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ABSTRACT Demographic, genetic, or stochastic factors can lead to perfect linkage disequilibrium (LD) between alleles at two loci
without respect to the extent of their physical distance, a phenomenon that Lawrence et al. (2005a) refer to as “genetic indistin-
guishability.” This phenomenon can complicate genotype–phenotype association testing by hindering the ability to localize causal
alleles, but has not been thoroughly explored from a theoretical perspective or using large, dense whole-genome polymorphism data
sets. We derive a simple theoretical model of the prevalence of genetic indistinguishability between unlinked loci and verify its accuracy
via simulation. We show that sample size and minor allele frequency are the major determinants of the prevalence of perfect LD
between unlinked loci but that demographic factors, such as deviations from random mating, can produce significant effects as well.
Finally, we quantify this phenomenon in three model organisms and find thousands of pairs of moderate-frequency (.   5%) genet-
ically indistinguishable variants in relatively large data sets. These results clarify a previously underexplored population genetic phe-
nomenon with important implications for association studies and define conditions under which it is likely to manifest.
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A basic genomic property of sexually reproducing organ-
isms is genetic disequilibrium, the nonrandom associa-

tion between alleles at two or more loci. This quantity is often
referred to as linkage disequilibrium (LD) to emphasize the
important role of genetic linkage in generating and maintain-
ing the association at physically proximal loci. The concept of
LD as a property of two loci that are physically near each other
is a natural viewpoint given the large body of theoretical and
empirical work characterizing mechanisms by which demog-
raphy and selection influence patterns of LD between phys-
ically proximal loci. The existence and extent of LD between
linked loci is influenced by the demographic history of a
population, reveals locus-specific selective forces, and is a
critical parameter governing the resolution of marker–trait
association studies (reviewed in Slatkin 2008). Nevertheless,
it is well known that physically distant or even independently
segregating loci can also exhibit nonrandom associations.

Specifically, LD between alleles segregating at physically
unlinked loci can be induced by a variety of forces such as
selection, genetic drift, nonrandom mating, epistasis, pleiot-
ropy, and nonrandom chromosome transmission (Michie
1953; Bennett and Binet 1956; Nei 1967; Crow and Kimura
1970; Lewontin 1988; Petkov et al. 2005; Platt et al. 2010;
Rohlfs et al. 2010; Corbett-Detig et al. 2013; Long et al.
2013). In this article we examine nonrandom associations
between alleles at pairs of physically unlinked loci. We use
the term LD to describe these associations but stress that they
are not a result of genetic linkage between the loci.

For two main reasons, a common approach to empirical
examinations of LD in genome analysis studies has been to
focus on characterizing LD across modestly sized bins of
specified physical distance (e.g., International HapMap Con-
sortium 2005; Liti et al. 2009). First, this has been an infor-
mative approach for exploring the well-recognized trade-offs
that LD engenders in mapping studies. Specifically, surveys of
LD within bins allow assessment of the degree to which LD
may facilitate the identification of risk-conferring variants
through the typing of nearby neutral polymorphisms but
may simultaneously impede efforts to finely map the causal
variants responsible for those signals (Kruglyak 1999; Sutter
et al. 2004). Second, in genome studies cataloging a large
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number of polymorphic sites, exploration of LD across the
complete genome often constitutes a daunting set of calcula-
tions, since the number of possible pairs of single-nucleotide
polymorphisms (SNPs) increases as n2 where n is the number
of SNPs.

A number of previous studies have explored LD between
unlinked loci. Rohlfs et al. (2010) observed association be-
tween alleles present at two putatively coevolving human
gamete-recognition genes and found support for the hypoth-
esis of selection for allele matching at these loci. Similarly,
Takano-Shimizu et al. (2004) reported LD between polymor-
phisms in Drosophila chemoreceptor genes, which they at-
tributed to the effects of multilocus selection with epistasis.
Sved (2011) and Koch et al. (2013) examinedmeasures of LD
between blocks or patches of variants in subsets of the Hap-
Map data set, with Sved (2011) finding a slight bias toward
positive associations among unlinked blocks and Koch et al.
(2013) observing an excess of LD extending over long ranges
on the same chromosome. However, the focus of these latter
authors on measures of LD between blocks of variants neces-
sarily obscures the most extreme examples of LD between
specific pairs of unlinked sites. Petkov et al. (2005) focused
on LD “domains” inmice consisting of large blocks of sequence
with disequilibrium between relatively distant markers on
the same chromosome, and they identified an example of
LD between domains on two different chromosomes contain-
ing genes with strong functional similarity, implying selection
for coadapted alleles. Petkov et al. (2005) also identified
additional cases of high interchromosomal LD (D9. 0:8)
but did not focus on this result and did not discuss in detail
the frequency of high interchromosomal LD or the distribu-
tion of LD among loci with strong disequilibrium. Long et al.
(2013) calculated genome-wide pairwise LD in a dense poly-
morphism data set and found many pairs of loci with high r2

values even after correcting for population structure, but did
not focus on modeling this phenomenon or quantifying the
factors that could affect it. Lawrence et al. (2005a) examined
LD between �30,000 SNPs on chromosome 20 in several
human populations, focusing on SNPs in perfect LD that they
dubbed “genetically indistinguishable” SNPs (giSNPs) (we
adopt this abbreviation and use it throughout this article).
The authors considered both linked and unlinked variation
and found that most giSNPs occurred within haplotype blocks,
but did not explore the underlying causes leading to the emer-
gence of unlinked giSNPs (Lawrence et al. 2005a). Finally, we
note that Lawrence et al. (2009) published a web-based tool
for retrieval of genome-wide LD between distant HapMap
SNPs, but did not study patterns in these data.

The investigations described herein aremotivated by pros-
pects for genome-wide association mapping studies (GWAS)
in model and nonmodel organisms. Specifically, falling se-
quencing costs and methodological advances are making it
increasingly feasible to gather virtually complete catalogs of
genomic variation in moderate-sized samples of individuals
fromaspecies of interest. This raises thepossibility ofperform-
ing GWAS in a setting where the causal allele or alleles are

almost certainly tested directly. This approach ameliorates the
concerns that several previous studies have raised involving
tests for indirect association, using so-called “tag” SNPs that
are in LDwith untyped variants (Zhang et al. 2004; Terwilliger
and Hiekkalinna 2006). However, the approach becomes po-
tentially problematicwhen the possibility exists for very strong
LD between alleles at a true causal site and at unlinked loci
elsewhere in the genome. If alleles at a causal site and at one or
more physically distant loci were to form a cluster of SNPs in
perfect LD, it would be impossible to localize the causal site,
using marker–trait association. At worst, a causal site that is
contained within such a cluster along with distant loci that
happen to be near a priori candidate genes could falsely re-
inforce assumptions about the genetic basis of trait variation.

