X E X L) interaction are
statistically nonsignificant permitting pooling of these interaction SS and their associated degrees of freedom with the error SS in subsequent tests of fixed effects and their interactions. The ANOVA shows statistically significant label-type, experiment and experiment-by-label interactions. These are expected simply because pentose-shunt function per se results in differential accumulation by label-type, and we expect its magnitude to vary with induction of the pentose shunt. In all four experiments the G6pdA genotype shows lower flux (higher ratios). There is a significant G6PD genotype by label-type interaction, and this indicates differential flux by genotype. Therefore, we reject the null hypothesis of equal pentose shunt flux for the G6pd genotypes.

Assuming that zero flux will result in a 1-14C/6-14C count ratio of 1.0 (standardized for input 1-14C and 6-14C activities), we estimate from the mean of all four experiments that the A genotype possesses about a 32% lower flux (with 95% confidence limits of about 14.3%) than the B genotype.

DISCUSSION

The model of genetic dominance proposed by **KACSER and BURNS (1981)**, and observed high frequencies of null activity variants for electrophoretically polymorphic enzymes of central metabolism in natural populations (**VOELKER et al. 1980**; **LANGLEY et al. 1981**; **ALLENDORF, KNUDSEN and BLAKE 1982**), challenge the notion that allozyme variants generate sufficient pathway flux variation to translate into fitness differences (**EANES 1987**). The **KACSER and BURNS** model predicts that only large activity differences between alleles will perturb pathway flux sufficiently to translate into fitness variation. Consistent with this prediction, the high frequency of null activity variants at many allozyme encoding loci indicates that marked reduction of enzyme activity (presumed halved in heterozygotes) either has little effect on associated pathway flux, or that changes in flux have little effect on fitness. Unfortunately, the direct experimental assessment of flux is a difficult technical problem for most metabolic pathways. Thus with the exception of a handful of studies (**CAVENER and CLEGG, 1981**; **MIDDLETON and KACSER 1983**; **ZAMER and HOFFMAN 1989**; **SILVA et al. 1989**; **FRERIKSEN et al. 1991**), the issue remains poorly documented for most allozyme polymorphisms.

We are interested in examining the average effect of G6pd genotype on pentose shunt flux. The line construction, identical to that used by **CAVENER and CLEGG (1981)**, assumes randomization (with respect to the G6PD genotypes) of genetic variation affecting pentose shunt flux. There are both X-linked and autosomal modifiers of G6PD activity (**LAURIE-AHLBERG et al. 1980**; **MIYASHITA et al. 1986**; **EANES, KATONA and LONGTINE 1990**), as well as a significant contribution by G6PD allozyme genotype (**MIYASHITA et al. 1986**; **EANES, KATONA and LONGTINE 1990**; **MIYASHITA 1990**). We have, by design, fixed the chromosomes for the 6Pgd allele, which is the common 6Pgd allele in the Davis Peach Farm population, and the autosomal background is a random sample of the Davis Peach Farm population.

The results of this investigation corroborate the findings of our two earlier studies. The study of G6PD protein levels and steady-state kinetics by **EANES, KATONA and LONGTINE (1990)** predicted that at 25°C the A genotype possesses about 28% lower activity than B, and this is derived largely from that variant's relatively lower affinity (higher K_m) for glucose 6-phosphate. In **EANES (1984)**, **EANES and HEY (1986)** and **EANES, KATONA and LONGTINE (1990)**, clear differences were seen in the ability of the G6pdA and G6pdB genotypes to suppress the lethality associated with a 6-phosphogluconate (6PGD) low activity mutation. This reflects a lower in vivo activity associated with the G6pdA genotype, resulting in a reduced accumulation of 6-phosphogluconate. In **EANES and HEY (1986)** this was extended to a series of rare G6PD variants. We observed two clusters of different in vivo activity, presumably separating rare variants into two sets that were derived from the A and B common allozyme alleles respectively. Our recent analysis of

