Molecular Basis for Allelic Polymorphism of the Maize Globulin-1 Gene

Faith C. Belanger1 and Alan L. Kriz

Department of Agronomy, University of Illinois, Urbana, Illinois 61801

Manuscript received February 1, 1991
Accepted for publication August 2, 1991

ABSTRACT

An abundant protein in maize (Zea mays L.) embryos is a storage globulin encoded by the polymorphic Glb1 gene. Several Glb1 protein size alleles and a null allele have been described. Here we report the isolation and nucleotide sequence analysis of genomic clones corresponding to two Glb1 size alleles (Glb1-L and Glb1-S) and to the Glb1-0 null allele. The Glb1-L and Glb1-0 alleles differ from Glb1-S by the presence of small nucleotide insertions which are imperfect or perfect duplications, respectively, of adjacent sequences. In the case of Glb1-L, the insertion is in-frame and results in a protein larger than that encoded by Glb1-S, whereas in Glb1-0 the insertion causes a translational frameshift which introduces a premature termination codon. Although steady-state levels of Glb1-0 transcripts are extremely low in Glb1-0/0 embryos, nuclear transcription assays indicate that the Glb1-0 gene is transcribed at a level comparable to that of Glb1-L. This suggests that the low amounts of Glb1-0 transcripts in the cytoplasm may be due to mRNA instability.

GLOBULINS are the major storage proteins in maize embryos, accounting for 10–20% of the embryo protein (KRIZ 1989). The major globulin component, GLB1, is one of the most abundant proteins in normal mature embryos. GLB1 is encoded by the single gene Globulin-1 (Glb1) for which several size alleles and a CRM (cross-reacting material) null allele have been described (SCHWARTZ 1979; OSTERMAN 1988). The three most common Glb1 alleles have been designated L, I, and S for Large, Intermediate, and Small proteins, respectively. Several characteristics of Glb1 make it an interesting system for study: (1) GLB1 is an abundant protein encoded by a single gene (SCHWARTZ 1979), (2) expression of the Glb1 gene is seed specific (BELANGER and KRIZ 1989) and (3) GLB1 protein is not essential for seedling growth since homozygosity for the Glb1-0 null allele has no effect on embryo development, maturation, or subsequent germination (SCHWARTZ 1979).

We previously reported the characterization of a cDNA clone for the Glb1-S allele (BELANGER and KRIZ 1989). Here we report the isolation and characterization of genomic clones for the Glb1-S, -L and -0 alleles. Analysis of these clones has revealed the nature of allelic polymorphisms in Glb1. Nucleotide sequence comparisons indicate that the Glb1-L and Glb1-0 alleles are more closely related to each other than is either allele to Glb1-S, and it appears that the S allele is the progenitor from which the other two alleles are derived. Both the Glb1-L and 0 alleles differ from the S allele by small insertions within their respective protein coding sequences. In Glb1-L the insertion is in frame and results in a larger protein, whereas in the Glb1-0 allele the insertion causes a frameshift mutation in the amino-terminal region of the protein which is followed shortly by a premature termination codon. Premature termination of translation of Glb1-0 mRNA apparently results in transcript instability: from nuclear run-on experiments the level of transcription from Glb1-0 is similar to that of Glb1-L although the steady state level of the Glb1-0 transcript is barely detectable by northern blot analysis (BELANGER and KRIZ 1989).

MATERIALS AND METHODS

Materials: Embryos homozygous for the Glb1-L and Glb1-S alleles were obtained from field-grown plants of the maize (Zea mays L.) inbred lines W64A and Va26, respectively, as previously described (KRIZ 1989). The Glb1-0 allele was originally identified in a Black Beauty popcorn line (SCHWARTZ 1979) and is maintained in a homozygous state by a combination of plant outcrossing and selfing. Embryos were harvested as previously described and frozen in liquid N2. LambdaZAP vector arms, Gigapack packaging extracts, and exonuclease III/mung bean nuclease deletion kits were from Stratagene (La Jolla, California). α-32P-Labeled dATP (3000 Ci/mmol) was obtained from New England Nuclear (Boston, Massachusetts). NA45 paper was obtained from Schleicher and Schuell (Keene, New Hampshire). Gel X tubes were obtained from Genex (Gaithersburg, Maryland).

