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HE concept of effective population number originated with SEWALL WRIGHT 
(1931,1938). He and others have calculated effective population numbers for 

a variety of models of population reproduction. In particular, KIMURA and CROW 
(1963) have calculated the variance effective number for a population of constant 
size in which there are overlapping generations and age-dependent birth and 
death rates. NEI has presented (NEI and IMAIZUMI 1966) a different formula as 
a correction to KIMURA and CROW. In this paper, I will argue that the KIMURA & 
CROW formula is incorrect and the NEI formula is not precisely defined. I will 
derive equations for both inbreeding and variance effective numbers in models of 
population reproduction in which birth and death rates are age specific. 

THE MORAN MODEL 

One of the ways in which we can check the KIMURA and CROW and NEI formu- 
las is to compare them with the effective number in a case in which the variance 
effective number can be calculated exactly. MORAN (1962) has stated stochastic 
models of genetic drift in which generations overlap. In  its simplest form, this 
model is as follows: In each unit of time, one haploid individual, chosen at ran- 
dom, gives birth to a single offspring. Immediately afterwards, an individual 
chosen at random dies. The newborn individual may not be the one which dies, 
but all other individuals including the parent of the newborn are at risk. I t  is 
known that in this model the probability that two randomly chosen individuals 
are not identical by descent declines at a rate of 2/N2 per unit of time (MORAN 
1962). Since a generation is N time units in this model, the probability of non- 
identity declines at a rate of 2/N per generation. Thus the “inbreeding” effective 
number in the MORAN model should be N / 2 ,  where N is the number ohf haploid 
individuals. 

However, we cannot compare this directly with the KIMURA & CROW and NEI 
results, since both of those give variance effective numbers. For this comparison, 
we must calculate the variance of gene frequency per unit time in a MORAN 
model. If p and 1-p are the frequencies of the two alleles, the probability that p 
will increase by 1/N in one unit of time is p(1-p), and there is also the same 
probability that p will decrease by 1,”. Thus the variance of gene frequency is 

2 
Var(Sp) =- N* p(1-p). 
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5 82 J. FELSENSTEIN 

Since this is the variance in one unit of time, which is 1,” of a generation, to 
calculate the variance effective number we must equate the variance to 

where N e  is the variance effective number. This gives N e  = N / 2 ,  which is equal 
to the inbreeding effective number. 

KIMURA and CROW give as the variance effective number N e  = N2N,T ,  where 
T is the generation time (in this case T = N )  and N ,  is the number of newborns 
per unit time (in this case N I =  1 ) , so that for the MORAN model 

which is off by a factor of two. More recently, KIMURA and CROW discovered 
that their formula was incorrect, and have informed me that they had intended 
to publish a retraction and correction. NEI uses the formula N e  = N,T, where N ,  
is described as “the number of individuals who are born during time interval dy 
and able to reach the mean reproductive age or, more accurately, participate in 
the reproduction.” As before, T is the generation time. 

In this case it is not obvious what N ,  is. The mean reproductive age is N ,  SO 

that (1-1,”) ”-1-e-1e0.37 of the individuals born reach that age. However, all 
of the individuals born are exposed to a risk of reproduction, but (for large N )  
only half of them actually reproduce before dying. Thus we may or may not get 
the correct answer from NEI’S formula depending on how we interpret N,, and 
the more complicated the situation to which we apply it, the less clear it will be 
which is the interpretation to use. If we take N ,  to be the number of individuals 
reaching the reproductive ages, N ,  will be 1, and we get N e ( N )  = N ,  which is off 
by a factor of two. 

The KIMURA and CROW and NEI formulas are derived for overlapping genera- 
tions with age-specific birth and death rates. The MORAN model is a special case 
of this general situation. It is easily verified that although the KIMURA and CROW 
and NEI formulas are derived for diploid models, they would be expected to apply 
equally well to haploid models. 

