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COMSTOCK and ROBINSON ( 1948, 1952) presented and discussed three mating 
designs and the associated experimental procedures for estimating genetic vari- 
ances of quantitative characters in plant populations. These three procedures, 
designated Experiment I, 11, and 111, utilize the covariances among full sibs and 
covariances among half sibs for the estimation of genetic parameters. However, 
since only two types of covariances among relatives can be calculated from these 
designs, only two genetic parameters, additive genetic variance and dominance 
variance, can be estimated. Epistasis must be assumed to be absent for the inter- 
pretation of the results although these same authors emphasized that this assump- 
tion probably is not realistic. Evidence of epistatic effects for several quantitative 
characters in maize has been obtained with other estimation procedures (GAMBLE 
1962; SPRAGUE et al. 1962). 

This study utilized 66 phenotypic variances and covariances among relatives 
for estimating genetic components of variance in an open-pollinated variety of 
maize (Zea mays L.) . The relatives were the products of a two-generation mating 
system similar to that suggested by KEMPTHORNE (1957, pp. 425-426). The esti- 
mates of variance components were used to compare the efficiency of four selec- 
tion methods. 

MATERIALS AND METHODS 

The open-pollinated variety of maize, Reid Yellow Dent, was used as the original population 
for this study. This population had been maintained in an isolated nursery near Iowa State Uni- 
versity for many generations. It was assumed to be a random-mating population in linkage 
equilibrium. 

Families composed of related individuals from controlled crosses (diagrammed in Figure 1) 
were produced to provide different degrees of relationship. In 1957 randomly chosen male (m) 
and female (f) parents from the original population grown in the field were used to produce the 
first-generation matings. Each of one group of males was crossed to two females to produce 
progenies of Pi and Q,. Each of a second group of males was crossed one female to produce 
progenies R,. Each of a third group of plants was self-pollinated to produce inbred progenies Si .  
Second-generation matings were made in 1958 among P, Q, R, S, and a bulk of the original popu- 
lation, designated as T. The letters A through K represent the 11 full-sib progenies obtained from 
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one first-generation mating and 10 secund-generation matings. These 11 full-sib progenies were 
related by descent and were considered to be 11 branches of a family derived from a random- 
mating population. Forty-five families of this mating structure were produced and constituted the 
material grown to obtain estimates of the genetic variances and covariances for the population. 

Field experiments were grown at Ames, Iowa, in 1962 and 1963. The 46 famil~es were as- 
signed at random to five sets. Each year three repetitions of each of the five sets were randomly 
assigned to 15 blocks in the field, and the 99 entries within a set (11 branches of each of nine 
families) were randomly assigned to plots within the respective block. Individual plots were 
single rows 101.6 cm apart, with 19 single-plant hills spaced 33.9 c m  apart within the row. Soon 
after plant emergence, hills without plants were replanted with a marker stock characterized by 
a purple stalk that could be identified at harvest time. These purple plants were grown merely 
to provide competition for the adjacent plants. Data were obtained only on plants guarded on 
both sides by other plants. 

Seven quantitative characters studied were plant height (cm) measured from the soil to the 
collar of the uppermost leaf, ear height (cm) measured from the soil to the uppermost ear-bearing 
node, ear length measured to the nearest 0.5 cm, ear diameter measured to the nearest 0.1 c m  at 
the point of greatest diameter, kernel row number counted at approximately one-third of the 
distance from the butt to the tip of the ear, kernel weight recorded to the nearest 0.1 g on three 
samples of 100 randomly drawn kernels. and total shelled grain weight (g) per plant. Ear- 
character data were obtained after all ears had heen dried artificially. The second ears from 
prolific plants were included in the measurements of yield and kernel weight but not in the 
measurement of ear length, ear diameter, or kernel row number. Unweighted plot means on a 
per-plant basis were used for most statistical analyses. An estimate of intraplot variance was 
obtained from individual plant data from one set of families in 1963. 

A total of 66 phenotypic covariances within and among the 11 branches of the families were 
obtained. By assuming that the pair of individuals, X,Y,, is a random one from the totality of 
pairs with the particular relationship from an infinite, random-mating population without link- 
age and at equilibrium, a genotypic covariance can be derived from each phenotypic covariance. 
This genotypic covariance was illustrated by KEMPTHORNE (1954, 1957) for the case of one locus 
as: 

The theoretical covariance value for the case of n unlinked loci is: 
Cov(XY) = 2r , ,~2~ + U,,+,. 