Protein extraction and immunoblot analysis: Preparation of protein extracts from mature maize embryos, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and immunoblot analysis were performed as previously described (BELANGER and KRIZ 1989; PUCKETT and KRIZ 1991).

Nucleic acid isolation: Preparation of total DNA from

1 Current address: Department of Crop Science, Cook College, Rutgers University, New Brunswick, New Jersey 08903.

2 The EMBL accession numbers for the Glb1-L, -S, and -0 sequences reported here are X59084, X59083, and X59085, respectively.
unfertilized ears was as described by Dellaporta, Wood and Hicks (1983) followed by further purification on CsCl gradients. Total RNA was isolated from frozen tissue by using the guanidine-HCl method described by Cox (1968). Polyadenylated RNA was fractionated from total RNA by oligo(dT)-cellulose chromatography (Aviv and Leder, 1972). For use in hybridizations, cDNA fragments from appropriate clones were isolated by EcoRI digestion, separation on a 1% agarose gel, and binding of the fragment to NA-45 paper. DNA fragments were labeled with [α-32P]dATP by using a commercial random priming kit (BRL or Stratagene).

Isolation and characterization of genomic clones: To obtain a genomic clone corresponding to Glbl-L, a genomic library prepared from W64A nuclear DNA in the lambda vector Charon 32 (Kriz, Boston and Larkins 1987) was screened by using the Glbl-S cDNA clone as a radiolabeled probe essentially as described by Huynh, Young and Davis (1985). Growth of recombinant phage in liquid culture and lambda DNA preparation were performed as previously described (Kriz, Boston and Larkins 1987). A single clone, designated xgGlbl-L, of 17 kb was found to contain a 3.5-kb EcoRI fragment which hybridized with the pgGlbl-S probe. This fragment was cloned into the plasmid vector pBluescript SK and given the designation pgGlbl-L.

Genomic clones for Glbl-I and Glbl-0 were obtained by preparing size-selected libraries in the vector LambdaZAP. Southern blots of EcoRI digested DNA isolated from unfertilized ears of plants homozygous for each of the three alleles indicated that in all cases a 3.5-kb EcoRI fragment hybridized to the Glbl probe (see Figure 1C). The DNA from this region of an agarose gel was purified using NA45 paper or Gel-X tubes as suggested by the manufacturer. This DNA was ligated to EcoRI-digested LambdaZAP arms and packaged by using the Gigapack system. The resulting libraries were screened by using the radiolabeled Glbl-S cDNA clone as probe. The genomic clones were excised from LambdaZAP as recombinant pBluescript SK(+) plasmids according to the manufacturer's protocols. For nucleotide sequence analysis, the genomic clones were subcloned into the M13mp18 and mp19 (Yanisch-Perron, Vieira and Messing, 1985) to obtain inserts in opposite orientations. Overlapping unidirectional deletions corresponding to either strand were prepared from the appropriate M13 clone RF by using a commercial exonuclease III/mung bean nuclease deletion kit (Stratagene). Dideoxynucleotide sequencing (Sanger, Nicklen and Coulsen 1977) of single-stranded templates with T7 DNA polymerase was performed by using commercial sequencing kits (United States Biochemical Corp., Cleveland, Ohio; Pharmacia LKB Biotechnology Inc., Piscataway, New Jersey). The deoxyguanine triphosphate (dGTP) analog 1-deaza dGTP was used to resolve GC compressions. Analysis of DNA sequences was performed on an IBM PC AT with either IBI Pustell Sequence Analysis software (International Biotechnologies Inc., New Haven, Connecticut) or DNAStar programs (DNAStar, Inc., Madison, Wisconsin).