Ne(KC) = N 2 / N  = N 

THE MODEL 

In order to calcuate an effective population number we must first state the 
model for which it is to be derived. This model has the advantage of maintaining 
both population size and age distribution exactly constant, but this property is 
obtained only at the cost of assuming that the births and deaths of different in- 
dividuals are not independent of one another. 

Suppose that we have a haploid population in which exactly N ,  individuals are 
born in each unit of time. Exactly N ,  of these survive to age 2, N ,  to age 3, and 
so on. The probability of survival to age k can be calculated to be Zk = NTJN,. The 
deaths cannot be independent events, since we assume that it is always true that 
exactly Nk survive to age k. Assuming equal probabilities of death for all indi- 
viduals of a given age, the Nk individuals of age k at time t are a random sample 
without replacement from the N k - l  individuals of age k-1 at time t-1. When we 
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EFFECTIVE POPULATION NUMBER 583 

consider cases in which the N’s are very large, sampling without replacement is 
nearly the same as sampling with replacement, so that the lack of realism in as- 
suming nonindependence of deaths will not have serious consequences. 

We always obtain exactly N ,  newborns, so birth events also cannot be inde- 
pendent. For each newborn. we assume that it has probability p k  of coming from 
a parent of age k, and its parent is randomly chosen from among those in the par- 
ticular age group. The different newborns are selected independently, which is 
not the same as each potential parent deciding independently how many offspring 
it will have during the next time interval. Again, the lack of independence of 
offspring numbers will not be serious if the N’s are large. The births per indi- 
vidual of age k will be expected to be 

so that 
b k  = NiPdNk = p k / l k ,  

Zlkbk = 1. 
k 

It will be of interest to define reproductive values for individuals of different 
ages in this model. The reproductive value of an individual of age k is propor- 
tional to its expected average long-term contribution to the gene pool through 
offspring born at or following its present age. These values are standardized by 
setting the value of a newborn at unity. Since the model population is not grow- 
ing, our counterpart to the equation of FISHER (1958) is 

But l,b, = p j .  If we let q3 = p3+p3+1+p3+2+ . . . be the fraction of reproduction 
which takes place on or after age j ,  then 

Uk = qk/lk. 
We can also calculate the generation time. The formula used here will be 

T = xl,b,i = zip, . 

T = Zqo 

z 2 

Note that this is precisely 

2 

so that the total reproductive value of a population is 
V = ZN,v, = ZNILrv, = NIZl,u, , 

I , 1. 

and 
V = N , z q L  = N,T . (1) 

o 

With these preliminary calculations aside, we can turn to deriving effective 
numbers. 

INBREEDING EFFECTIVE NUMBER 

Although it does not make sense to talk of an inbred individual in a haploid 
population, it is possible to calculate an “inbreeding” effective number based on 
tEe rates of change of probabilities of identity by descent. In particular, let us 
follow the probabilities that an individual of age i, selected at random, is not 
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5 84 J. FELSENSTEIN 

identical by descent to an individual of age j selected at random with  replacement. 
This means that if i = j ,  it is possible for the two randomly selected individuals to 
be the same individual. The probabilities will be called the From the defi- 
nition it is obvious that H , ,  = N, 1. 

Suppose that we know the values of the H , ,  at a given time. We wish to calcu- 
late the Ha3’, the values of the H , ,  after one unit of time. Consider first the case in 
which i = j = 1 ,  so that we are drawing two newborns. These have a chance 
l - l / N l  of being different individuals. If they are, there is a probability pa that the 
first is the offspring of a parent aged i in the previous time interval, and there is 
a probability p3 that the second is the offspring of a parent aged j .  If the two off- 
spring are not identical by descent, this can only result from their being descend- 
ants of parents who were not identical by descent. When we happen to sample 
the same offspring twice, which occurs with probability l / N l ,  this obviously 
makes a zero contribution to the probability that the two individuals are not 
identical by descent. Putting all of this together, 

1 

Next consider the case in which i > 1 and j = 1 .  The individual aged i was aged 
i - 1 in the previous time interval, and the newborn individual had probability 
pk of being the off spring of a parent of age k. s o  when i > 1, 