Cov(XY) = 2 r , , ~ ' ~  + uXyu*,, + 2 ~ 2 r x y ) ~ ( u x y ) ~ u ~ A ~ , ~ ~  
n 

t,s = 0 
z < t + s < n  

in which the summation extends over all values of t and s so that t + s = n, and n is the total 
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COVARIANCES AMONG RELATIVES-MAIZE 513 
number of loci segregating. Thus, with the assumption of random mating in an equilibrium popu- 
lation with no linkage, the covariances between relatives are simply derived from the covariances 
in the one-locus ciase. 

The 66 possible relationships among and within the 1 1  branches of a family in  this study may 
be divided into the following five broad categories. 1) full sibs, 2) half sibs, 3) cousins, 4) uncle- 
nephew, and 5) no relationship. Because of the differences in the level of inbreeding of the parents 
and the degree of divergence of the lines of descent among relatives, eight types of covariances 
were available. The covariation observed between any two relatives may be interpreted in  
statistical-genetic terms as genotypic cotariances among rebatives; and accordingly, each genic 
covariance may be given a series of coefficients of correlation to indicate its degree of genic rela- 
tionship. These coefficients of correlation are expressed on the basis of the values for  9, @’, 2rXyr 
and uXy (KEMPTHORNE 1954, 1957) (Table 1 ) .  

Eleven mean squares (full sibs) and 55 mean cross products were computed from the nine 
families within each of the sets and then combined over sets. Each observed mean square or mean 
cross product represents an estimate of a covariance between relatives. Since each covariance of 
relatives may be translated into genetic components of variance, a series of the covariance of 
relatives values can be used to estimate genetic variance components by means of least-squares 
procedures. However, one of the assumptions of using least-squares procedures is that all entries 

2(E MS)2 
df 

should have equal variances. The variance of a mean square is 

cross product is 

and the variance of a 

+----- where E M S  is the expected mean square and 
(EMS,) (EMS,’) (E MP)2 

df df 
E MP is the expected cross product. Since E MP is relatively small in comparison to (E MS,) 
(E MS,’), the weighting of the mean squares by d% makes the variances of the mean squares 
and cross products more nearly equal. The estimate of (l/r)u,2 is subtracted from the mean square 
prior to the application of the least-squares procedure for the same reason. If one expresses the 

TABLE 1 

Coeflicients of correlation for different couariances between relatives 

Group of 
relationship 

Relatives involving 
the covariance 

Coeficiep of correlation 
Q 6 2rx, U X Y  

Full sib HH’, 11’, JJ’, KK’ 
A A ,  BB’, CC’, DD’, EE’, FF’, GG’ 

Half sib DE 
HI, JK 
BD, BE 
BC, CD, CE 

Cousin HJ, IK 
FG 

DF, DG, DH, DJ, EF, EG, 
EH, EJ, GH, GI, GJ, FH, 

[FI, FJ, FK 
BF, BG, BH, BJ 

Uncle-nephew AD, AE, AF, AG, AH, AJ 
AB 

No relation [AC, AI, AK, BI, BK, CF, 
{ CG, CH, CI, CJ, CK, DI, 
(DK, EI, EK 

3/4 1/2 5/8 3/8 
1/2 1/52 1/2 1/4 

1/2 1/4 3/8 1/8 
3/4 0 3/8 0 
1/2 1/8 5/16 1/16 
1/2 0 1/4 0 

1/2 1/4 3/8 1/8 
1/4 1/4 1/4 1/16 
1/2 0 1/8 0 

1/4 0 1/8 0 

1/8 0 1/16 0 

1/2 0 1/4 0 
1/4 0 1/8 0 

0 0 0 0 
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equations in the manner, Xp = Y, the parameters (p’s) are genetic components of variance 
namely, uZA, u ? ~ ,  uZAA, uZDD, and uZAAA. The elements of X are the coefficients derived from 
the coefficient of correlation for the genetic components of variance listed in Table 1. When the 
two known variables (Xs  and Y’s) are available, the unknown parameters (~3’s) may then be 
estimated by solving the equations to obtain the unique solution for each parameter. 