TABLE 1

ANOVA of 1-14C- and 6-14C-derived counts for the G6pdA and G6pdB genotypes

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>SS</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genotype (G)</td>
<td>1</td>
<td>20,334,598</td>
<td>20,334,598</td>
<td>6.41*</td>
</tr>
<tr>
<td>Experiment (E)</td>
<td>3</td>
<td>640,445,152</td>
<td>213,481,718</td>
<td>68.16***</td>
</tr>
<tr>
<td>Label-type (L)</td>
<td>1</td>
<td>242,837,588</td>
<td>242,837,589</td>
<td>9.08*</td>
</tr>
<tr>
<td>G x L</td>
<td>1</td>
<td>21,141,222</td>
<td>21,141,223</td>
<td>6.75*</td>
</tr>
<tr>
<td>E x L</td>
<td>3</td>
<td>73,694,099</td>
<td>24,564,700</td>
<td>7.77***</td>
</tr>
<tr>
<td>G x E</td>
<td>3</td>
<td>12,231,467</td>
<td>4,077,156</td>
<td>1.30 NS</td>
</tr>
<tr>
<td>G x E x L</td>
<td>3</td>
<td>7,569,665</td>
<td>2,523,222</td>
<td>0.80 NS</td>
</tr>
<tr>
<td>Error</td>
<td>63</td>
<td>199,164,643</td>
<td>3,161,344</td>
<td></td>
</tr>
</tbody>
</table>

* P < 0.05; *** P < 0.001.
the amino acid sequences of those eleven alleles is, without exception, consistent with that prediction (W. F. Eanes, unpublished). Finally, in Eanes, Katona and Longtine (1990) we used revertants of a P element associated low activity B allele to scale viability differences, and concluded that the A allele bearing genotypes possess an in vivo activity that is 40% lower than the B genotypes. Our results using direct flux measures with radiolabeled glucose are consistent with that magnitude of difference.

The evidence from these four studies supports the proposition that the G6PD allozyme polymorphism is associated with, and likely responsible for, a polymorphism for pentose shunt flux at 25°. The G6pdA allele, which is the consequence of a single amino acid polymorphism (proline to leucine substitution at residue 382; W. F. Eanes, unpublished), increases in frequency in temperate regions. The frequency is less than 5% in sub-Saharan Africa, but increases to about 90% in Europe, where an additional low activity allele, G6pdA A , (Eanes and Hey 1986), is found at frequencies of 5 to 15%. The G6pdA polymorphism is reciprocally clinal with latitude in both North America and Australia (Oakeshott et al. 1983), increasing with more temperate climate. From these observations we propose a working hypothesis where an increase of the low activity G6pdA allele has paralleled the spread of Afro tropical D. melanogaster into the temperate climates of the world. The observed lower levels of restriction site polymorphism associated with the A allele (Eanes et al. 1989; Miyashita 1990) are consistent with this proposal.

The model and data presented by Kacser and Burns (1981) to explain the general phenomenon of genetic dominance argue that the response of overall pathway flux to changes in activity at individual enzyme steps is low. The theory assumes flux is the consequence of many catalytically linked enzyme steps, each reversible and following Michaelis-Menten kinetics. Overall flux becomes a systematic feature of such a pathway, and a property of this system is that the relationship of flux to activity variation at any one step is nonlinear, the nonlinearity arising from the kinetic interactions between successive steps in the pathway.

In contrast to this expectation, the sensitivity of pentose shunt flux to activity variation at G6PD is high. Assuming the catalytic analysis is accurate, a reduction of G6PD enzyme activity of about 28% reduces pentose shunt flux by about 32%, implying high sensitivity. The mechanistic key to understanding the relatively high sensitivity associated with G6PD probably involves the fact that it sits at the branch point between glycolysis and the pentose shunt, and it is an effectively irreversible step. d-Glucolactone-6-phosphate, which is the product of the oxidation of d-glucose-6-phosphate by G6PD, is unstable and spontaneously converts to 6-phosphogluconate, which does not inhibit G6PD. This is probably the mechanism behind the G6PD-6PGD activity viability interaction seen in our laboratory experiments (Eanes 1984; Eanes and Hey 1986; Eanes, Katona and Longtine 1990) and even among wild-type chromosomes (Clark 1989). It is this regulatory potential that G6PD exerts on the pentose shunt that may make it a suitable target for adaptive substitution and polymorphism.

We wish to express our thanks to M. Krause for assisting in the statistical analysis, and to M. Krause and Dan Dykhuizen for providing helpful comments on earlier versions of the manuscript. This work was supported by National Science Foundation grants BSR-8818899 and BSR-9007391 to W.E.E. This is contribution number 818 from the Program in Ecology and Evolution, State University of New York, Stony Brook, New York.

LITERATURE CITED

Fouts, D., R. Ganguly, A. G. Gutierrez, J. C. Lucchesi and J. E. Manning, 1988 Nucleotide sequence of the Drosophila glucose-6-phosphate dehydrogenase gene and comparison with...

Communicating editor: C. C. Laurie