There is a similar equation for the case in which i = 1 .  When i and j are both 
greater than one, and i # i, we have 

(2) = ( 1  - p) I: papjHtj . NI a 3  

Hal’ = I: pkHL-1, k . ( 3 )  
IC 

H1,’ = Hz-I,j-2 . (4) 
Finally, suppose that i = j > 1 .  If the two individuals sampled happen to be 

distinct, their probability of nonidentity by descent is 

But this must be the same as the probability that two distinct individuals of age 
i-1 in the previous time interval were not identical by descent, which was 

Equating these, we have when i > 1 

Naa’/( l - l /Na) . 

Ha-l,i-1/(1+1/N, 1 )  . 

Equations (2) through ( 5 )  give us a set of linear equations calculating the 
H i /  in terms of the Hij.  All of the Hij will decline towards zero. It is not ruled 
out that some will decline faster than others, but asymptotically we will be in a 
situation in which those Hij are effectively zero, and the rest of the Hij will all 
decline at the same rate, which is determined by the largest eigenvalue of the 
matrix of coefficients of the linear equations. Asymptotically, then, all of the non- 
zero Hij will decline at the same rate. Noting that a generation is T units of time, 
we will define the inbreeding effective population number N e ,  by letting the 
asymptotic decline be 
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EFFECTIVE POPULATION NUMBER 585 

for all i and j ,  so that roughly speaking, the Hij decline by l/Ner per generation. 
Any weighted average of the Hij should asymptotically decline at  the same 

rate as the individual Hii’s. We will use this property to calculate Ner. We will 
follow the weighted average: 

This weights each age class by the proportion of the total reproductive value 
which is contained in that age class. The total reproductive value in age i is N,qi, 
and the total reproductive value in the population is NIT .  In the next time 
interval, H becomes 

1 H’=- E q.  . H . .  241 23’ * TZ ii 

We simply substitute the expressions given in (2) through ( 5 )  for the Nij’. Then 
1 1 

T2 Ni  
H’ - [ 41‘ (1 --) 5. pipjHii + 2.>1 .z qi :pjHi-i,j 

+ 3>1 .E qiFPiHi-1.i f iz j  qiqiHi-1.j-1 

We note that q1 = 1, and also approximate: 
1 1 =I---$-- 

1 - l/Ni-l Ni Ni-1 
1 - 1/Ni - 

ignoring tenns of order 1,”. We can use ( 8 )  and rearrange ( 7 )  to get 
1 

TZ 
H’-[ (qi+lqi+l + qi+1pi + qj+1pi + PiPiIHii 

Note that 
qi+iqi+i + qi+ipi + qi+ipi + pipi 
= (Qi+l + P i >  (qi+l+ Pi> = qiqi * 

We must also make another approximation by assuming that the Hij are all 
nearly equal to H ,  the differences at most involving terms of order 1/N.  This 
enables us to replace some of the Hij by Hand obtain 

(9) 
1 H 1 
T2 23 Nl 2>1 li li-1 

H’=H [l -- (1 + , E  q i Z  (A--))]. 

H’ = - [ qiqiHii - - (1 +,E qi2 (1- -))I, 
1 1 

NlT2  %>I li li-1 
The coefficient of H must be equal to 1 - l /Ne IT ,  so that, approximately, 
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Note that 

where d i  is the probability of death at the end of age i. The reproductive value of 
an individual of age i + 1 is 

so that 
4i+12 
li + l2 

ui+12=--- . 
If si  = 1 - di = li+l/li, we end up with 

The numerator of (10) is simply the total reproductive value in the population 
(see equation (1)) .  The second term in the denominator is roughly the prob- 
ability of death of an individual while it still has reproductive value. It will reflect 
infant mortality before the reproductive ages as well as part of the deaths of 
adults during the reproductive period. After the end of the reproductive ages, ui 
will be zero, so that the deaths of older individuals will make no contribution to 
this term. 