Mapping of 5' ends of transcripts: Primer extension analysis (Kingston 1989) was used to determine the 5' end of transcripts corresponding to each Glbl allele. A 27-base oligonucleotide homologous to the transcribed region from position 133 to 159 in the pcGlbl-S cDNA clone was endlabeled with [γ-32P]ATP by using a commercial kit (BRL). The labeled primer was annealed to 1 μg of poly(A) RNA isolated from 24 days after pollination (DAP) embryos homozygous for either the S or L alleles. To compensate for the low steady state level of Glbl transcripts in Glbl-0/0 embryos (Belanger and Kriz 1989), 16 μg of poly(A)

![FIGURE 1.—Comparison of Glbl-L, Glbl-S and Glbl-0 alleles. A. Coomassie-stained SDS-polyacrylamide gel of proteins extracted from embryos of the inbred lines W64A (Glbl-L/L), Va26 (Glbl-S/S), and embryos homozygous for the Glbl-0 allele. B. Immunoblot of identical samples probed with Glbl-specific antiserum. C. Southern blot of DNA extracted from the same maize lines probed with the Glbl-S cDNA clone.](image-url)

RNA was used in this case. The primers were extended using reverse transcriptase, the RNA was digested with RNaseA, and the resulting products were electrophoresed on a 6% sequencing gel adjacent to sequencing reactions of the relevant genomic clones primed with the same oligonucleotide.

Isolation of nuclei and run-on transcription assays: Nuclei were isolated from 4–5 g of frozen embryos as described by Beach et al. (1985). The final nuclear suspension contained a significant amount of starch which was considered excluded volume. The volume of nuclei was determined by centrifuging a 50-μl aliquot of the suspension and measuring the supernatant volume (Kodrzycki, Boston and Larkins, 1989).

The transcription reaction was essentially as described by Beach et al. (1985). The nuclei were added to concentrated stock solutions to yield a final reaction composition of 0.35 mM ATP, 0.35 mM CTP, 0.35 mM UTP, 4.3 μM GTP, 50 mM (NH$_4$)$_2$SO$_4$ and 500 μCi of [α-32P]GTP. Nuclear RNA extraction and hybridization to cloned cDNA fragments were as described by Kodrzycki, Boston and Larkins (1989). The labeled RNA was hybridized to nitrocellulose filter discs to which were previously bound 1.5 μg single-stranded M13 cDNA clones corresponding to either the coding or noncoding strands of Glbl, Glb2, which encodes an M, 45,000 embryo globulin (Wallace and Kriz 1991), and L3, which encodes the major lipid body protein of maize embryos (Vance and Huang 1987). The hybridization for each clone was done in triplicate. After washing (Kodrzycki, Boston and Larkins 1989), the individual discs were counted by liquid scintillation spectroscopy. The average counts for the noncoding strand were subtracted from the average counts for the relevant coding strand.

RESULTS

Allelic polymorphism of Glbl: The nature of allelic polymorphism with respect to size of GLB1 protein was originally described by Schwartz (1979). This polymorphism is apparent in SDS-PAGE and immunoblot analysis of protein extracts from embryos homozygous for the Large (inbred line W64A). Small (inbred line Va26), and null Glbl alleles (Figure 1, A
and B). The abundant GLB1 protein is readily detected in a Coomassie-stained gel of total protein extracts from embryos homozygous for either the Glb1-S or -L allele (Figure 1A). No corresponding protein is present in embryos homozygous for the Glb1-0 null allele. An immunoblot of identical samples is shown in Figure 1B. The protein processing intermediates GLB1'-L and GLB1'-S are readily detectable in addition to the mature GLB1 protein. Previous studies have indicated that at least three processing steps are involved in the formation of the mature protein from the primary translation product (KRIZ and SCHWARTZ 1986).

Isolation and characterization of genomic clones for Glb1-S, -L, and -0 alleles: Isolation of genomic clones corresponding to Glb1-S and Glb1-0 was facilitated by the presence of a single Glb1-specific EcoRI restriction fragment in the genome. Figure 1C depicts a Southern blot of EcoRI-digested DNA isolated from plants homozygous for each of the three alleles probed with the Glb1-S cDNA insert. All three genotypes contain a single major band at about 3.5 kilobases (kb). This fragment was cloned from DNA of plants homozygous for each genotype and the resultant clones were given the designations pgGlb1-S, pgGlb1-L and pgGlb1-0.