This potential pitfall for association studies has been noted
previously in the literature. In a review article, Lawrence et al.
(2005b) emphasized the potential difficulties that giSNPs
could create for localizing causal variation in the association
mapping setup. They gave an unambiguous example of this
phenomenon in their preliminary empirical exploration of the
potential for gene expression quantitative trait locus (QTL)
mapping in humans [although they acknowledged that their
sample size was small (Lawrence et al. 2005b)]. Rohlfs et al.
(2010) raised the possibility of this same phenomenon and
called for further investigation of interchromosomal LD, al-
though they focused on the role of selection. The possibility of
LD between unlinked loci hindering localization of genes in
association mapping was also discussed in a study of LD in
cattle (Farnir et al. 2000), although the magnitude of LD be-
tween unlinked loci was lower than what we consider. In the
Drosophila literature, several published genome-wide associ-
ation studies provide empirical examples of unlinked SNPs
with low association P-values and either perfect or high long-
range LD (Jordan et al. 2012; Harbison et al. 2013; Swarup
et al. 2013).

This study has several factors that differentiate it from
previous work. First, we consider all (or nearly all) polymor-
phic sites present in large genomic data sets consisting of
complete genomes for at least 100 individuals and we calcu-
late LD between all pairs of sites no matter their physical
distance. Second, we focus our attention on the most extreme
values of LD between physically distant loci; only these pairs
of sites will pose the type of problem that we describe above
in the GWAS setting. We specifically examine perfect LD
(genetic indistinguishability) as this phenomenon is amenable
to simple theoretical modeling and we demonstrate that this
“worst-case” phenomenon is in fact present in real data.
Finally, we explore how genetic indistinguishability could
be caused purely by stochastic or demographic factors, as
such factors are frequently unaccounted for in studies of the
genetic basis of phenotypic variation.

To address these issues, we first derive a simple theoretical
model to quantify the rate of giSNP occurrence in a randomly
mating population and verify its accuracy via coalescent sim-
ulations. Next we show that sample size and minor allele fre-
quency (MAF) are themost important factors determining the
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prevalence of giSNPs, but that demographic forces and devi-
ations from random mating can also affect the rate of giSNP
occurrence, in some cases dramatically. Finally, by fully enu-
merating the global landscape of LD in several large model
organism data sets, we demonstrate that a significant fraction
of loci in real data sets can be members of giSNP clusters. As
complete sequence data for cohorts of individuals become
readily available inmanymodel andnonmodel organisms, it
will be important to recognize that this phenomenon can
have important implications for the success of trait-mapping
studies.

Materials and Methods

Simulations

We performed simulations to validate our theoretical model
and to explore the effects of population structure and de-
mographic perturbations on the prevalence of giSNPs, using
the softwarems (Hudson 2002).We note thatms implements
the coalescent approximation to the Wright–Fisher model,
which is appropriate as long as sample size is small relative
to population size (Hudson 2002), as is the case in this study.
Since we are primarily interested in LD between unlinked
sites, we assume that segregating sites arise from indepen-
dent realizations of the Wright–Fisher process. Thus, for all
simulations with more than one segregating site, we chose a
single site at random and ignored the remaining segregat-
ing sites. Then, the collection of N sites resulting from N
independent simulations with at least one segregating site
represented the hypothetical overall collection of genomic
variants. For all simulations we used a sample size of 50
chromosomes (haploid individuals). We used a mutation
rate of m ¼ 13 10210/bp.

Population bottleneck simulations: In simulations exploring
population bottlenecks, the initial effective population size
was Ne ¼ 10; 000: We simulated a bottleneck that occurred
100 generations before population sampling. After the reduc-
tion in population size due to the bottleneck, the population
size remained constant (at the new, reduced size). The sever-
ity of the bottleneck varied, ranging from a drastic reduction
in population size (1% of original size) to no reduction (100%
of original size).

Exponential growth simulations: In simulations of exponen-
tial growth, population expansion began 50 generations be-
fore population sampling. Starting population size varied, and
for all simulations the ending effective population size was
Ne ¼ 10; 000: Varying the starting population size allowed us
to simulate exponential growth that differed in magnitude.
Starting population size ranged from very small (Ne ¼ 50;
very strong exponential growth) to large (Ne ¼ 10; 000; no
exponential growth). In the exponential model, population
growth is proportional to the parameter a. Specifically, the
population size at time t is given by NðtÞ ¼ N0e2at:

Population splitting simulations: For simulations modeling
a single population splitting into two subpopulations, we con-
sidered a populationwith effective sizeNe ¼ 10; 000 split into
two subpopulations, each with sizeNe ¼ 5000:We varied the
timing of the population split from 0 to 10,000 generations,
but once the split occurred it was absolute and no migration
between subpopulations was allowed. For our ending sample
of 50 chromosomes we drew 25 chromosomes from each
population.

Ten-island model: We simulated a single population of size
Ne ¼ 10; 000 that fragmented into 10 subpopulations (islands)
500 generations before population sampling. Each subpopu-
lation had an equal size, Ne ¼ 1000: For any given simula-
tion, migration between each of the 10 subpopulations was
symmetric and occurred at a constant rate from the fragmen-
tation event until the present. Themigration rate, the fraction
of each subpopulation replaced with migrants each genera-
tion, varied between simulations. At the lowest level there
was no migration allowed between subpopulations, and at
the highest level migration replaced 90% of each subpopula-
tion each generation. For our ending sample of 50 chromo-
somes we drew 5 chromosomes from each population.