To examine the significance of the different components of genotypic variance, seven linear 
regression models were fitted to the observed mean squares (adjusted) and mean cross products. 
The seven models were 

Model Parameters in the model 
1 A 
2 A, D 
3 A, D, AA 
4 A, D, AA, AD 
5 
6 
7 A, D, AA, AAA 

A, D, AA, AD, DD 
A, D, AA, AD, DD, AAA 

in which A, D, AA, AD, DD, and AAA denote uzA, GD, uZAA, o Z A D ,  utDD, and uZAAA, respectively. 
>arameter model is disdaved in matrix form as follows: The si 

d% * 
5/8 3/8 25/6+ 15/64 

1/2 1/4 1/4 1/8 

3/8 1/8 9/64 3/64 
3/8 0 9/69 0 

.. 

5/16 1/16 25/256 5/256 

1/4 1/16 1/16 1/64 

1/8 0 1/64 0 

1/16 0 1/256 0 

9/64 125/512 

1/16 118 

1/69 27/512 
0 27/512 

.~ 

1/256 125/406! 

1/256 1/69 

0 1/512 

0 1/4Q9l 

For tests of significance, the normality, independence, and homoscedasticity of the error of 
each observed mean square and mean cross product were assumed. Since each mean square and 
mean cross product was estimated with 40 degrees of freedom, the distribution of these variables 
approaches the normal distribution. Hence, the failure of these assumptions to be completely 
valid should not influence tests of significance unduly. 

The estimates of additive (A) and dominance (D) variance were obtained from the combined 
data for both years for all branches of all families by fitting regression model 2. The estimates of 
experimental error (S2e) and intraplot variance (3,) were used to calculate the expected change 
(G), in the population mean for one cycle of each of four selection methobs, conducted at one 
location in one year, using a plot size of 12 plants. The selection methods were: 

1) Mass selection (M)-Equal quahities of see& from one selected plant from each plot of 12 

2) Full-sib family selection (F)-Equal quantities of remnant seed from selected full-sib 
plants would be used for recombination. 

families would be used for recombination. 
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COVARIANCES AMONG RELATIVES-MAIZE 515 
3) Half-sib family selection (H)-Equal quantities of remnant seed from selected half-sib 

families would be used for recombination. 
4) Modified half-sib family selection (H')-Equal quantities of seed obtained by self-pollinat- 

ing the male parents of the selected half-sib families would be used for recombination. 
G values were calculated according to the following formulae (k=selection differential in 
standard deviation units, f = number of females per male, r = number of replications) : 

G(M) = [ (n - l ) /n l s*k .  ( % ) A .  [(i/2)4f(%)D+Sz,]-~ 
G(F) = k .  ( % ) A .  [(%)A-!- ( % I  D f 
G(H) = k .  ( % ) A .  [(%)A+ (1/4f) (A4-D) 4- ( l / r )  C + ~ ~ I - ? ~  
G ( H )  = 2 k .  ( % ) A .  [(%)A 4- (1/4f) ( A f D )  -l-(l/r) kzeI-% 

bZe1-% 

Genetic parameters are applicable to mass selection only if 12 plant plots are used. Hence, the 
factor [(n- l ) /n]% in the numerator of the G(M) formula is a small-sample correction factor. 
Likewise, a finite population k value ( k  = 1.63) for  a selection intensity of 8.33% was used in the 
G(M) formula. An infinite population k value ( k  = 1.84) for a selection intensity of 8.33% was 
used in the three family-selection response formulae. 

EXPERIMENTAL RESULTS 

The grand means, experimental errors, and the coefficients of variation for the 
seven quantitative characters studied are presented in Table 2. The harmonic 
mean of guarded plants per plot was 12. Linear regression analyses were com- 
puted for seven models differing in their genetic components of variance param- 
eters. The analysis of variance for model 4 (which contained the parameters A, 
D, AA, and AD presented in Table 3) showed that the mean square due to ad- 
ditive genetic variance accounted for most of the variation among the variance 
components for all characters in the two experiments. Significant dominance 
variance was detected in plant height and ear diameter in 1962 and in plant 
height, ear height, ear diameter, and yield in 1963. The only significant mean 
squares due to the epistatic variance were those for AD for ear height in 1962 
and AA for ear height in 1963. The estimates of uiD in 1962 and U:, in 1963 for 
ear height were negative, due to chance or invalidity of some assumptions in the 
models. 