A comparison of the nucleotide sequences of these three clones is shown in Figure 2. Gaps have been inserted to facilitate sequence alignments. In each case the cloned fragment is comprised of about 360 base pairs (bp) 5' to the coding region, about 2400 bp of coding region (exons plus introns) and about 780 bp of 3' flanking sequence. The present sequence analysis revealed one error in the published cDNA sequence. The T at position 550 in the cDNA sequence (BELANCER and KRIZ 1989) was reported as a G in the cDNA sequence (BELANGER and KRIZ 1989). We therefore used a 16-fold excess poly(A)+ RNA from Glb1-0 embryos to obtain a signal comparable to that obtained from the Glb1-L and -S alleles. By comparing the size of the major primer extension products with sequencing ladders obtained by using the same primer (Figure 5), the 5' ends of Glb1 transcripts were determined to be at the same adenine in all three alleles (indicated by an arrow in Figure 2). Minor primer extension products three bases 5' to the major product were also seen in Va26 and W64A. Because of the higher background it was not possible to determine if a minor product was present in the Glb1-0/0 embryos. The observation that the major primer extension product is the same in all three alleles confirms that the hybridization signal seen in northern blots of RNA from Glb1-0/0 embryos is actually due to Glb1 transcripts.

Transcription of Glb1 genes: Since the steady-state level of Glb1 transcripts was low in embryos homozygous for the Glb1-0 allele, it was of interest to determine how the level of transcription from Glb1-0 compared with that of a functional Glb1 allele. We there-
fore performed in vitro run-on transcription assays. Nuclei were isolated from 24 DAP Glbl-L/L embryos and Glbl-0/0 embryos. The nuclei were added to an in vitro run-on transcription reaction and the resulting RNA was used to probe nitrocellulose filter dots to which were bound single-stranded DNA from cDNA clones corresponding to Glbl (Belanger and Kriz 1989), the M, 45,000 maize embryo globulin GLB2 (Wallace and Kriz, 1991), and the lipid body protein L3 (Vance and Huang, 1987). In order to compare the level of Glbl transcription in the two genotypes, the counts obtained for Glbl were normalized to the counts obtained for Glb2 in each genotype. The transcription level of Glb2 was chosen as a standard since the steady state level of Glb2 transcripts in both the Glbl-L/L and Glbl-0/0 genotypes appeared to be similar (Figure 6A). After normalization to the transcription level of Glb2, the Glb1 transcription level in Glbl-0/0 embryos was 77% of that determined for Glbl-L/L embryos. This high transcription level indi-
I: Determination of 3' ends of transcripts encoded by Glb1 alleles. Primer extension analysis of poly(A') RNA isolated from embryos of the inbred lines Va26 (Glh1-S/S), W64A (Glh1-L/L) and from embryos homozygous for Glb1-0/0 was performed by using an end-labelled oligonucleotide corresponding to positions 133-159 in Glh1-S. The primer extension products were run adjacent to sequencing ladders of appropriate M13 clones corresponding to each allele which were primed with the same oligonucleotide.

Figure 5.—Determination of 3' ends of transcripts encoded by Glb1 alleles. Primer extension analysis of poly(A') RNA isolated from embryos of the inbred lines Va26 (Glh1-S/S), W64A (Glh1-L/L) and from embryos homozygous for Glb1-0/0 was performed by using an end-labelled oligonucleotide corresponding to positions 133-159 in Glh1-S. The primer extension products were run adjacent to sequencing ladders of appropriate M13 clones corresponding to each allele which were primed with the same oligonucleotide.

II: Northern blot analysis of 1 pg poly(A') RNA from 24 DAP W64A (Glh1-L/L) Glb1-0/0 embryos probed with cDNAs for Glh1-S, Glh2, and L3. B, Comparison of Glb1 nuclear transcription in W64A (Glh1-L/L) and Glb1-0/0 embryos. The data obtained for Glb1 have been normalized to the level of Glh2 transcripts in the two genotypes.

Figure 6.—A, Northern blot analysis of 1 pg poly(A') RNA from 24 DAP W64A (Glh1-L/L) Glb1-0/0 embryos probed with cDNAs for Glh1-S, Glh2, and L3. B, Comparison of Glb1 nuclear transcription in W64A (Glh1-L/L) and Glb1-0/0 embryos. The data obtained for Glb1 have been normalized to the level of Glh2 transcripts in the two genotypes.