Calculating linkage disequilibrium

For simulated, theoretical, andempiricaldata,weuse the term
allelic configuration to refer to the specific constellation of
individuals carrying the minor and the major allele at a
segregating site. To identify giSNPs, we converted genotype
data to counts specifying the number of minor alleles present
in each individual and identified sites with identical allelic
configurations. For empirical data, we ignored missing data
and identified giSNPs using only pairwise complete data (that
is, only individuals with nonmissing genotype data for both
loci of interest). To measure the entropy of the distribution
of allelic configurations, we used the formula 2

P
ipilog2pi;

where i indexes the allelic configurations observed for a par-
ticular MAF and pi is the fraction of all allelic configurations
of that MAF that possess configuration i. This is a standard
formulation for measuring entropy in an information theo-
retic context. Entropy is a more appropriate measure of the
evenness of the distribution of allelic configurations than an
alternate measure such as the standard deviation, because
the former measure does not require assigning arbitrary nu-
merical values to allelic configurations. We performed all
analyses using R (R Core Team 2014) version 3.1.0 and py-
thon version 2.7.3 (Python Software Foundation 2014).

Genetically indistinguishable SNPs in real data

For our empirical examinations of giSNPs, we focused on
biallelic SNPs and discarded any sites with .10% missing
data. When tabulating cases of perfect LD, we examined only
loci that were on different chromosomes or far enough apart
on the same chromosome to be effectively randomly assort-
ing. Specifically, we obtained rough estimates of the meiotic
recombination rate [in centimorgans (cM) per kilobase (kb)
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or megabase (Mb)] and converted this to the approximate
physical distance at which loci on the same chromosome are
50 cM apart.

For Saccharomyces cerevisiae, we used data from the “Yeast
100 Genomes” collection described in Strope et al. (2015).
We tabulated LD between SNPs at least 100 kb apart or on
different chromosomes, since the meiotic recombination rate
in S. cerevisiae is �0.5 cM/kb (Cherry et al. 1997).

For Drosophila melanogaster, we used freeze 2.0 samples
from the Drosophila melanogaster Genetic Reference Panel
project (Huang et al. 2014). The meiotic recombination rate
in D. melanogaster is on the order of 10 cM/Mb (Comeron
et al. 2012), so we ignored giSNPs,5 Mb apart on the same
chromosome. The individuals in this project have been inbred
to near complete homozygosity, but a few heterozygous sites
still persist, so we set genotypes at these sites to missing data
and treated all genotypes as haploid.

For Arabidopsis thaliana, we used genotype data (nonim-
puted data) of 180 lines from Sweden (Long et al. 2013). The
meiotic recombination rate in A. thaliana is �3.6 cM/Mb
(Salome et al. 2012), so we ignored giSNPs ,14 Mb apart
on the same chromosome.

Data availability

Results and Discussion

A theoretical model for the prevalence of genetically
indistinguishable variants

Togainadetailedunderstandingof thephenomena that affect
the prevalence of giSNPs in an idealized haploid population,
we derived a simple theoretical model. We assume that
samples are drawn from a single panmictic, constant-sized
Wright–Fisher population, with mutations generated accord-
ing to the infinite-sites model, and that all mutations are
selectively neutral. Since we are interested in LD between

unlinked sites, we assume that segregating sites arise from
independent realizations of the Wright–Fisher process.

We begin by considering a variant with MAF k=n;where n
is the number of samples drawn from the haploid population.
For a set of variants drawn from the above model, the
expected fraction of variants with the same MAF k=n is
approximately

1=kþ 1=ðn2 kÞ�
1þ dk;n2k

�Pn21
i¼1 ð1=iÞ

; (1)

where d is the Kronecker delta. Equation 1 was previously
derived by Tajima (1989, equation 51) and Fu (1995, equa-
tions 6–8).

We use the term allelic configuration to refer to the specific
constellation of individuals carrying the minor and the major
allele at a segregating site (i.e., which individuals carry
the minor allele and which individuals carry the major al-
lele). Thus, two sites are giSNPs if and only if they share
identical allelic configurations. The presence of identical al-
lelic configurations does not imply an identical derived allele
distribution among samples, since a derived allele with fre-
quency k=n or ðn2 kÞ=n could present the same allelic
configuration.

Under the neutral Wright–Fisher model (panmixis, con-
stant population size, infinite-sites mutation), for a given
MAF k=n; all allelic configurations are equally likely since

the labeling of individuals is arbitrary. There are
�
n
k

�
unique

allelic configurations for a site with MAF k=n: Thus, the frac-
tion of variants with minor allele frequency k=n that have an

identical allelic configuration is
�
n
k

�21

:

Combining these results, given a variantwithMAF k=n; the
expected fraction of other variants that are genetically indis-
tinguishable can be expressed as

Figure 1 Correspondence between simulated and
theoretical expectations of giSNP prevalence. Dotted
lines show results calculated using the theoretical
model introduced above. Solid lines (directly under-
neath dotted lines) indicate mean number of giSNPs
per million SNPs obtained via simulation (averaged
across all sampled allelic configurations). Ribbon with
lighter shading surrounding each line shows the range
in the number of giSNPs across sampled allelic config-
urations for each minor allele frequency. y-axis is in-
verse hyperbolic sine transformed in this figure and in
other figures plotting giSNP prevalence as a function
of MAF throughout the article.
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1=kþ 1=ðn2 kÞ�
1þ dk;n2k

�Pn21
i¼1 ð1=iÞ

�
n
k

�21

: (2)

This expression represents the probability that, with a single
variant in hand, a second variant drawn at random will be
genetically indistinguishable from the first (i.e., they are
giSNPs). This probability is independent of the total number
of variants in the data set.

We verified this model by using a computer program to
generate samples drawn from a randomly mating, constant-
sized population generated using the coalescent approxima-
tion to the Wright–Fisher model with an infinite-sites model
of mutation (Hudson 2002). Figure 1 shows the expected
number of giSNPs as a function of MAF for simulations using
six different sample sizes. For all sample sizes, the mean
number of giSNPs is in very close agreement with the expec-
tation according to our theoretical model. Figure 1 shows
intervals that indicate the range in the number of giSNPs
across simulated allelic configurations for each MAF. These
intervals are noticeable only for giSNPs occurring at a very
low, but nonzero, rate and arise due to the increased sam-
pling variation present for very rare events.