Ironically, it is difficult to check (10) by considering the MORAN model because 
the present model departs widely from the assumptions of the MORAN model. In  
the MORAN model, the age distribution of the population will fluctuate wildly, 
since each age cohort is represented by at most one individual, who has a constant 
risk of dying. In the present model, the age distribution is held rigidly stable by 
the lack of independence of deaths. Despite this large difference in the models, 
formula (10) works surprisingly well when applied to the MORAN model. In that 
case, all individuals have the same reproductive value, so that ui = 1. We have 

li = (1 - I, i-1 , 
N 

and 
Then 

N I  = 1 7 

T = N .  

which is very nearly equal to the correct value of N / 2 .  
To see whether the approximations affect the validity of (IO) , I have carried 

out a series of computer iterations. For a given set of values of the Ni and the pi, 
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the H i j  were initially assumed to all be 1. Iterations were done using (2) through 
( 5 )  to calculate new values for the H i j .  ‘These values were then normalized SO 

that H,, = 1, a step which was taken to prevent the numbers from becoming too 
small for the computer to handle. After a number of iterations (in no case more 
than 500), the ratios of the H i j  to each other had stabilized, as had their rate of 
decline. The “true” effective population number was calculated on the assump- 
tion that asymptotically with time, 

1 H,1’=H,, (1 ---) 
NeIT ’ 

so that 

Table 1 shows comparisons of the true values of NeI and those calculated from 
(10). The examples given are ones with or without infant mortality and with or 
without mortality of adults of reproductive age. In general, the two effective num- 
bers are within f 1 of each other, which is well within the bounds of the statistical 
errors which would result from the estimation of birth and death rates in any real 
population. While it might be possible to improve on some of the approximations 
used in deriving ( lo) ,  there seems little point in doing so as long as we are apply- 
ing ( 10) to populations larger than 100 individuals. 

It is of interest to know what the effective number would be in a population 
whose age structure was that of a real human population. For this purpose we 
can make use of vital statistics for the U. S. A. white female population for 1967. 
The ages can be made discrete by pretending that all births take place when the 
mother reaches ages 5, 10, 15,20, 25, 30, 35, 40, or 45. In this case the life-table 
values are those for survival to those ages, and the birth rates are obtained as 
follows. For age 25, the single-year birth rates for ages 24 and 25 are averaged, 
and the result is multiplied by five, since the next births will not be until age 30. 
The resulting number is then divided by 2.056, since only female births are being 
counted, and there are 1.056 male births for each female birth. The resulting life 
table and birth rates are presented in Table 2. Note that I, is 1 since we consider 
an individual to have entered the first age-class as soon as it is born. 

To use equation (10) we must further modify the birth rates by dividing them 
by 1.21004 so that the new rates will satisfy 

Xl,bi = 1 . 
z 

The generation time in the resulting model is 5.26092 time units, which is 26.3 
years. Applying equation ( lo) ,  we obtain 

where N ,  is the number of newborns per time interval. Since a time interval is 
five years, we can also write this as 

where B is the number of newborns per year. If the expected length of life of a 

NeI == 5.1181 NI 

Ner = 25.59 B , 
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EFFECTIVE POPULATION NUMBER 589 

TABLE 2 

Life table (li) and birth rates (bi)  deriued from vital statistics for U .  S. white f e m h  for 1967 
Each time unit is five years 

1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 .ooooo 
0.97891 
0.97754 
0.97486 
0.97179 
0.96841 
0.96382 
0.95662 
0.94650 
0.92822 

0. cum 
0 . 0 ~  
0.0208 
0.3515 
0.4157 
0.2602 
0.1377 
0.0542 
0.0069 
0.0000 

Data from Vital Statistics of the U .  S., 1967 (Table 5-2 of volume 11, Part A, and Table 1-16 
of volume I). 

newborn female is 75.1 years, then the total census number in a population of 
constant size will be 75.1 B.  If N is the census number, we then have 

NeI = (g) N = 0.34 N .  