We present here characterization of nucleotide sequences corresponding to three allelic variants of the maize Glb1 gene. The molecular basis for such polymorphism was determined by sequence comparisons of the three alleles. The Glh1-L allele differs from the S allele by a 36-bp imperfect duplication near the 3' end of the protein coding sequence. This results in 12 additional amino acids at the corresponding position in the Glh1-L polypeptide relative to Glh1-S. There are three small deletions in the Glh1-L polypeptide coding sequence relative to the S allele and another small deletion in Glh1-S relative to the L allele. The net result of these differences is that, relative to the S allele, the L allele encodes 9 additional amino acids resulting in a size difference of 1114 D in the primary translation products. This is relatively close to the experimentally determined difference of 2000 D observed by SDS-PAGE analysis of in vitro translation products (Kriz and Schwartz 1986). There are 20 single-base differences between the Glh1-S and L alleles within the protein coding sequences. Most of these are silent changes as they result in only 7 amino acid replacements between the two proteins.

The defect in the Glh1-0 null allele is due to an 11-bp insertion in the first exon, resulting in a translational frameshift which introduces a premature termination codon in the N-terminal region of the protein. Null alleles for several other genes encoding seed
proteins have been described, including translational frameshift mutants in the case of the soybean Kunitz trypsin inhibitor KT3 allele (JOFUFI, SCHIPPER and GOLDBERG 1989), the Phaseolus phytohemagglutinin Pdcl1 gene (VOELEK, STASWICK and CHRISPEELS 1986), and the soybean glycinin gfy "Raiden" allele (SCALLON, DICKINSON and NIELSEN 1987). The frameshift in each of these genes is due to a single-base mutation. In contrast, the translational frameshift in the Glb1-0 allele is unusual in that it originates from a duplication of an adjacent sequence.

In addition to identifying the defect in Glb1-0, the present sequence analysis also allows for certain conclusions to be drawn concerning the origin of this allele. The Glb1-0 allele contains the 36-bp insertion observed in the last exon in the L allele relative to the S allele. There are no instances of insertion/deletion differences between Glb1-L and Glb1-0 within the protein coding regions other than that in the first exon which results in the translational frameshift. From the greater sequence similarity of, and the presence of the characteristic 36-bp insertion in, both the Glb1-L and -0 alleles, the 0 allele must be more closely related to the L allele than to the S allele. The regions in Glb1-0 corresponding to the protein coding sequences of Glb1-L show 16 single base changes relative to the L allele, as compared to the 20 single-base differences observed between Glb1-L and Glb1-S. In addition, the 5' untranslated regions of the Glb1-L and -0 alleles are identical, while that of Glb1-S contains an additional 11 nucleotides of coding sequence and three base substitutions relative to the L and 0 alleles. Given that Glb1-L and Glb1-0 are more similar to each other than is either allele to Glb1-S, it is likely that Glb1-0 is derived from Glb1-L. There are, however, seven single base positions within the protein coding sequences where the S and 0 alleles are the same and the L allele differs. These presumably represent changes which have occurred in the L allele subsequent to the divergence of the L and 0 alleles.

From primer extension analysis, the 5' end of the transcript from each of the three alleles was determined to be at the adenine which is designated as position 1 in Figure 2. This is 57 bp upstream from the translation start site in the S allele and 46 bp upstream in the L and 0 alleles. As indicated above, the 11 additional nucleotides in the 5' untranslated sequence of Glb1-S represents another polymorphism which distinguishes this allele from the L and 0 alleles. The length of the 5' untranslated region in the three Glb1 genes is similar to that observed for other plant genes (MESSING et al. 1988). The sequences surrounding the start site are similar to the higher plant consensus sequence of CTCATCA (Joshi 1987).

The sequence TATAAAT at position -33 to -27 in all three alleles presumably represents a canonical TATA box (PROUDFOOT 1979). The relative position of this sequence with respect to the transcription start site is again similar to that observed for other plant genes (WALBOT and MESSING 1988). There is no obvious CAAT box (BREATHNACH and CHAMBON 1981) in the 5' region of the gene but this is not unusual for plant genes (WALBOT and MESSING 1988). The sequence AAGGAGAG 134 bp upstream of the transcription start site resembles the AGGA box which may substitute for a CAAT box in the regulation of transcription (MESSING et al. 1983). The position in the Glb1 genes at -134 is, however, further upstream from the transcription start site than the commonly found position of -80 to -100 (MESSING et al. 1983). Experiments are in progress to delimit actual regulatory regions involved in Glb1 expression.