In Supporting Information, File S1, we detail how our
theoretical model can be extended to diploid populations.
Briefly, in the context of our analysis of giSNPs, we are pri-

marily interested in physically distant pairs of loci (loci that
are far apart or on different chromosomes), so phase becomes
arbitrary. For unphased allelic configurations that contain no
heterozygotes, the expected number of giSNPs is identical to
Equation 2, but where n refers not to the number of haploid
individuals but to the number of chromosomes (n=2 diploid
individuals). For unphased allelic configurations that contain
at least one heterozygote, this probability will be inflated by a
factor of 2h; where h is the number of heterozygotes present
in the configuration (File S1).

Key insights from theoretical model

Figure 1 clearly illustrates two central determinants of giSNP
prevalence. First, it is clear that the prevalence of giSNPs is
reduced as MAF increases. This follows from intuition, as can
be shown by considering the extreme example of a singleton
SNP present in only one individual: this SNP will have the
lowest possible MAF and will be a member of the giSNP
cluster containing all other singleton SNPs present in the
same individual. As the MAF increases, the number of possi-
ble allelic configurations grows faster than exponentially, and
the chance of two unlinked SNPs sharing the same allelic con-
figuration becomes very small for a randomlymating population.

Figure 2 Demographic perturbations can affect the occurrence of
giSNPs. The allele frequency spectrum and corresponding rate of giSNP
occurrence for two demographic models are shown. (A and B) Results
from the bottleneck model described in the main text. (C and D) Results
from the exponential growth model discussed in the main text. In the
exponential model, population growth is proportional to a as described in
Materials and Methods; a in C and D refers to this exponential growth
factor.

Figure 3 Population structure can greatly increase giSNP prevalence for
specific MAFs. Results from two models that include population structure
are shown as described in the main text. (A and C) Ratio of the entropy of
the distribution of allelic configurations, at each MAF, compared to the
neutral scenario (split time of 0 or complete migration between popula-
tions, respectively). (B and D) Mean number of giSNPs per million SNPs as
a function of MAF. Lines in A and B are colored according to split time in
generations. Lines in C and D are colored according to the migration rate
between subpopulations (islands) after the fragmentation event,
expressed as the fraction of each subpopulation replaced with migrants
each generation.
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Second, it is apparent from Figure 1 that expectations of
giSNP prevalence are strongly dependent on sample size,
with almost no giSNPs for sample sizes 200 and 500 except
at singleton sites. Again, this phenomenon follows from our
theoretical model—the number of possible allelic configura-
tions increases very rapidly as sample size increases, regard-
less of MAF (although the increase is more dramatic for
higher MAF). Overall, these two points indicate that sample
size and MAF both play an important role in determining the
prevalence of giSNPs through their impact on the total number
of possible allelic configurations, a relationship that follows
from the combinatorics of minor alleles being partitioned
among individuals.

Demography and mating patterns can exacerbate
giSNP prevalence

The theoretical model described above provides quantitative
estimates of the prevalence of giSNPs in a randomly mating
population of constant size. However, any real population is
likely to violate one or more of these assumptions. The de-
rivation above illustrates the strong dependence of giSNP
prevalence on sample size and MAF, as discussed previously,
but also suggests conditions under which the occurrence of
giSNPs is likely to deviate from idealized conditions. We ex-
plore these conditions, using coalescent simulations with a
sample size of n ¼ 50:We restrict our simulations to neutrally
evolving loci and do not investigate cases of selection or other
phenomena such as epistasis. In our simulations, the specific
parameters of each departure from the constant-sized pan-
mictic model are necessarily arbitrary, but they will neverthe-
less be useful for illustrating overall patterns of changes in the
prevalence of giSNPs.

Perturbation of allele frequency spectrum: In the derivation
of our model, Equation 1 represents a contribution to the
prevalence of giSNPs due to the allele frequency spectrum.
The allele frequency spectrum is well known to be affected by
both demographic and selective forces (Marth et al. 2004;
Achaz 2009). We explored the effect of perturbations to the
allele frequency spectrum on giSNP prevalence by simulating
data from a population subject to (1) a bottleneck starting a
fixed number of generations ago and lasting until the present
and (2) a period of exponential growth starting a fixed num-
ber of generations ago and lasting until the present. In the
former case the starting population size was constant but the
strength of the bottleneck (fraction by which the population
size was reduced) varied, while in the latter case the starting
population size and magnitude of exponential growth varied
such that final population size was constant in all simulations.

As Figure 2, A and C, shows, the allele frequency spectrum
is distorted by these demographic events. In the case of a
strong population bottleneck, a large portion of rare variation
is lost and the frequency spectrum shifts toward higher-fre-
quency variation (Figure 2A). When the population grows
exponentially at a high rate, the reverse is true and the frac-
tion of rare variation increases dramatically at the expense of

common variation (Figure 2C). Figure 2, B and D, demon-
strates that these shifts in the allele frequency spectrum have
detectable effects on the prevalence of giSNPs, although they
tend to be mild. Specifically, strong exponential growth shifts
the allele frequency spectrum toward low-frequency varia-
tion, which simultaneously creates a larger “pool” of low-
frequency variants and a smaller pool of higher-frequency
variants, resulting in slightly higher/lower rates of giSNP
occurrence, respectively (Figure 2, C and D). In contrast to
exponential growth, a bottleneck has an opposing effect on
the allele frequency spectrum in that it produces shifts to-
ward moderate-/high-frequency variation and away from
low-frequency variation (Figure 2A). Perhaps counterintui-
tively, strong bottlenecks do not lead to any appreciable in-
creases in giSNP prevalence. The reduction in low-frequency
variants due to the bottleneck decreases giSNP prevalence
among low-MAF variants (Figure 2B), but a corresponding
increase in higher-frequency variants that would be expected
to increase giSNP occurrences is mitigated by the vast num-
ber of allelic configurations at these MAFs. In particular, the
allele frequency spectrum shift toward higher-frequency
variation (Figure 2A) does not manifest until a MAF of
�15% (where there are already .1 trillion possible allelic
combinations), which results in a negligible increase
(�   13 1025/million SNPs) in the total rate of giSNP oc-
currence (Figure 2B).

