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ABSTRACT In 2013, we and coauthors published a paper characterizing rates of recombination within the 2.1-megabase garnet-
scalloped (g-sd) region of the Drosophila melanogaster X chromosome. To extract the signal of recombination in our high-throughput
sequence data, we adopted a nonparametric smoothing procedure, reducing variance at the cost of biasing individual recombination
rates. In doing so, we sacrificed accuracy to gain precision—precision that allowed us to detect recombination rate heterogeneity.
Negotiating the bias-variance tradeoff enabled us to resolve significant variation in the frequency of crossing over across the garnet-

scalloped region.

N 2013, we published a paper characterizing rates of
recombination within the 2.1 megabase garnet-scalloped
(g-sd) region of the Drosophila melanogaster X chromo-
some. We identified male progeny inheriting crossovers
within the region and pooled them into groups for DNA
sequencing to recover allelic proportions. These propor-
tions were used to estimate rates of recombination under
the logic that the allele frequency of a SNP should equal the
proportion of males that recombined upstream of that SNP.
Gilliland (2015) criticized our approach to estimating
rates of recombination. In brief, our approach was to select
a subset of high-quality SNPs for recording empirical allele
frequencies from the sequence data and then to infer the
proportion of recombinants upstream of each SNP as the
median across a symmetric window of flanking empirical
frequencies. Any two SNPs define a genomic interval, and
the frequency of recombination within that interval can
be computed as the difference in allele frequencies between
them. This procedure leads to biased estimates because the
selected SNPs are not uniformly spaced. The bias is a by-
product of our strategy for variance reduction—a strategy
that proved successful in resolving heterogeneity in recom-
bination rates.
Why adopt a biased estimation strategy? It is notoriously
challenging to estimate allele frequencies from high-throughput
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sequencing read counts. This is obviously true at low
coverage due to binomial sampling variation, but it is also
true at higher coverage due to additional sources of variation.
In our study, this challenge was apparent in plots of sample
allele frequency against genomic position: while the exper-
imental design forces the relationship between allele fre-
quency and positon to be monotonic, in sample data, this
was visible only at coarse scales. Our approach was to
smooth the scatterplot—a canonical application of the bi-
as-variance tradeoff. In doing so, we aimed to distinguish
coarse patterns in the data at the expense of resolving
fine details.

Figure 1 in Gilliland (2015) emphasizes the bias concom-
itant with our tradeoff. The smoothed allele frequency esti-
mates at successive SNPs are medians of windows that
almost completely overlap; where those windows differ,
and how the medians change, is nearly independent of in-
terval defined by the focal SNPs. As a consequence, recom-
bination rate estimates (y-axis) between successive SNPs
scale inversely with the physical distance between them.
However, these “estimates” are not worth considering; irre-
spective of the analytical approach taken for this study, one
should not expect to infer recombination rates between
successive SNPs. Importantly, the trend accentuated by
Gilliland (2015) is absent at more reasonable inter-SNP dis-
tances. Figure 1, which recapitulates figure 1 in Gilliland
(2015) but includes data for all SNP pairs, shows that de-
pendence on physical distance attenuates at 1 kb, and by
10 kb has all but vanished. This is not to say that our
reported rates of recombination are free of bias (see below),
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successive SNP pairs

Figure 1 Plot of estimated recombination rate between
SNP pairs (cM/Mb) as a function of distance between SNPs
in nucleotides. Following Gilliland (2015), red circles (n =
451) denote the values derived from successive SNPs, as
compared to a linear trend (i.e., rate scales with distance)
shown in black and a constant trend (i.e., rate indepen-
dent of distance) shown in blue. Included here as purple
circles are the values derived from all other SNP pairs (n =
4 101,024).

Figure 2 (a) Plot of allele frequency against genomic po-
sition in one pool of recombinants. Red circles denote
empirical allele frequencies computed directly from read
counts. The red line indicates the result of median
smoothing. The black line is included for reference and
shows a linear increase in allele frequency with genomic
position. (b) Plot of allele frequency against genomic po-

155 sition in a second, independent pool of recombinants. (c)
Plot of allele frequency against genomic position in a sim-

ulated dataset, assuming a constant rate of recombination
across the garnet-scalloped interval. Blue circles denote
empirical allele frequencies computed directly from simu-
lated read counts. The blue line indicates the result of
median smoothing. The black line is as in previous panels,
but here represents the theoretical allele frequencies as
well. (d) Overlay of median smoothing results from panels
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but emphasis on the red circles in Figure 1 engenders a
narrative that is misleadingly provocative.