There are sequences in the 5' region of the Glb1 genes which are similar to the phytohormone abscisic acid (ABA) responsive elements in the wheat Em gene as described by MARCOTTE, RUSSELL and QUATRANO (1989). Glb1 is regulated by ABA (KRZ, WALLACE and PAIVA 1990), and it is likely that similar cis-acting elements are involved in the response of Glb1 to ABA. A comparison of the Em sequences and the Glb1 sequences is shown in Table 1. In all three cases, there are single base differences in the Glb1 sequences as compared with the Em sequences. The relative positions of the three elements differs between the Glb1 genes and the Em gene. Sequences similar to the Em2 element are present in the seed storage globulins wheat triticin and the α'-subunit of soybean β-conglycinin (MARCOTTE, RUSSELL and QUATRANO 1989). Triticin is regulated by ABA (WILLIAMSON and QUATRANO, 1988) whereas the α'-β-conglycinin subunit is not ABA-responsive (BRAY and BEACHY 1985). The Em2 element may thus be involved in regulation of gene expression in a seed specific manner (MARCOTTE, RUSSELL and QUATRANO 1989). The functional significance of these sequences in the maize Glb1 gene remains to be determined.

A striking feature of the comparison of the three Glb1 nucleotide sequences is the number of insertions within one allele relative to another. Many of these insertions are perfect or imperfect repeats of an adjacent sequence. This is the case for all five instances

<table>
<thead>
<tr>
<th>Sequence designation</th>
<th>Wheat Em gene</th>
<th>Maize Glb1 gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Em1a</td>
<td>-149 ACGTGGCCGC</td>
<td>-118 ACGTGGCGAC</td>
</tr>
<tr>
<td>Em2</td>
<td>-125 CGAGCAG</td>
<td>-161 CGAGGCCG</td>
</tr>
<tr>
<td>Em1b</td>
<td>-94 ACGTGGCCGC</td>
<td>-76 ACGTGGCCCG</td>
</tr>
</tbody>
</table>

1 From MARCOTTE, RUSSELL and QUATRANO (1989). Differences with the wheat sequences are underlined.
of insertions in the protein coding regions of the Glb1 alleles. Many of the insertions in the intron sequences are also perfect or imperfect repeats of adjacent sequences. Such insertions have been described in the introns of maize Sh1 alleles (Zack, Ferl and Hannah 1986) and in the single intron of maize Bz1 alleles (Furtek et al. 1988). Small duplications in one allele relative to another have also been reported in a random selection of maize RFLP clones (Shattuck-Eidens et al. 1990).

As might be expected, the introns of the Glb1 alleles differ to a greater extent than do the protein coding regions. Comparison of the Glb1-L and Glb1-S protein-encoding sequences indicates the presence of 20 base substitutions and five instances of an insertion in one allele relative to the other. Based on the Glb1-L protein coding sequence of 1746 bp, these differences occur at frequencies of 1% and 0.2%, respectively. Within introns, however, both substitutions and insertions occur at a frequency of about 2%. The fact that such insertions are present within both the protein coding regions and the introns of the Glb1 alleles may be due to a lesser degree of selection pressure against amino acid additions in genes encoding dispensable storage proteins as compared with genes encoding essential metabolic enzymes such as the Sh1 gene product (Zack, Ferl and Hannah 1986). The amino acid insertions which distinguish the Glb1-L and -S alleles result in changes in GLB1 protein structure with no apparent effects on seed development, maturation, or germination. In addition, the insertion in the Glb1-0 allele, which results in a frameshift and subsequent premature termination of translation, has been maintained in the homozygous state with no loss of seed viability, again demonstrating the nonessential nature of the GLB1 protein. These observations indicate that the Glb1 gene may serve as an excellent marker for analysis of genetic variation at the molecular level.