Nonuniform probability distribution of allelic configura-
tions:Next,we consider the second component of Equation2,�
n
k

�21

: As described above, this factor accounts for the

equal likelihood of each allelic configuration, which is a con-
sequence of arbitrary labeling of individuals under the neu-
tral Wright–Fisher model. However, the equal likelihood of
all allelic configurations will not hold if mating is nonran-
dom. To explore the effect of changes in the probability dis-
tribution of allelic configurations due to deviations from
random mating among the individuals in a sample, we sim-
ulated two models that incorporate population structure: (1)
a model of a population that instantly splits into two com-
pletely isolated equally sized subpopulations and (2) a 10-
island model where a single population instantly fragments
into 10 equally sized subpopulations (islands) at a single time
point with subsequent migration between subpopulations.
For the former model we varied the timing of the split, and
for the latter model we varied the amount of migration be-
tween subpopulations after the fragmentation event. For both

Table 1 Characteristics of data sets examined

Organism
Sample
sizea

No. of SNPs
examined

A. thaliana 181 3,067,372 Long et al. (2013)
D. melanogaster 206 3,660,570 Huang et al. (2014)
S. cerevisiae 100 503,846 Strope et al. (2015)
a Including the appropriate reference genome.
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models, we drew an equal number of chromosomes from each
simulated subpopulation and combined them into one large
sample to calculate occurrences of giSNPs.

To quantify the nonuniformity of the probability distribu-
tionof allelic configurations for a givendemographic scenario,
we calculated entropy (the “entropy of allelic configurations”)
for each MAF. In an information-theoretic sense, the entropy
is maximized when the probability distribution is most disor-
dered (a uniform probability distribution of allelic configura-
tions) and minimized when the probability distribution has
no randomness (only a single allelic configuration). As Figure
3, A and C, shows, the demographic scenarios outlined above
produce shifts in the entropy of allelic configurations at only
a subset of minor allele frequencies. In the two-population
model, entropy is drastically reduced for MAF = 0.5, which
corresponds either to variation fixing in one subpopulation
and being lost in the other or to variation that arose in one
subpopulation after the split and subsequently rose to fixa-
tion (a “subpopulation-specific” allelic configuration; Figure
3A). Allelic configurations with MAF slightly ,0.5 show a
reduction in entropy as well, although it is less dramatic. This
reduction is due to the overrepresentation of allelic configu-
rations with a small number of differences from the subpop-
ulation-specific configuration. In the 10-island model, there
are similar dips in entropy that occur at regular intervals rather

than only at MAF = 0.5 (Figure 3C). Specifically, these reduc-
tions occur at 10%, 20%, 30%, 40%, and 50% MAF and rep-
resent allelic configurations corresponding to variation that is
unique to one subpopulation or fixed only within certain sub-
populations (with population size 50, 5 chromosomes were
sampled from each subpopulation, and 5/50 = 10%, 10/50 =
20%, etc.). Like the two-population model, MAFs near those
corresponding to perfect subpopulation-specific division of
variation also display reductions in entropy. As described
above, these reductions are due to the overrepresentation of
allelic configurations with a small number of differences from
the subpopulation-specific configurations. Figure 3, B and D,
demonstrates that these shifts in the probability distribution of
allelic configurations can have very strong effects on the prev-
alence of giSNPs. Specifically, a reduction in the entropy of
allelic configurations increases the rate of giSNP occurrence
for alleles of the same MAF (but does not affect the rate of
giSNP occurrence for alleles of other MAFs). Intuitively, if only
a few different allelic configurations dominate a particular
MAF, the chance of any two variants with that MAF sharing
an allelic configuration ismuch higher than if thereweremany
allelic configurations present at roughly equal frequencies.

Overall, these results indicate thatpopulation structure can
increase the prevalence of giSNPs for particular minor allele
frequencies by increasing nonuniformity of the probability

Figure 4 Genetically indistinguishable SNPs in real data sets. (A–C) Statistics calculated from all data for each organism. (D–F) Statistics calculated from
data sets downsampled randomly to match a sample size of 100 chromosomes and 100,000 SNPs. (A and D) Fraction of SNPs with at least one giSNP as
a function of MAF. (B and E) Median number of giSNPs as a function of MAF. Small black notches indicate bootstrap 95% confidence intervals on the
median. The median number of giSNPs for all MAFs .0:08 is negligible in all data sets. (C and F) Maximum number of giSNPs across all allelic
configurations, as a function of MAF. Dots indicate the number of giSNPs for the “worst” allelic configuration at each specific MAF. Solid lines provide a
local smoothing via the loess method.
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distribution of allelic configurations. The particularMAFs that
will be affected are specific to the demographic history of the
population in question. In the simulated scenarios above, the
allele frequency spectrum is also shifted from the neutral case,
although this is not strictly required to affect giSNP preva-
lence. We note that there are many other possible scenarios
throughwhich deviations from randommating could lead to a
nonuniform probability distribution of allelic configurations,
including (but not limited to) assortative mating, selfing/
inbreeding, and other forms of population subdivision. More
generally, it is clear from both theory and simulation that
nonuniformity of the distribution of allelic configurations, no
matter the mechanism, has the potential to be a more impor-
tant determinant of prevalence of giSNPs than shifts in the
allele frequency spectrum. A large shift in the allele frequency
spectrummight lead to a change in the fraction of variants at a
particular MAF of two- to threefold. In contrast, strong favor-
ing of a small number of allelic configurations could change
the probability of particular allelic configurations by several
orders of magnitude.

An examination of giSNPs in real data sets

We first examined giSNPs in humans, using data from the
1000 Genomes Project (1000 Genomes Project Consortium
2012). We found very few giSNPs, indicating that this phe-
nomenon is unlikely to affect results inmodern humanGWAS
with large sample sizes (File S1 and Figure S1). However, we
found a very different pattern when we examined the land-
scape of giSNPs in several large data sets of commonly used
model organisms. Specifically, we comprehensively surveyed
LD at all pairwise combinations of SNPs in 100 S. cerevisiae
genomes, 206 D. melanogaster genomes, and 181 A. thaliana
genomes (Table 1). We treated all genotypes as haploid,
since the yeast genomes sequenced were haploid or homozy-
gous diploid (Strope et al. 2015), and the fly and A. thaliana
individuals were inbred to complete or nearly complete ho-
mozygosity (Long et al. 2013; Huang et al. 2014). In total, our
survey of LD at pairwise combinations of SNPs consisted of
searching for giSNPs at nearly 12 trillion pairs of SNPs. We
found the presence of giSNPs in all data sets, although the
amount varied between data sets. We identified billions of
giSNPs in the yeast, fly, and A. thaliana genomes (Figure 4, A–
C, and Table 2). Despite this large number of giSNPs, in all
three data sets it represented only a tiny fraction (,   1%) of
the enormous number of possible pairs of SNPs. In all data
sets the bulk of the giSNPs we identified were between var-
iants with lowMAF, as predicted by the theory above (Figure

4A). Nevertheless, we identified thousands of giSNPs with at
least moderate allele frequency ($   5%; Table 2). According
to most measures, the rate of giSNP occurrence was highest
in yeast, intermediate in A. thaliana, and lowest in flies (Fig-
ure 4, A and B).