Estimates of additive genetic and dominance variance were obtained with the 

TABLE 2 

Means, errors and coefficients of variation for seven quantitative characters 
studied in 1962 and 1963 

Mean (f) Error ( uze) C.V. (percent) 

Quantitative character 

Plant height (cm) 
Ear height (cm) 
Kernel row number 
Ear length (cm) 
Ear diameter (cm) 
Kernel weight (g/100K) 
Yield (g/plant) 

1962 1963 

237 234 
119 115 
19 18 
21 21 

28 30 
2.31 240 

5.1 5.1 

1962 1963 1962 1963 

45 54 
42 39 

.44 .52 
1.02 .94 

.023 .020 
3.24 3.87 

406 446 

2.8 3.1 
5.4 5.4 
3.5 3.9 
4.7 4.6 
3.3 2.7 
6.5 6.5 
8.7 8.8 
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516 R. K. CHI et al. 
TABLE 3 

Analysis of variance of genetic components of variance for seven quantitative characters in 1962 
and 1963 based on the model which contained the Additive ( A ) ,  Dominance ( D ) ,  

Additive x Additive ( A A ) ,  and Additive X Dominance ( A D )  parameters 

Plant Ear Kernel 
Yield Source of height height row Ear Ear Kernel 

variation df ( X  ( X  lo-*) number diameter length weight ( X  10-4) 

A 1962 1 
1963 1 

D 1962 1 
1963 1 

AA 1962 1 
1963 1 

A D 1962 1 
1963 1 

1962 1 
1963 1 

Deviation 

13611 * *  
10253** 
1296** 
2029 * * 

5 
3 

82 
13 

139 
94 

10057** 39738** 
10003** 32207** 

100 438 
390* 257 
149 1 
301(*)$ 31 
222(*)$ 180 

17 115 

52 158 
57 132 

11.32* * 
10.39** 

.43 * 
1.16* 
.I7 
.I5 
.03 
.06 

.07 

.06 

32787** 
30695 * * 

148 
341 
131 
21 
31 
2 

131 
113 

57294** 
68468* * 

113 
2 

1023 
169 
175 

7 

127 
250 

4?3841* * 
79300** 
1906 
5MO** 
1046 
578 
8% 
234 

624 
784 

* * Significant at 1'% probability level. 
* Significant at 5% probability level. 
f Significant at 5% probability level but the estimates of AA or AD were negative. 

model having only two genetic parameters, U: and U; (Table 4). Estimates ob- 
tained from all 11 branches and from only the seven branches derived from non- 
inbred parents (i.e., A, B, C ,  D, E, F, and G) are shown separately. The estimates 
from the two sets of relatives showed very good agreement. The standard devia- 
tions of the two estimates were also similar although they were slightly larger 
when the matings involved only non-inbred parents. Significant additive genetic 
variance was detected for all characters. Significant dominance variance was 
found for plant height, ear diameter, and yield only. 

Estimates of genetic covariances and the genetic correlations of yield with the 
other six characters are shown in Table 5. Ear length showed a higher correlation 
with yield than did ear diameter, kernel weight, or kernel row number. 

and U', were obtained from plots containing approxi- 
mately 12 bordered plants per plot, a similar sample size was used in predicting 
progress from mass selection. Selection for this system would be based solely upon 
the phenotype of individual plants, the highest-yielding plant being chosen from 
each of the 12-plant plots in which bulked seed of the variety had been planted. 
The three family-selection systems all are based upon progeny evaluation in 
replicated trials. The expected progress from selection for the four selection 
methods is shown in Table 6, both on a per-cycle basis and a per-year basis, with 
the assumptions that years per cycle for mass, full-sib, and half-sib selection would 
be one, two and three years, respectively. The full-sib and modified half-sib 
family methods were calculated to be the most effective methods for use in this 
population under the specified conditions. 