Short nucleotide insertions in a DNA sequence may arise in a variety of different ways. Unequal crossing over between homologous chromosomes during cell division has been shown to result in sequence duplications (Anderson and Roth 1977). The 36 bp insertion in the last exon of Glb1-L to Glb1-S has features which suggest this rearrangement may have originated from an unequal crossover event. As stated above, this insertion is an imperfect duplication of the region just preceding it. An unequal crossover may have occurred at a mispairing of an eight bp direct repeat (CGCCACGG) which is found twice in the Glb1-S allele and three times in the L allele (Figure 7). Similarly, the eleven bp insertion found in the Glb1-0 allele relative to the S and L alleles may have resulted from an unequal crossover at a mispairing of the sequence GAGG. Another possible origin of insertions which are perfect or imperfect duplications of adjacent sequences is transposable element "footprints." The excision of a plant transposable element leaves behind a duplication of the host sequence, with the size of the duplication being characteristic of the transposable element family (reviewed by Doring and Starlinger 1986). Schwarz-Sommer et al. (1985) proposed that transposable element footprints may play an important role in the generation of DNA sequence diversity.

Slipped-strand mispairing is another mechanism which has been proposed to result in the expansion of short repetitive units in a DNA sequence (Levinson and Gutman 1987). There are many short repeated sequences in the Glb1 genes which may well have originated from slipped-strand mispairing. An example is the "gct" unit near the 5' end of intron 3 (position 1049 in Figure 2). There are four of these units in this region in Glb1-S, three in the L allele, and five in the 0 allele. Similar small duplications found in one allele relative to another are also found in the coding regions of the Glb1 alleles. An example is the GAG insertion found at position 343 in the first exon of Glb1-S (Fig. 2). Moore (1983) has discussed slipped strand mispairing as a mechanism involved in generating length variation in introns. In the case of the Glb1 alleles, it seems likely that this mechanism has generated short duplications in both the introns and exons.

It was previously determined that the steady-state level of Glb1 transcripts was very low in embryos homozygous for the Glb1-0 allele (Belanger and Kriz 1989). There are no significant differences, however, in the 5' noncoding regions of the genes which might be expected to result in inefficient transcription of the Glb1-0 gene (Figure 2). Nuclear run-on tran-
scription assays were therefore performed to determine if the transcription rate of the Glb1–0 gene differed from that of the Glb1–L gene. The data from that experiment (Figure 6B) indicate that the low steady-state level of Glb1 transcripts in Glb1–0/0 embryos cannot be attributed to a low transcription rate. Although important regulatory elements likely exist further upstream than the 368 bp reported here, differences in these regions in the Glb1–0 gene cannot be considered to be the major factor in the observed low steady-state level of Glb1–0 mRNA. Because of the relatively high transcription rate of Glb1–0, the low steady-state level must therefore be due to instability of the Glb1–0 messenger RNA. Similar results have been reported for other cases of frameshift mutations in plant genes which result in early termination of translation. Frameshift mutations in Kunitz trypsin inhibitor (Jofuku, Schipper and Goldberg 1989) and bean phytohemagglutinin (Vöelker, Staswick and Chrispeels 1986) have been found to result in low steady-state levels of message but there were near normal transcription rates for these genes. As discussed by Vöelker, Moreno and Chrispeels (1990) the low steady state level of messages containing premature termination codons is likely due to enhanced cytoplasmic degradation of transcripts not protected by ribosomes.

We appreciate the excellent technical assistance provided by Cheryl Green. We thank A. H. C. Huang for providing us with a cDNA clone for the lipid body protein L3, R. J. Okagaki for helpful discussions, and A. G. Hepburn for assistance in preparing nucleotide sequence alignments. We appreciate the constructive criticism of this manuscript provided by Les Domier, Paul Shaw and Robert Ramage. This research was supported in part by a grant from the U.S. Department of Agriculture Competitive Research Grants Office (No. 88–37262–3427) to A. L. K.

LITERATURE CITED

Shattuck-Eidens, D. M., R. N. Bell, S. L. Neuhäusen and T.
HELENTJARIS, 1990 DNA sequence variation within maize and melon: observations from polymerase chain reaction amplification and direct sequencing. Genetics 126: 207–217.

Communicating editor: W. F. SHERIDAN