A list of pairs of giSNPs could consist of many pairs of
independently genetically indistinguishable SNPs or could be
large clusters of a relatively smaller number of SNPs that are
all mutually giSNPs. To explore the fraction of SNPs affected
by genetic indistinguishability, we calculated the number of
SNPs that have at least one giSNP.We found that a significant
fraction of SNPs in each data set had at least one giSNP, with
this quantity especially high in the yeast data (�   70%; Table
2). The median number of giSNPs per SNP was also highest
in yeast, with a slightly lower number in A. thaliana and
the lowest number in flies (Figure 4B). In all cases, the great
majority of SNPs that had at least one giSNP were rare
(MAF ,   5%), although there are thousands of SNPs in each
data set with at least moderate allele frequency that have
at least one giSNP (Table 2). To explore the worst-case sce-
nario, we tabulated the maximum number of giSNPs among
all allelic configurations at each MAF and found in each data
set some configurations with relatively high MAF (.   10%)
that had hundreds of mutually genetically indistinguishable
SNPs (Figure 4C).

Overall, our estimates of giSNP prevalence in real data sets
are likely to be very slight overestimates due to missing ge-
notype data—we focused on sites with ,   10% missing data
and ignored individuals with a missing genotype for either
SNP in the pair, but it is possible that a missing genotype
could break up perfect LD between an otherwise genetically
indistinguishable pair of SNPs. We note that, for the Arabi-
dopsis data we used, a careful analysis of long-range LD that
specifically employed methods to correct for population
structure in LD calculations results in many fewer instances
of high-LD pairs (Long et al. 2013). However, in our exami-
nations of giSNPs in real data, we chose to naively combine
individuals known to vary in relatedness to quantify giSNP
prevalence in a set of individuals that might serve as a sample
population for GWAS.

Genetically indistinguishable SNPs in data sets with equal
sample sizes: Results from our theoretical model of geneti-
cally indistinguishable SNPs and the coalescent simulations
described above show that two central determinants of the
prevalence of giSNPs are sample size and MAF. To examine
giSNPs in realdatasetsonanequal footing fromtheperspective

Table 2 Number of giSNPs in real data

No. (%) of possible pairs of SNPs that
are genetically indistinguishable No. (%) of SNPs that have at least one giSNP

Organism All SNPs MAF ‡5% only All SNPs MAF ‡5% only

A. thaliana 2:723109 (0.058) 38,033 (,   0:01) 1:573 106 (51) 30,964 (2.5)
D. melanogaster 1:903109 (0.028) 80,936 (,   0:01) 1:363 106 (37) 1,555 (0.097)
S. cerevisiae 1:223109 (0.96) 5:123 106 (0.052) 352,235 (70) 10,447 (7.4)
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of sample size,we considered 100 randomly selected individuals
fromeachmodelorganismdataset (S. cerevisiae,D.melanogaster,
andA. thaliana). Since the absolute number of giSNPs is highly
dependent on the number of SNPs in a data set, we randomly
selected 100,000 SNPs from each reduced sample of individ-
uals. After removing differences in sample size, the four data
sets show similar overall rates of giSNP prevalence (Figure 4, D
and F). Nevertheless, there was a consistent pattern of the
highest median number of giSNPs being present in yeast and
the lowest in flies (Figure 4E). The theoretical model intro-
duced earlier predicts giSNP prevalence to be roughly on par
with that found in flies (Figure 4E, dashed gray line). This
result is consistent with the fact that the D. melanogaster data
set is the only data set we examined that was collected from a
single geographic location and could reasonably be thought to
derive from a quasi-randomlymating population (Huang et al.
2014).

Almost genetically indistinguishable SNPs: In this articlewe
have focused on the simplest possible scenario of LD between
two independently segregating loci, namely the occurrence
of perfect LD between alleles at the two loci. This worst-case
scenario provides a useful point of entry for studying LD be-
tween independent loci, as it is well suited to simple theoret-
ical modeling and calculations do not depend on the specific
measure of LD used. However, LD between alleles at two loci
can be substantial without the presence of perfect disequilib-
rium. We use the term “almost genetically indistinguishable”
to describe this phenomenon of high but not complete LD be-
tween alleles at two loci and the abbreviation “almost giSNP”
to encompass SNPs that are either genetically indistinguish-
able or nearly so. Almost genetically indistinguishable SNPs
could still present a significant impediment to the localization
of causal alleles in the association study design and might be
of more general interest given the relative rarity of perfect
LD.

As a preliminary exploration of the scale of almost genet-
ically indistinguishableSNPs relative togiSNPs,we focusedon
the yeast data described above and quantified LD between all
pairs of variants, using r2: As Figure 5 shows, the fraction of
SNPs at eachMAFwith at least one almost giSNP increases as
the threshold for disequilibriumdecreases from r2 ¼ 1 (giSNPs)
to r2 ¼ 0:6: Similarly, the mean number (as a function of MAF)
and maximum number (across all allelic configurations) of
almost giSNPs both increase as the r2 threshold decreases
(data not shown). The maximumMAF at which a substantial
fraction of SNPs have at least one almost giSNP is shifted
upward as r2 decreases; for example, the maximum MAF
where at least 25% of SNPs have a giSNP is 6.5% for r2 ¼ 1;
8.5% for r2 ¼ 0:8; and 13.5% for r2 ¼ 0:6 (Figure 5). Inter-
estingly, there is an upward trend in the fraction of SNPs with
at least one giSNP that is particularly apparent at the lowest
threshold (r2 ¼ 0:6; Figure 5). This effect likely arises for com-
binatoric reasons; specifically, assuming that a maximum of n
alleles can be “flipped” from ancestral to derived or vice versa,
there are more possible ways to achieve r2 ¼ 0:6 starting with

an allelic configuration with MAF = 0.5 than there are when
starting with an allelic configuration of MAF = 0.25.