Most of this reduction of effective number below the census number is due to the 
inclusion in N of a large number of individuals who are past the reproductive ages 
and thus are reproductively dead. Another factor reducing effective size is the 
death of individuals who have not yet passed out of the reproductive ages. How- 
ever, the death rates in those ages are so low in industrialized countries that this 
turns out to have very little effect on the effective number. 

If we use KIMURA and CROW’S formula, we would have 

= ( g ) N = 2 . 8 6 N  

which is much larger than ( 1 2 ) ,  being over nine times too high. 

vive to the mean reproductive age, so that 
NEI’S formula is somewhat difficult to apply. About 0.97 of the newborns sur- 

N e ( N )  = (26 .3)  (0 .97)  B 
= 25.51 B Y 0.34N 

which is very close to ( 1 2 ) ,  differing only in the third or fourth significant figure. 
It can in fact be shown that NEI’S formula will give the correct result if all mor- 
tality is either prereproductive or postreproductive, in which case the NEI formula 
is not ambiguous. With mortality during reproductive ages, the difficulties of 
NEI’S formula are more the result of vagueness of definition than inaccuracy of 
the results. 

These effective numbers must be taken with a grain of salt. Humans are dip- 
loid and have two sexes, and the generation time and mean length of life are 
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different for the two sexes. Furthermore, the variance of family sizes cannot be 
adequately described by a model in which the probability of having an offspring 
is completely independent of marital status or the number of previous children. 

VARIANCE EFFECTIVE NUMBER 

Before trying to relax some of the restrictive assumptions of our model, we 
should check the variance effective number, Nev,  to see whether it differs greatly 
from the inbreeding effective number NeI.  The object of this section will be to 
show that the variance effective number is the same as the inbreeding effective 
number. The model is the same as before. Consider an allele A.  Let be the 
gene frequency of A among individuals of age i at time t. Consider the covariance 
between x , ( ~ )  and ~ ~ ( ~ 1 .  It is readily shown that this covariance is the same as the 
covariance of the gene frequency in samples of one gene each drawn from ages 
i and j .  The observed gene frequencies in those samples are 1 or 0 according to 
whether o r  not the gene sampled turns out to be A .  

There is probability l - H t j ( t )  that the two genes chosen are identical by 
descent, that is, that they are descendants of the same gene in the initial genera- 
tion. If they are copies of the same gene, their covariance is simply their variance, 
which is X( 1 -z) . If t is sufficiently large. we do not need to put a subscript on 
this z, since the age group from which a gene is chosen will have no effect on its 
probability of being A .  This is not to imply that there will be no differences in 
gene frequencies between age groups, but merely that after a large amount of 
time. knowledge of the gene frequencies in the initial generation does not permit 
us to predict which age groups at time t will have higher or lower gene frequen- 
cies. 

With probability H i j ( t ) ,  the two genes sampled are not identical by descent, in 
which case their covariance is zero. Then 

This equation also holds in the case where i = j .  In that case, the possibility that 
the two samples turn out to be exactly the same gene is included in the definition 
of which is the probability that two genes sampled with replacement from 
age i are not identical by descent. 

In a haploid population with discrete generations and a variance effective 
number of Nev, the variance of gene frequency follows 

cov (Zi(t), Si'") = (1 - H i j ( t ) )  x(1-z) . (13) 

where the variances are, as in (13), the variances of the actual gene frequencies 
around their predicted value z. We can solve for  NeY: 

If we could decide on some average gene frequency which could stand in place 
of z($), we could also use (14) to calculate a variance effective number in the 
case of overlapping generations. 
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EFFECTIVE POPULATION NUMBER 

Let dt) be some weighted average of the so that 
x ( ~ )  = Z U < Z ~ ( ~ ) ,  where 7 ai = 1 . 

i z 

591 

Then 
Var (d t ’ )  = T, aiai Cov xi(t)) ( 1 5 )  