Since the estimates of 

DISCUSSION 

The analyses of variance obtained by fitting a model with the parameters of 
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COVARIANCES AMONG RELATIVES-MAIZE 517 

TABLE 4 

Estimates of additilie and dominance components of uariance for seuen characters from all 
progenies and from progenies of non-inbred parents only 

From 7 branches with 
From 11 branches non-inbred parents 

Quantitative character Year aZ* U2D az.4 UZD 

Plant height (cm) 1962 
1 963 

Pooled 

Ear height (cm) 1962 
1963 

Pooled 

Kernel row number 1962 
1963 

Pooled 

Earlength (cm) 1962 
1963 

Pooled 

Ear diameter (cm) 1962 
1963 

Pooled 

Kernel weight (g/l OOK) 1962 
1963 

Pooled 

Yield (g/plant) 1962 
1963 

Pooled 

96 f 26 
58 f 21 
80 f 17 

120 f 17 
99 f 17 

110 t 12 

2 t .3 
2 f .3 
2 f .2 

2 f .3 
2 t .2 
2 f .2 

.03 f .01 

.03 f .Ol 

.03 f .01 

11 f 0.9 
11 f 1.0 
11 f .7 

229 f 54 
247 -C 61 
239 t 41 

202 f 66 
224 f 56 
225 t 43 

56 f 42 
108 f 42 
82 f 30 

1.0 f .7 
0.9 f .6 
1.0 f .5 

0.7 f .6 
1.0 f .6 
0.9 f .4 

.04 f .01 

.06 t .01 

.05 f .01 

2 f 2  
3 f 2  
I f 1  

246 t 135 
411 f 152 
329 f 102 

116 t 32 
66 f 35 
91 f 24 

144 t 19 
141 f 23 
143 f 15 

3 f .4 
3 f .4 
3 f .3 

2 2 .3 
2 f .2 
2 f .2 

.04 t .01 

.05 f .01 

.05 f .01 

12 f 0.9 
11 f 1.0 
12 f 0.8 

228 t 71 
304 f 101 
266 f 62 

192 t 86 
276 f 94 
234 f 64 

228 f 52 
71 f 62 
47 f 41) 

.9 t 1 

.5 f 1 

.7 t 1 

1 f .9 
1 t .6 
1 f .5 

.04 f .02 

.02 f .02 

.03 t .01 

2 f 2  
1f4 
2 t 2  

451 f 191 
471 f 273 
461 f 167 

additive (A), dominance (D), additive x additive (AA) and additive x domi- 
nance (AD) components of variance are summarized in Table 3. The mean 
squares due to A were much larger than those for either D or any of the epistatic 
parameters in both years. However, the mean squares due to D were significant at 
the 1 % probability level for plant height in both years and for yield in 1963 and 

TABLE 5 

Combined estimates of genetic covariances and genetic correlations 
of yield with other quantitative characters 

Genetic covariances Genetic correlation 
Yield with a ~ i ~ j  

Plant height 56 +. 18 .40 
Ear height 41 -C 41 .25 
Kernel row number 1.89 f .72 .04 

Ear diameter .38 k .32 .14 
Kernel weight 2.88 f 3.51 .06 

Ear length 9.97 f 1.82 .43 
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518 R. K. CHI et al. 
TABLE 6 

Expected progress from selection for yield when the selection intensity is 8.33% 

Expected pmgress 

Method 

Percent of mean 
g Per 
plant Per cycle Per year 

Mass selection 2.96 1.25 1.25 
12 plants per plot 
Full-sib family selection 11.45 4.84 2.42 
4 replications, 1 female per male 

4 replications, 6 females per male 
Modified half-sib family selection 16.95 7.17 2.39 
4 replications, 6 females per male 

Half-sib family selection 8.45 3.59 1.20 

significant at the 5% level for ear diameter in both years and for ear height in 
1963. The estimates of A and D (Table 4) indicated that additive gene action 
accounted for a major part of the total genetic variance for the characters ear 
height, ear length, kernel row number, and 100 kernel weight. However, for plant 
height, ear diameter, and yield, the estimates of dominance variance were greater 
than those of additive genetic variance. This situation is not surprising since the 
occurrence of heterosis in the expression of plant height, ear diameter, and yield 
in F, hybrids indicates some degree of dominance (ROBINSON, COMSTOCK and 
HARVEY 1949). No evidence for epistatic variance was found for any of the char- 
acters studied. EBERHART et al. (1966) also obtained no evidence that epistatic 
variance was important in two North Carolina varieties of maize. 