Conclusions and implications for future studies

The phenomenon of unlinked genetically indistinguishable
SNPs is of practical importance to investigators conducting
mapping studiesusingdensepolymorphismdata inmodel and
nonmodel organisms, using the association study design. In
particular, causal loci with giSNPs elsewhere in the genome
could completely eliminate the ability to localize causal alleles
via association. Even forMendelian or nearlyMendelian traits
that are commonly considered “easy” to map, giSNPs could
lead to confusion about the true source of signal driving a
phenotypic association.

As described above, we used theoretical models, simula-
tions, and genome-wide SNP data to explore the conditions
under which giSNPs are expected to manifest and to quantify
their prevalence in real data. We find that sample size and
MAF are the most important factors determining how often
loci are genetically indistinguishable. Nevertheless, giSNPs
can also be strongly elevated for particular MAFs under
models with deviations from random mating. In the three
model organism data sets we examined, we observed differ-
ences in the relative frequencies of giSNPs. This is not sur-
prising given the biological differences between these
organisms and differences in the characteristics of the data
sets. Factors due to both components of our theoretical model
(i.e., contributions due to the allele frequency spectrum and
due to nonrandom mating) are likely to affect giSNP preva-
lence. Specifically, differences in allele frequency spectra ac-
count for some, but not all, of the difference in giSNPs,
suggesting that structure and population history play a role
as well (File S1 and Figure S2).

The above observations about the most important factors
determining giSNP prevalence are particularly relevant for
marker–trait association studies in nonmodel organisms or
those where phenotype data are labor intensive to obtain,

Figure 5 Almost genetically indistinguishable SNPs in 100 S. cerevisiae
genomes. Lines show the fraction of SNPs with at least one giSNP (r2 ¼ 1)
or almost genetically indistinguishable SNP (r2 ,1) as a function of MAF.
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as these studies are likely to be conducted with modest sam-
ple sizes. Because giSNPs are enriched for less frequent al-
leles, their impact on associations may be greater still if the
phenotypic distribution is skewed. As we have described, a
global survey of LD could reveal the extent to which it is likely
to ultimately impede localization of causal alleles. Such sur-
veys are particularly important for samples consisting of in-
dividuals likely to have a complex demographic history, given
the potential for strong population structure to elevate the
prevalence of giSNPs. At the same time, we recognize that the
use of mixed models to account for population structure in
association mapping (e.g., Kang et al. 2008) is likely to sig-
nificantly ameliorate the effect of giSNPs that lie along major
axes of population subdivision.

How can we “cure” indistinguishability in a genetic map-
ping context? To reduce the number of giSNPs in a particular
data set, we must break up associations between alleles at
two loci that are in perfect disequilibrium. Aside from collect-
ing more individuals (which may not always be possible), the
most straightforward way to accomplish this is to take advan-
tage of meiosis, during which recombination and indepen-
dent assortment break up associations between alleles at loci
on the same and different chromosomes, respectively. Specif-
ically, if variation involved in giSNPs is segregating in a cross,
and n offspring are collected, then a fraction 12 0:5n of the
genetically indistinguishable pairs of loci should be broken
up and no longer genetically indistinguishable (assuming
giSNPs segregate independently). Although this strategy ad-
dresses the worst-case scenario of giSNPs, it is not a panacea.
As we have shown, almost genetically indistinguishable SNPs
can be widespread in genomic data sets. Both genetically in-
distinguishable and almost genetically indistinguishable SNPs
could impede localization of causal alleles. In theory, almost
genetically indistinguishable SNPs could result in a stronger
marker–trait association between the phenotype and a non-
causal locus than at the causal locus itself. Given the poten-
tially disruptive effects of almost genetically indistinguishable
SNPs, we suggest that further investigation into their preva-
lence and practical importance is warranted.
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(A) Fraction of SNPs with at least one giSNP as a function of MAF. (B)
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File S1

Extending the theoretical model of giSNPs to diploid pop-
ulations

To extend our theoretical model to diploid populations, we begin by assuming
that n is the number of chromosomes sampled, which corresponds to n/2 diploid
individuals. Again we consider a variant with minor allele frequency k/n. For
the diploid model, equation 1 (the expected fraction of variants with the same
minor allele frequency) still holds because the minor allele frequency for a par-
ticular variant stays constant whether we consider n chromosomes partitioned
into n haploid individuals or n chromosomes partitioned into n/2 diploid indi-
viduals. Thus we can use this equation to calculate the expected fraction of
variants with the same minor allele frequency.

The fraction of variants with minor allele frequency k/n that have an iden-
tical allelic configuration is slightly more complicated than for the haploid case.
Here, allelic configurations are composed of three classes (homozygous major
allele, heterozygous, and homozygous minor allele) rather than two. For a site
with minor allele count k, the number of possible phased allelic configurations
is

k∑
i=0

(
n/2

i

)(
n/2

k − i

)
=

(
n

k

)
(1)

where the first binomial coefficient represents the configuration of alleles for
the first of the two copies of the locus, and the second binomial coefficient the
configuration for the second of the two copies of the locus. The right-hand
side of the equation follows from the Chu-Vandermonde identity. These allelic
configurations are all equally likely under the neutral Wright-Fisher model with
infinite-sites mutation.