27 

Equation ( 1 4 )  was based on the change in variance in one generation. In the case 
of overlapping generations, a time unit is 1/T of a generation. We can substitute 
( 1 5 )  into ( 1 4 )  if we also replace Nev by NeVT: 

T. aiaj (z ( 1-X) -cov (Xi (t-I),Xj ( t - 1 )  ) ) 
$3 

NeVT = 
?, aiaj ( cov (Xi ( ,xi ( ) -cov (z* ( 8-1) ,Xi ( t-1) ) ) 
r3 

Assuming that t is large, we can use ( 1 3 )  and factor out an z( 1-2) to get 

Since t is large = AHij(t-l) for all i and j ,  so that 

But A = l - l / ( N e I T ) ,  where NeI is the inbreeding effective number, so that 
Nev = Ne, . 

In their discussion of the inbreeding and variance effective numbers in discrete- 
generation models, KIMURA and CROW (1963)  found that they were the same 
when population sizes were constant and when the parental generation was 
created by random mating. The first condition holds here. Although this model 
is haploid, the random mating may in some sense be equivalent to the independent 
sampling of individuals to be parents of different off spring. 

GROWING POPULATIONS 

The model used here has assumed that the population size remains constant. 
Human populations are manifestly not constant in size, which makes the ap- 
plicability of the above effective number formulas questionable. When we alter 
the model to allow for  growth (or decline) in population numbers, we must decide 
whether we will have the growth be deterministic or  random. If it is to be de- 
terministic, so that the exact number of offspring to be born in the next time 
interval is known in advance, we cannot allow the numbers of offspring of dif- 
ferent parents to be independent. If we wish to have independence of offspring 
numbers, we must allow the numbers of births, and hence the classes of the age 
distribution, to be random variables. 

Suppose that there are two types of haploid individuals, A, and A?. Let the 
probability that an individual of age i gives birth to a single offspring be bi. Let 
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the probability of dying at the end of age interval i be di. Let li be the probability 
that the individual survives to the beginning of age i, so that 

1, = 1 
and 

1; = di-Ili-1 . 
When the age distribution stabilizes, the population size will grow geometrically, 
being multiplied by a quantity A once every time interval. We can calculate h as 
the solution to 

m 
I 

Z lib&' 1 . 
i = l  

The generation time (the mean age of mothers of newborns in a population with 
a stable age distribution) is given by 

For each age we can calculate a reproductive value 

These reproductive values always have u1 = 1. They also have the property that 
no matter what the age distribution, the total reproductive value of the popula- 
tion after a unit of time has passed has an expectation of h times the present total 
reproductive value. If V = Enzul. 

E ( V )  = AV, 
irrespective of the n,. 

In this model we have an analogue to equation (1 ) . The total reproductive 
value of the population is V = Zn,v,. If the age distribution is stable and B is the 
number of newborns in the population, 

N ,  = B Z%A-(%-l). 
Using (16), 

so that 
= B $. jljbih-j , 

3 

V = B T  

We will derive a variance effective population number for this model. To do 
this we must define gene frequency. We weigh each individual by its reproduc- 
tive value. If nil is the number of individuals of allele 1 who are of age i, the 
total reproductive value of A,  individuals will be 

V ,  = zni,ui . 
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The gene frequency of A,, x, is given by 

We use a large-sample approximation to get the variance of x: 

2V,’V2~ 
(V’) 

- cov ( VI’, V,’) 

To calculate V:, we note that the number of A ,  individuals in age class i + 1 
will be binomially distributed with parameters nil and si, where s, is the prob- 
ability of survival at  the end of age i, that is, 1 - d,. The number of newborns 
will be a sum of binomial variates, the ith of which has parameters nil and b,. 
Then 

Var(V,’) = L n,lb,(1-b,)v12 + 0 nilsidivi+12 . (19) 

There will be a similar formula for Var ( Vz’), with the n,, replaced by n,,. Since 
births and deaths in the A ,  subpopulation are independent of those in the A ,  
subpopulation, Cov (V,“, Vz’) = 0. 