The upside of bias is reproducibility; what is lost in accuracy
may be compensated by gains in precision. This is apparent in

o

o

Allele frequency

15.5

145 15.0
Position (in Mb)

14.0

Figure 3 Median smoothed results for 13 recombinant pools (red dashed
lines = “+" direction CDFs) in comparison to analogous results for 13
similar pools simulated under a uniform rate of recombination (blue
dashed lines). Solid lines denote the aggregated results obtained by av-
eraging across pools.
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Figure 2, in which our approach has been applied to both real
and simulated data. Each of panels a and b considers an in-
dependent pool of recombinants from Singh et al. (2013).
Empirical allele frequencies, calculated as the fraction of sup-
porting reads, are shown as red circles; both recombinant
pools show the same noisy, not-quite-linear relationship be-
tween allele frequency and genomic position. In each case,
the trend has been captured by our median smoothing ap-
proach as indicated by the red line. Panel c, by contrast,
considers the null case in which read data are simulated from
a simulated pool of recombinants, assuming the rate of re-
combination to be constant. As highlighted in panel d, it is
apparent that results from a and b are more similar to each
other than either is to that of c. The nonuniform distribution of
SNPs, when coupled with our median smoothing, inflates the
degree of similarity observed in panels a—c. That notwithstand-
ing, the pattern in the real data is unequivocal, and the non-
uniformity of recombination rates is apparent.

Our median smoothing approach uses the data to esti-
mate an empirical cumulative distribution function (CDF)
(Figure 2). That is to say, the smoothed value at a genomic
position estimates the probability that the position lies
downstream of a recombination event between garnet
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Figure 4 Empirical probability density functions (PDFs) calculated in
20-kb windows from the aggregated results in Figure 3. The difference
in allele frequency across the window is plotted against the genomic
position of the window center. Despite the sizable and significant dif-
ference in empirical CDFs from Figure 3, their corresponding empirical
PDFs appear strongly correlated. This granularity magnifies the bias
inherent to our median smoothing approach.

and scalloped. A uniform rate of recombination should
therefore generate a linear CDF, but this is not what we
observe. Rather, the empirical CDFs constructed from sim-
ulated data (e.g., the blue line in Figure 2d) too often de-
viate from the uniform expectation (i.e., the black line in
Figure 2d). Nevertheless, this deviation is minimal com-
pared to the deviation observed in real data (e.g., the red
lines in Figure 2d). Kolomogorov—Smirnov statistics are
not needed to quantify what is so qualitatively obvious:
the landscape of recombination events in our data is de-
cidedly nonuniform (Figure 3).

The bias-variance tradeoff, of course, depends on the
window size within which crossover density is reported.
Finer partitioning of the g-sd interval results in greater ap-
parent heterogeneity, but this is, in part, due to a second
bias-variance tradeoff: though the variance in recombina-
tion rate surely increases at finer scales, so too does the
contribution of bias (Figure 4). With coarse partitioning of
the g-sd interval, the contribution of bias is minimal (Figure
5). At more intermediate, arguably more reasonable scales,
the contribution of bias is also intermediate but we neverthe-
less find that recombination rate heterogeneity persists.
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Figure 5 Substantial rate heterogeneity at modest granularity. The
garnet-scalloped region is partitioned into five windows of equal size.
As in Figure 4, the difference in allele frequency across each window is
plotted against the genomic position of the window center. Results for
the observed data are shown in solid red; results for the simulated data
from the previous two figures in shown in solid blue. The dashed blue
lines are the results of 100 additional simulations from the null case.

We appreciate Gilliland’s attention to our paper and the
opportunity to elaborate on our results and rationale. We
agree that it is important to be cognizant of limits to resolu-
tion, and readers should be aware that the contribution of
bias increases with increased granularity. However, as we
have explained, his equivalence between bias and artifact is
false. Sometimes bias is the key to pushing the limit of reso-
lution, and such was the case in our study. Indeed, it was our
use of a biased estimator that empowered us to resolve sig-
nificant variation in the frequency of crossing over across the
garnet-scalloped region.

Literature Cited

Singh, N. D., E. A. Stone, C. F. Aquadro, and A. G. Clark,
2013 Fine-scale heterogeneity in crossover rate in the garnet-
scalloped region of the Drosophila melanogaster X chromosome.
Genetics 194: 375-387.

Gilliland, W. D., 2015 A comment on fine-scale heterogeneity in
crossover rate in the garnet-scalloped region of the Drosophila
melanogaster X chromosome. Genetics 201: 1275-1277.

Communicating editor: M. Johnston

Letter 859

20z Iudy || uo 3senb Aq ¥610£6S/258/2/20z/e1P1e/SolouUSb W00 dno ojWwapeoe//:sdly Wody papeojumoq