In the context of giSNPs, we are primarily interested in physically distant
pairs of loci (loci that are far apart or on different chromosomes), and phase
becomes arbitrary. If we focus on unphased allelic configurations, the number
of possible configurations for a site with minor allele count k is

k − k mod 2

2
+ 1 =

2k + 3 − (−1)k+1

4

Unfortunately, these allelic combinations are not equally likely. In particular,
each heterozygote in the unphased allelic configuration doubles the number of
possible phased allelic combinations. Combining this fact with equation 1 yields
a formula for the probability of any specific unphased allelic configuration:

Pr(allelic configuration) = 2h
(
n

k

)−1

where h is the number of heterozygotes present in the configuration in question.
Overall, it is evident that for a sample of 2n diploid individuals, considering a

variant with minor allele frequency k/n, for variants with either (1) an unphased
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allelic configuration with no heterozygotes or (2) a phased allelic configuration,
the expected fraction of other variants with which it will be a giSNP is identical
to the haploid case with twice as many individuals sampled (sample size 2n),
given in equation 2. For unphased allelic configurations that include one or
more heterozygotes, this probability will be inflated by a factor of 2h, where h
is the number of heterozygotes present in the configuration.

Genetically indistinguishable SNPs in humans

To explore the rate of giSNP occurrence in real genome-wide data, we examined
giSNPs in 1,093 humans from the 1,000 genomes project (The 1000 Genomes
Project Consortium, 2012). We focused on biallelic SNPs, and discarded
any sites with over 10% missing data. We obtained SNPs implicated in human
genome-wide genotype-phenotype associations from the NIH Catalog of Pub-
lished Genome-Wide Association Studies (Hindorff et al., 2014). The meiotic
recombination rate in humans is roughly 1 cM/Mb (Jensen-Seaman et al.,
2004) so in order to focus on effectively randomly assorting loci we ignored
giSNPs less than 50 Mb apart on the same chromosome. The large number of
SNPs present in this dataset (>38 million) precludes enumeration of LD be-
tween all ∼730 trillion pairs of SNPs, so we focused on calculating whether
each of 12,607 distinct SNPs with reported significant associations in a GWAS
(Hindorff et al., 2014) and any of the other ∼38 million SNPs in the dataset
were genetically indistinguishable. Overall, nine GWAS-reported SNPs were
members of giSNP pairs with a total of 44,270 other unique SNPs across the
genome.

Most of the pairs of giSNPs (44,156 of 44,270 pairs) involved five GWAS
SNPs where one individual carried a single copy of the minor allele. In other
words, the GWAS SNP minor allele was a singleton private to the individual in
question, and thousands of other private variants within that individual formed
a cluster of giSNPs. Given that a new exome sequence reveals roughly 200 sin-
gletons private to that individual (Tennessen et al., 2012) and that the exome
corresponds to approximately 1.5% of the human genome, it is not surprising
that there should be thousands of private singleton variants present in each in-
dividual. These individuals were not confined to one population but included
individuals of African, admixed American, and European descent. The other
four GWAS SNPs were genetically indistinguishable from a small number of
other variants (9, 10, 32, and 63) at which two individuals carried a single copy
of the minor allele.

The nine GWAS SNPs that have giSNPs in the 1,000 genomes dataset were
reported in a total of four separate GWAS (Do et al., 2011; Comuzzie et al.,
2012; Demirkan et al., 2012; Seppala et al., 2014). In most cases, the SNP
did not have a highly significant p-value, and was often reported as suggestive.
The sole exception was rs34637584, which had a highly significant p-value of
2×10−28 (Do et al., 2011) (this association was reported previously to the study
in question). However, in all cases, the frequency of the risk allele in the GWAS
was either very high or very low (0.998 for two SNPs, ≤ 0.006 for five SNPs;
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0.063 for one SNP; unreported for the last SNP). It is well understood that
population based association studies are poorly powered to detect associations
between traits and causal alleles with low MAF (Long et al., 1997; Ohashi
and Tokunaga, 2001; Zondervan and Cardon, 2004). Our results indicate
that genotypes with very low MAF are particularly susceptible to “dragging
along” many additional non-causal loci that are giSNPs and that, as has been
previously noted, any significant GWAS results involving very low MAF variants
should be interpreted with extreme caution. This is consistent with the success
of collapsing methods in the context of rare-variant association studies, where
rare variants are not individually tested for association with phenotypes but,
rather, information is aggregated from low-frequency variants across multiple
sites to produce a test statistic (Asimit and Zeggini, 2010; Zuk et al., 2014).
Thus, giSNPs are not likely to pose significant problems for modern GWAS with
large sample sizes that test for association using only SNPs with, e.g., at least
a 5% MAF.

In order to examine the dependence of giSNPs in human data on sample
size, we added 50 randomly selected humans (100 chromosomes) to our sample
of 100 randomly selected individuals from each model organism dataset (S.
cerevisiae, D. melanogaster, and A. thaliana). Again, since the absolute number
of giSNPs is highly dependent on the number of SNPs in a dataset, we randomly
selected 100,000 SNPs from each reduced sample of individuals. After removing
differences in sample size, we observed similar overall rates of giSNP prevalence
in humans as in the model organisms (Fig. S1). Thus, consistent with the
observations made by Lawrence et al. (2005), giSNPs would have the potential
to be a significant concern in human GWAS in cases where sample sizes are small
(e.g. dozens or low hundreds of individuals). Fortunately, this scenario does not
apply to most modern human GWAS.

Examining giSNPs using the empirical allele frequency spec-
trum

As described in the main text, our theoretical model for the prevalence of ge-
netically indistinguishable variants has two components:

1. A component giving the expected fraction of variants with the same MAF.
This component represents a contribution due to the allele frequency spec-
trum.

2. A component giving the fraction of variants with MAF k/n that have an
identical allelic configuration.

In our model, we use an idealized allele frequency spectrum for the first item
above. However, it is also possible to compute the expected number of giSNPs
for variants of a given MAF using the empirical allele frequency spectrum.
Specifically, the fraction of variants with MAF k/n (equation 1 in the main
text) can be calculated from the data itself. Then, the expected number of
giSNPs for a given MAF can be calculated as the fraction of variants with that
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MAF in the dataset of interest multiplied by
(
n
k

)−1
. In practice, due to missing

data, we calculate the empirical allele frequency spectrum using bins centered
around the minor allele frequencies 1/n, 2/n, . . . , (n − 1)/n. Figure S2 shows
giSNPs (expressed as the number of giSNPs per million SNPs) in the three
model organism datasets compared to the expectation based on each species’
empirical allele frequency spectrum. It is apparent that, for all three species,
a contribution of the allele frequency spectrum alone cannot fully explain the
number of giSNPs present. Thus, structure and population history play a role
as well, including factors such as migration, subdivision, assortative mating, and
many others.
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