The value of (19) will depend on the age distribution. n,,. However, if the 
population is large, the n,, will not be far from a stable age distribution. In that 
case, if B,’ is the number of A ,  newborns expected in the next time interval. 

nil = B;ZiXi . 
Substituting that, and factoring out B,’ 

Var(V,1) = B1’(~1’ libih-i - VI‘ Zibi2X-i 

+ Z Zisidih-i ~ i + , * ) .  

z z 

i 

So that 
Var (V,’) = B,’ ( 1 +K) 
Var (V,’) = B,’ ( 1 + K )  , 

where 
K = - 4 libi2 + l~sid&ivi+12. 

2. a 

The first term in (21) comes from the fact that the number of offspring born dur- 
ing one time interval to an individual of age i is a binomial variate with param- 
eters 1 and b,. If the number of offspring were not binomial, but Poisson with 
parameter bi, this term would be zero. The second term depends on the death 
rates in those age classes which have reproductive value. It will be zero if no in- 
dividual ever dies until it reaches the end of the reproductive period. 

Substituting (20) into (18), 

If B’ is the total number of births expected to occur in the population during the 
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next time interval, then if the A ,  and A,  subpopulations are in a stable age dis- 
tribution, 

B,’ = B‘x, 
and 

so that 
B,’ = B’( l - X )  

(x(1-x)’  + (1-x)x’)  , B ’ ( 1 f K )  
(V’) 

Var(x‘) = 

or 

x(1 -x )  . B’ ( 1  f K )  
(V’)’ 

Var (2’) = 

Before using (22)  to obtain a variance effective number, we must show that 
changes in x in successive time intervals are independent. Otherwise (22) would 
give a misleading impression of the magnitude of longer term changes in gene 
frequency. It is a property of the total reproductive value of a population or sub- 
population that its expected value after one unit of time is X times its present 
value, irrespective of how the population arrived in its present situation. Knowing 
that x has just increased tells us nothing about whether the ratio of VI to V1+V, 
is expected to increase or decrease during the next interval. Thus, successive 
changes in x have a zero covariance, so that (22) will adequately reflect long- 
term genetic drift. Other ways of defining x, weighting the age classes by any- 
thing other than their total reproductive values, will not have this property. 

There are many ways in which effective population number could be calcu- 
lated, corresponding to different choices of the idealized population with which 
the “real” population is to be compared. If we take as the idealized population 
one which has discrete generations and a constant population size of Nev, it will 
have a gene-frequency variance per generation given by: 

Equation (22) gives the present gene-frequency variance per unit of time in the 
case of overlapping generations. We can prorate it to obtain a variance per gen- 
eration: 

) x(1-x) . B’T (1~4-K) 
(V’) 

Var,(i> = ( 
Equating the variances and solving for Ne,, keeping in mind that to good approxi- 
mation V’ = B’T, 

It is interesting to note that KIMURA and CROW (1963)  found that the variance 
effective number in discrete-generations models reflected the number of offspring 
rather than the number of parents. Equation (23) shows the same behavior in 
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TABLE 3 

Reproductive values corresponding to the birth rates and life table given in Table 2 

595 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

U1 

1 .oooo 
1.0594 
1.1003 
1.1233 
0.8161 
0.4321 
0.1889 
0.0586 
0.0066 
0. oooo 

that the number is related to V’ rather than V.  
Writing K out in full gives us 

The last term in the denominator will be omitted if the number of offspring per 
parent during one time interval is Poisson rather than binomial. If it is omitted, 
(24) is almost exactly the same as (lo),  except for the factors A-;. 

Table 3 shows the reproductive values, ui, calculated from the birth rates given 
in Table 2. The intrinsic rate of increase per five-year period, A, is 1.037086. The 
generation time T is 5.2106 time units, or 26.053 years. If we ignore the last term 
in the denominator in (24), we get K = .0293 so that 

Nev = (E) B’ = 5.062 B’ 

Since B’ is the number of births expected during the next five years, and since the 
population is not growing very rapidly, we have approximately 

where N o  is the number of births per year. This is close to the result obtained 
when the birth rates were reduced so that the population did not grow. 