The estimates of all the genetic components of variance included genotype-by- 
environmental interactions. Upward biases from these interactions may or may 
not increase the probability of detecting epistatic variance but should not reduce 
the probability. 

The least-squares procedure was employed to obtain the estimates of genetic 
components Df variance. Theoretically, the least-squares procedure would provide 
the best linear unbiased estimates of the parameters if the variances of the obser- 
vations were equal and independent. The least-squares estimates obtained with 
the observed mean products and adjusted mean squares (see METHODS) were 
unbiased. However, they were not minimum-variance estimates since all of the 
observations on mean products were not independent. Covariances between mean 
products involving the same branch of a family, for example MP(AB), MP(AC), 
. . . , MP(AK) for branch (A) of the families in the present case, would not equal 
zero, i.e., 

E{COV [MP(AB), MP(AC)]} # 0 and 
similarly for other pairs of mean products. The assumption that the effects of the 
small covariances would be negligible seems reasonable, however. 

One main problem of the linear model involving covariances among relatives 
is that the coefficients of the second- and the third-order genetic components of 
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COVARIANCES AMONG RELATIVES-MAIZE 519 

variance ( uiA uiD , U&, , uiAA ) are highly correlated with those of the first-order 
genetic variances (U: , U: ) . The coefficients of the second-order and the third- 
order genetic components of variance in the theoretical values for covariance 
among relatives are generated by squaring or multiplying of the coefficients of 
the first-order genetic components of variance. This inherent property of the 
covariance model reduces the sensitivity of the model for detecting epistasis. Evi- 
dence of this can be seen in the “correlation” matrix for the six parameters in- 
volved in this estimation: 

Parameter A 
A 1 .oooo D 
D .7533 1.0000 AA 

AA .9162 9298 1.0000 AD 
AD .7133 .9848 .9195 1.0000 DD 
DD .6692 .9537 .8931 .9931 1.0000 AAA 

AAA .8076 .9581 .9722 .9762 .9701 1.0000 
The high correlations of the coefficients obviously will give larger standard errors 
of the estimates of the genetic variances. This is true for all designs involving co- 
variances among relatives, however. 

This model also assumed (1) diploid inheritance, (2) no linkage, (3) no 
maternal effect, and (4) environmental effects additive to the genotypic values. 
No evidence has been found in maize for the invalidity of ( 1 ) (3) , and (4). But 
linkage cannot be assumed absent. COCKERHAM (1956) and SCHNELL (1963) 
showed that the effect of linkage is to increase the coefficient of epistatic variance 
components in the covariances among relatives. This would increase the corre- 
lations among genetic variance components and further decrease ability to par- 
tition the effect of epistasis from additive and dominance variance. However, the 
effect of linkage is probably negligible except for extremely tight linkages among 
loci. 

SUMMARY 

Covariances among relatives including full sibs, half sibs, cousins, and uncle- 
nephews for 45 families from the Reid Yellow Dent variety of maize were used 
to estimate genetic variances for plant height, ear height, kernel row number, ear 
length, ear diameter, kernel weight and yield. Sixty-six phenotypic covariances 
were computed from the pooled mean squares and mean cross products. For each 
phenotypic covariance, the expectation was derived in terms of genetic variances, 
and the estimates of genetic variances (U:, , aiA , uL, U&, , uLA) were obtained 
for this variety by the least-squares procedure. The results indicated that epistatic 
variances were negligible in relation to the additive and dominance variance com- 
ponents for the seven quantitative characters studied. The additive genetic 
variance constituted the major part of the total genetic variance for ear height, 
ear length, kernel row number and kernel weight. The dominance variance ex- 
ceeded the additive genetic variance for plant height, ear diameter and yield. The 
high correlations among the coefficients of the genetic parameters inevitably 
reduced the sensitivity for detecting epistasis. These correlations also exist for all 

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/63/2/511/5989457 by guest on 20 April 2024



520 R. K. CHI et al. 

known designs involving covariances among relatives. The estimates of the addi- 
tive and dominance variance were used to compare four breeding methods for 
Reid Yellow Dent. Full-sib and modified half-sib selection should be the most 
effective when only one crop per year is possible. 
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