Ne, = 25.31 No , 

DIPLOIDY 

All of the preceding models have been haploid. It is obviously of interest to 
know whether the effective number formulas will also apply to diploid models. 
Consider a model with only one sex, which is diploid. Aside from the diploidy, 
the model will be the same as the first model given above, in which population 
size is constant. There is a probability pk that a gene in a newborn came from an 
individual of age k, in which case it was randomly sampled (with replacement) 
from among the 2Nk genes at that age. 

In calculating inbreeding effective population number, the H i j  are defined 
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exactly the same as before, except that the entities sampled with replacement are 
now genes instead of individuals. For the Hii  we note that there is a probability 
1/2Ni that the same gene is sampled twice, 1/2Ni that two different genes from 
the same individual are sampled, and 1 - (1/Ni) that the genes are sampled from 
different individuals. Because these individuals were created by sampling genes 
at random from a population of parents, two genes in the same individual have 
the same probability of nonidentity by descent as two genes from different indi- 
viduals. Then 

1 1 1 Hii  = - x 0 + - hiis+ (1-- ) hii 
2Ni 2Ni Ni 

= (I--) 1 hii , 
2Ni 

where hii is the probability that two distinct genes from age i are not identical 
by descent. The occurrence of random deaths between ages i-1 and i will not 
affect hii, so that 

and 
h..'= h. . 

92. 2.-1, 2.-1 

which is to be compared with (5) .  For the other Hij ,  the equations are easily de- 
rived: 

and 

These equations are identical with (2) through (5), except that the Ni are every- 
where multiplied by two. Asymptotically, the H L j  will decline geometrically. The 
decline must be equated to 

which is the same as ( 6 )  except for a factor of two. 

cancel out. We can make the same approximations as before, ending up with 
Since both Ner and the N i  are multiplied by two, this factor will ultimately 

No attempt will be made here to derive effective population number formulas 
for more complex diploid models. I suspect that in general, we will not go far 
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wrong using effective number formulas derived from haploid models to calculate 
effective numbers for diploid populations. 

I wish to thank J. F. CROW for helpful criticisms, and M. NEI for catching a serious error in 
an earlier version of this paper. Research and publication of this work has been supported by 
US. Atomic Energy Commission Contract AT (45-1) 2065, and Task Agreement Number 5 
of U.S. Atomic Energy Commission Contract AT (45-1) 2225, both with the University of Wash- 
ington. 

SUMMARY 

Existing formulas for the effective number of a population with overlapping 
generations were tested and found wanting. New formulas were derived. The 
formulas of KIMURA and CROW and of NEI were tested by calculating them for 
the overlapping-generation model of MORAN, for which the rates of inbreeding 
and increase of gene-frequency variance are known. The KIMURA & CROW form- 
ula gave too large a number, and application of the NEI formula was difficult 
because of ambiguities in its statement. A haploid model in which population 
number remains constant was defined. Both inbreeding and variance effective 
numbers were calculated for that model. Both of these numbers were equal. Each 
was equal to the number of births per year times the generation time, divided by 
1 + K ,  where K is approximately the probability that an individual dies while 
it still has reproductive value. For birth and death rates similar to those of a hu- 
man population in an advanced industrial society, this means that effective num- 
ber is about one-third of census number.-The variance effective number was 
also calculated for a growing haploid population. It was shown that a diploid 
population of constant number would have the same inbreeding effective number 
as the corresponding haploid population with the same birth and death structure. 
In all of these calculations it was necessary to weigh individuals by their repro- 
ductive values in calculating gene frequencies. The numerator of the effective 
number formula, the product of the number of births per year and the generation 
length, is equal to the total reproductive value of the population if it is in a stable 
age distribution. 
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